定积分在几何中的应用
- 格式:doc
- 大小:923.96 KB
- 文档页数:4
(二)定积分在几何中的应用定积分在几何中的应用 (1)求平面图形的面积求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。
由此可知通过求函数的定积分就可求出曲边梯形的面积。
例如:求曲线2f x =和直线x=l ,x=2及x 轴所围成的图形的面积。
轴所围成的图形的面积。
分析:由定积分的定义和几何意义可知,由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。
和直线,及轴所围成的图形的面积。
所以该曲边梯形的面积为所以该曲边梯形的面积为2233222112173333x f x dx ===-=ò (2)求旋转体的体积求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()b aV f x d x p=ò。
(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dcV g y d y p =ò。
(III)由连续曲线y=f(x)( ()0f x ³)与直线x=a 、x=b(0a £ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()baV xf x d x p =ò。
例如:例如:求椭圆求椭圆22221x y a b +=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。
转体的体积。
分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆22()b y a x a x a a=--££,与x 轴所围成的图形绕轴旋转一周而成的,轴所围成的图形绕轴旋转一周而成的,因此椭圆因此椭圆22221x y a b+=所围成的图形绕x 轴旋转一周而成的旋转体的体积为轴旋转一周而成的旋转体的体积为 222222222322()()14()33aay aaaa b b v a x dx a x dxaa ba x x aba pp p p ---=-=-=-=òò椭圆绕y 轴旋转时,旋转体可以看作是右半椭圆22,()a x b y b y b b=--££,与y轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为一周而成的旋转体的体积为222222222322()()14()33bby b bb b a a v b y dy b y dy b b a b y y a bb p p p p ---=-=-=-=òò(3)求平面曲线的弧长求平面曲线的弧长(I)、设曲线弧由参数方程、设曲线弧由参数方程 (){()()x t t y t j a b f =££=给出其中''(),()t t j f 在[,]a b 上连续,则该曲线弧的长度为'2'2[()][()]()s t t d xbaj f =+ò。
定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。
本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。
1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。
通过使用定积分,可以轻松解决这个问题。
以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。
这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。
2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。
例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。
同样地,在力学中,定积分可以用于计算物体所受的力的功。
这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。
3. 经济学中的应用经济学也是定积分的应用领域之一。
在经济学中,我们经常需要计算一段时间内的总收益或总成本。
通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。
这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。
4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。
在概率密度函数中,曲线下的面积表示了该事件发生的概率。
通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。
这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。
综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。
无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。
通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。
定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。
在本文中,我们将着重探讨定积分在几何和物理中的应用。
一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。
我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。
这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。
二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。
比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。
对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。
我们可以通过对图形进行分割并使用定积分来计算重心和质心。
四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。
举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。
定积分的几何应用例题定积分,又称定积分法,是一种求取特定函数积分的方法,它是集概率论、统计学和运筹学于一体,是微分几何学中的重要内容。
它在微分几何中一般用来求取曲面积、表面积、空间积分、距离长度等。
下面将介绍几个典型的定积分的几何应用例题,以便读者更好的理解定积分的几何应用。
例题一:求抛物线y=x2的截面积,其中抛物线两端上的y值分别为a和b。
答:这里的抛物线的截面积S=∫a b x2dx。
因此,将原积分变形可得S=(1/3)∫a b (x3+a3-b3)dx,于是,将积分变量替换,此时,S=(1/3)[(b3-a3)/2]。
