《定积分在几何中的应用》
- 格式:ppt
- 大小:1.69 MB
- 文档页数:14
782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。
例1:求曲线与直线及轴所围成的平面图形的面积。
解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。
3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。
例2:求直线与抛物线所围成的平面图形的面积。
解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。
例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。
解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。
2.由曲线、直线及轴围成的平面图形面积:。
3.由曲线直线及轴围成的平面图形面积:若,。
可看作是函数由大减小(右减左),积分从下到上。
例4:计算抛物线与直线所围成的图形的面积。
定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。
JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。
二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。
(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。
13⎤12xy =2y x =xy 22=4−=x y .18βθ=roxy =θρ2cos 22a =1Aθd数学分析第五章 定积分§2 定积分在几何学上的应用二、特殊立体的体积1、旋转体的体积旋转体就是由一个平面图形绕这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.圆柱圆锥圆台数学分析第五章 定积分§2 定积分在几何学上的应用一般地,如果旋转体是由连续曲线 y = f ( x ) 、 直线 x = a 、 x = b 及 x 轴所围成的曲边梯形绕 x 轴旋转一周而成的立体,体积为多少?x ∈ [a , b ] 在[a , b]上任取小区 间[ x , x + dx ],取积分变量为 x ,yy = f ( x)ox x + dxx取以dx 为底的窄边梯形绕 x 轴旋转而成的薄 片的体积为体积元素, dV = π[ f ( x )]2 dx旋转体的体积为 V = ∫ π[ f ( x )]2 dxab数学分析第五章 定积分2 3 2 3 2 3§2 定积分在几何学上的应用例 1 求星形线 x + y = a ( a > 0) 绕 x 轴旋转 构成旋转体的体积.y解 ∵y =a −x ,2 32 32 3⎛ ∴y =⎜ ⎜a − x ⎝2 2 3a 2 32 3⎞ ⎟ ⎟ ⎠3x ∈ [− a , a ]3−aoa x旋转体的体积⎛ V = ∫ π⎜ a −x ⎜ −a ⎝2 3⎞ ⎟ dx = 32 πa 3 . ⎟ 105 ⎠数学分析第五章 定积分§2 定积分在几何学上的应用类似地,如果旋转体是由连续曲线x = ϕ ( y ) 、直线 y = c 、 y = d 及 y 轴所围成的曲边梯形绕 y 轴旋转一周而成的立体, y 体积为dV = ∫ π [ϕ ( y )] dy2 cdx = ϕ ( y)co x数学分析第五章 定积分§2 定积分在几何学上的应用补充 如果旋转体是由连续曲线 y = f ( x )、 直线 x = a 、 x = b 及 x 轴所围成的曲边梯形绕 y 轴旋转一周而成的立体,体积为V y = 2π ∫ x | f ( x ) | dxab数学分析第五章 定积分§2 定积分在几何学上的应用2、平行截面面积为已知的立体的体积如果一个立体不是旋转体,但却知道该立 体上垂直于一定轴的各个截面面积,那么,这 个立体的体积也可用定积分来计算.A( x ) 表 示 过点 ox 且垂直于 x 轴dV = A( x )dx ,axx + dxbx的截面面积, A( x ) 为 x 的已知连续函数立体体积 V =∫baA ( x ) dx .数学分析第五章 定积分§2 定积分在几何学上的应用例2求以半径为 R 的圆为底、平行且等于底圆半径的线段为顶、高为 h 的正劈锥体的体积.解取坐标系如图 底圆方程为yx 2 + y 2 = R2 ,o2xRx垂直于 x 轴的截面为等腰三角形截面面积 A( x ) = h ⋅ y = h R − x 立体体积 V = h∫− RR2 221 2 R − x dx = πR h. 2数学分析第五章 定积分§2 定积分在几何学上的应用三、平面曲线的弧长设 A 、 B 是曲线弧上的两 y 个端点,在弧上插入分点M2 M1 M n −1B = MnA = M 0 , M1 ,Mi ,A = M0, M n −1 , M n = Box并依次连接相邻分点得一内接折线,当分点的数目 无限增加且每个小弧段都缩向一点时,此折线的长∑ | M i −1 M i |的极限存在,则称此极限为 曲线弧 AB 的弧长.i =1 n数学分析第五章 定积分§2 定积分在几何学上的应用1、直角坐标系情形y设曲线 y = f ( x ) ( a ≤ x ≤ b ) , 其中 f ( x ) 在[a , b]上有一阶连续导数} dy用积分元素法: 取积分变量为 x , o 在[a, b]上取小区间[ x, x + dx],以小切线段的长代替小弧段Δ s 的长2 2a x x + dx bx2 ′ = 1 + y dx 小切线段的长 ( dx ) + (dy ) 2 ′ 弧长元素 ds = 1 + y dx曲线段的弧长s = ∫ 1 + y′ dx .2 ab数学分析第五章 定积分§2 定积分在几何学上的应用2 32 例 1 计算曲线 y = x 上相应于 x 从 a 到 b 的 3一段弧的长度.解 ∵ y′ = x ,1 2∴ ds = 1 + ( x )2 dx = 1 + xdx ,a b1 2所求弧长为s = ∫ab2 1 + xdx = [(1 + b ) − (1 + a ) ]. 33 2 3 2。