例题二:求圆柱体的体积,其中圆柱体的底面半径为a,高度为h。
答:首先,将圆柱体拆成无穷多个小圆柱体,那么,圆柱体的体积V=∫0 hπa2dh。
将原积分变形可得V=πa2∫0 hdh=(πa2h2)/2,可见,圆柱体的体积大小取决于高度h和底面半径a的平方乘积。
例题三:求圆锥的表面积,其中圆锥的底面半径为a,高度为h,底面圆心角为2α。
答:此时,圆锥的表面积S=∫0 hΠa2sindαdh,将原积分变形可得S=Πa2∫0 hsindαdh=(2Πahcosα)/2,可以得出,圆锥的表面积大小取决于高度h、底面半径a以及底面圆心角2α因此,定积分在几何学中具有重要意义,可以求出各类几何体的表面积、体积等,解决实际问题。
上面提供了典型的定积分的几何应用例题,可以让读者对定积分的几何应用有一个深入的理解。
定积分的计算方法广泛,不仅可以采用数值积分法,还可以采用把积分分解为若干小段然后求和的方法。
同时,它还可以利用积分变量的变换,把定积分变为求解较为容易的积分,可以较好地解决实际问题。
总之,定积分是一门极其重要的数学科学,在几何学和实际问题中都有重要的应用,使用正确的计算方法,可以较好地解决实际问题。
定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。
在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。
下面我们就来看看定积分在几何计算中的应用。
定积分可以用来计算曲线的长度。
对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。
这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。
这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。
定积分可以用来计算曲面的面积。
对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。
这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。
这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。
定积分可以用来计算体积。
对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。
这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。
这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。
定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。
这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。
定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。
它可以在几何学、物理学中解决积分、面积和容积计算题中应用。
首先,定积分在几何学中的简单应用。
比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。
它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。
它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。
其次,定积分也可以用在物理学中。
比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。
它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。
最后,定积分也可以应用于物理学的温度问题中。
比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。
还可以用它求解温度场、热传导率、热导率等问题。
以上是定积分在几何、物理学中的简单应用。
定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。
只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。
- 1 -。
定积分在几何计算中的应用1.引言定积分是微积分中的一个重要概念,也是几何计算中的重要工具之一。
从几何角度来看,定积分可以用于计算图形的面积、体积、质心等问题,具有很强的实用价值。
本文将从定积分的基本定义入手,逐步探讨它在几何计算中的具体应用,希望能为读者提供一些参考。
2.定积分的基本定义定积分是对一个区间内函数在该区间内的面积求和所计算的极限值。
换句话说,如果在其定义区间上将函数的图象分成无穷多个狭长的矩形,那么这些矩形的面积之和即为该函数在该区间上的面积,而定积分就是对这些矩形面积之和求极限所得到的一个实数。
3.计算面积计算面积是定积分最基本的应用之一。
假设有一个函数f(x),将其在[a,b]区间内用x轴分割成n个矩形,每个矩形宽度为Δx,则矩形的高度f(xi),面积为f(xi)Δx,最后将所有矩形的面积相加,得到近似面积:Sn = Σf(xi)Δx当n趋近于无限大时,Sn的极限值就是f(x)在[a,b]上的面积:∫ab f(x)dx=S=a∫b f(x)dx其中S表示函数f(x)在[a,b]上的面积,a和b分别表示积分区间的端点。
4.计算体积定积分还可以用于计算三维空间中物体的体积。
例如,假设一个圆柱的横截面为半径为r的圆形,长度为h,则其体积V可以表示为:V = Πr²h如果将圆柱沿其中心轴线切割成无穷多个大量趋近于长方体的小块,然后将这些小块向上叠加,可以得到一个近似的立体体积。
叠加的过程即为对小块的体积进行定积分运算:V = ∫h0 Πr²dy5.计算质心质心是一个物体重心所在的位置,也是物体受力时的平衡点。
例如,一个平面图形的质心是指该图形的所有部分都按照各自的面积对重心发生的贡献计算,最终得到的点就是该图形的质心。
假设一个平面图形可以分成无穷多个小的矩形,每个矩形面积为ΔA,其重心的纵坐标y为f(x),则该图形的质心的纵坐标为:y = (1/A)∑yiΔA,其中A表示该图形的总面积将每个小矩形的面积相加,用定积分表示,可以得到该图形的总面积:A = ∫ab f(x)dx再将每个小矩形的贡献相加,也用定积分表示,可以得到该图形的质心纵坐标:y = (1/A)∫ab xf(x)dx6.结语本文介绍了定积分在几何计算中的具体应用,包括计算面积、体积、质心等,其原理都是将物体分成无穷多小的组成部分,然后对每个小部分进行计算,最后将结果相加。
1.7.1 定积分在几何中的应用
主讲:XXXX 卞志业
教学目标:
1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;
2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;
3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法;
教学重难点: 重点 曲边梯形面积的求法
难点 定积分求体积以及在物理中应用 教学过程:
一、复习回顾
1.微积分基本定理是什么?
学生回答:若函数f(x)在区间[a,b]上连续,
,这就是微积分基本定理,又叫牛顿—莱布尼茨公式。
2.定积分的几何意义是什么?
学生回答: x=a 、x=b 与 x 轴所围成的曲边梯形的面积。
需要注意的是:当f(x)≤0时,由y=f (x)、x=a 、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方。
,那么并且)()(x f x F ='⎰
-=b
a
a F
b F dx x f )()()( 当f (x )≥0时,积分dx x f b
a
)(⎰在几何上表示由y =f (x )、 a b y f (x) ()b a S f x dx
=⎰即:O x y x
y O a b y f (x)
()b
a
S f x dx
=-⎰即:
二、例题讲解
例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.
【分析】从图像中可以看出:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
解:2
01y x x x y x
⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为
(0,0)、(1,1),
面积S=S曲边梯形OABC-S曲边梯形OABD
1
1
2
xdx x dx =-⎰
⎰
【点评】
求两曲线围成的平面图形面积的一般步骤: (1)画草图,求出曲线的交点坐标; (2)将曲边形面积转化为曲边梯形面积; (3)确定被积函数及积分区间; (4)计算定积分,求出面积。
例2计算由直线y 2x =
曲线y x 4,=-以及x 轴所围图形的面积S.
【分析】
1
2
332x = 1
0331x -= = 323
1-31 4
x
y
O
8
4 2
2
B
x
y 2=4
-=x y S 2
S 1 S 2
S 1
4 y O
8
4 2
2 A ⎥
⎦
⎤
⎢⎣⎡⨯⨯-+=
+=⎰⎰442122844
21dx x dx x s s s A: 4
42
1
28
21⨯⨯-=
-=⎰
dx x s s s B:
解:作出直线4y x =-,曲线2y x =的草图,
所求面积为下图阴影部分的面积.
解方程组2,
4y x y x ⎧=⎪⎨=-⎪⎩
得直线4y x =-与曲线
2y x =的交点的坐标为(8,4) .
直线4y x =-与x 轴的交点为(4,0).
因
此
,
所
求
图形的
面积为
S=S 1+S 24
880
4
4
2[2(4)]xdx xdx x dx =
+--⎰
⎰⎰
33
482822044
2222140||(4)|3323
x x x =++-=.
三、巩固练习
求下列曲线所围成的图形的面积。
由学生自己解决,并给出答案。
四、强化训练
求曲线 与直线 所围成平面图形的面积。
解题要点:
启发:结合图形,同学们想一想,是否还有其他方法? 学生回答:根据对称性,发现S 1=S 2。
2
,0π
=
=x x y x 4
=-2=
y x
.
0,,)2(;
32,)1(2
===+==x e y e y x y x y x x
y x y cos ,sin ==2
1S S S +=dx
x dx x S ⎰
⎰-=40401sin cos ππdx x dx x S ⎰
⎰-=24
242cos sin ππππx
y O 1
2πx
y cos =x
y sin =S 1
S 2
五、小结
1.思想方法:数形结合及转化
2.求解步骤
3.定积分只能用于求曲边梯形的面积,对于非规则曲边梯形,一般要将其分割或补形为规则曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.
六、课后作业
1.课本第67页习题1.7A组第1题;
2.思考题:B组第1题。