离散与非线性系统理论-1
- 格式:ppt
- 大小:1.74 MB
- 文档页数:18
离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。
离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。
离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。
离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。
最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。
其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。
每个离散时间信号都有其特定的频谱和幅度特性。
离散时间系统是对离散时间信号进行处理和操作的载体。
离散时间系统可以是线性系统或非线性系统。
线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。
LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。
非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。
离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。
线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。
离散时间信号和系统的分析方法包括时域分析和频域分析。
时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。
离散时间信号和系统在实际应用中有广泛的应用。
例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。
在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。
总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。
第一章1-1 分别判断图1-1所示各波形就是连续时间信号还就是离散时间信号,若就是离散时间信号就是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a)连续信号(模拟信号); (b)连续(量化)信号; (c)离散信号,数字信号; (d)离散信号;(e)离散信号,数字信号; (f)离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1); (2); (3); (4); (5)。
解由1-1题得分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号得周期T : (1); (2); (3); (4)。
解 判断一个包含有多个不同频率分量得复合信号就是否为一个周期信号,需要考察各分量信号得周期就是否存在公倍数,若存在,则该复合信号得周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于为得最小公倍数,所以此信号得周期。
(2)由欧拉公式 即得周期。
(3)因为 所以周期。
(4)由于原函数 n 为正整数其图形如图1-3所示,所以周期为2T 。
图1-31-4对于教材例1-1所示信号,由f (t )求f (-3t-2),但改变运算顺序,先求f (3t )或先求f (-t ), 讨论所得结果就是否与原例之结果一致。
解 原信号参见例1-1,下面分别用两种不同于例中所示得运算顺序,由f (t )得波形求得f (-3t-2)得波形。
两种方法分别示于图1-4与图1-5中。
方法一:倍乘32左移方法二:反褶32左移图1-4图1-51-5 已知f (t ),为求应按下列那种运算求得正确结果(式中都为正值)? (1)左移; (2)右移;(3)左移;(4)右移。
第1章 思考题参考解答1.变化规律已知的信号称之为确定信号,反之,变化规律不确定的信号称之为随机信号。
以固定常数周期变化的信号称之为周期信号,否则称之为非周期信号。
函数随时间连续变化的信号称之为连续时间信号,也称之为模拟信号。
自变量取离散值变化的信号称之为离散时间信号。
离散信号幅值按照一定精度要求量化后所得信号称之为数字信号。
2.对于最高频率为f c 的非周期信号,选取f s =2f c 可以从采样点恢复原来的连续信号。
而对于最高频率为f c 的非周期信号,选取f s =2f c 一般不能从采样点恢复原来的连续信号的周期信号,通常采用远高于2f c 的采样频率才能从采样点恢复原来的周期连续信号。
3.被采样信号如果含有折叠频率以上的高频成分,或者含有干扰噪声,这些频率成分将不满足采样恢复定理的条件,必然产生频率混叠,导致无法恢复被采样信号。
4.线性时不变系统的单位脉冲响应h (n )满足n <0,h (n )=0,则系统是因果的。
若∞<=∑∞-∞=P n h n |)(|,则系统是稳定的。
5.ω表示数字角频率,Ω表示模拟角频率。
ω=ΩT (T 表示采样周期)。
6.不一定。
只有当周期信号的采样序列满足x (n )= x (n +N )时,才构成一个周期序列。
7.常系数差分方程描述的系统若满足叠加原理,则一定是线性时不变系统。
否则,常系数差分方程描述的系统不是线性时不变系统。
8.该说法错误。
需要增加采样和量化两道工序。
9.受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统不一定找得到。
因此,数字信号处理系统的分析方法是先对采样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长效应所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
10、只有当系统是线性时不变时,有y (n )= h (n )*x (n )。
11、时域采样在频域产生周期延拓效应。
12.输入信号x a (t )先通过一个前置低通模拟滤波器限制其最高频率在一定数值之内,使其满足采样频率定理的条件。
线性系统理论和设计是控制工程中的重要内容,涉及到对线性系统的建模、分析和控制设计。
以下是关于线性系统理论和设计的基本内容:
1. 线性系统模型
-线性系统描述:线性系统是指具有线性性质的动态系统,其输出与输入之间满足线性关系。
-线性系统模型:通常用微分方程、差分方程或状态空间方程描述线性系统的动态特性。
2. 线性系统分析
-系统稳定性分析:通过研究系统的零点、极点等性质来判断系统的稳定性。
-频域分析:通过频率响应、波特图等方法分析系统在频域下的性能。
-时域分析:通过阶跃响应、脉冲响应等方法研究系统在时域下的响应特性。
3. 线性系统设计
-控制器设计:设计合适的控制器来实现系统的性能要求,常见的控制器包括比例积分微分(PID)控制器、根轨迹设计等。
-系统鲁棒性设计:设计具有鲁棒性的控制器,能够抵抗参数变化和外部干扰的影响。
-最优控制设计:利用最优控制理论设计最优的控制器,使系统性能
达到最佳。
4. 线性系统应用
-自动控制系统:将线性系统理论和设计方法应用于自动控制系统,实现对各种工程系统的自动控制和调节。
-信号处理系统:利用线性系统理论设计数字滤波器、信号处理算法等,对信号进行处理和提取。
-机电系统:应用线性系统理论设计机电系统的控制器,实现机电系统的精密控制和运动规划。
线性系统理论和设计在控制工程领域具有广泛的应用,能够帮助工程师分析和设计各种复杂系统的控制策略,提高系统的性能和稳定性。
连续系统与离散系统的概念连续系统和离散系统是系统控制理论中两种基本的模型类型。
连续系统是指系统的输入和输出信号是连续变化的,并且系统的状态可以在任意时间点进行测量和控制。
而离散系统则是指系统的输入和输出信号是离散的,即只在离散的时刻进行测量和控制,而在两个离散时刻之间的信号变化是未知的。
首先,我们来详细介绍连续系统。
连续系统可以用微分方程来描述,通常采用微分方程的求解方法来求得系统的时域响应。
连续系统可以是线性的,也可以是非线性的。
线性连续系统的特点是具有叠加性质,即输入的线性组合对应于输出的线性组合。
而非线性连续系统则是具有非线性性质,输入的线性组合对应于输出的非线性组合。
连续系统的状态可以通过求解微分方程来得到,并且可以通过选择系统的控制输入来实现对系统状态的调节。
在连续系统中,我们可以利用传递函数来描述系统的频域特性,传递函数是输入和输出的拉普拉斯变换的比值。
传递函数可以用来分析系统的稳定性、频率响应、阻尼特性等。
接下来,我们来介绍离散系统。
离散系统可以用差分方程来描述,通过求解差分方程可以得到系统的时域响应。
离散系统也可以是线性的或非线性的,线性离散系统满足叠加性质,非线性离散系统则不满足叠加性质。
离散系统的状态可以通过迭代差分方程来得到,并且可以通过选择系统的控制输入来实现对系统状态的调节。
离散系统的频域特性可以用离散时间傅里叶变换(DTFT)或离散傅里叶变换(DFT)来描述,这些变换可以将系统的输入和输出信号从时域转换到频域。
离散系统的稳定性、频率响应等也可以通过这些变换来进行分析。
在实际应用中,连续系统和离散系统都有各自的优缺点。
连续系统具有高精度和高灵敏度的特点,适用于需要高精度控制和测量的应用,如机器人控制、飞行器导航等。
而离散系统则具有较低的复杂度和较好的实时性,适合于计算机控制、数字信号处理等应用。
此外,由于实际系统中往往存在传感器采样和控制执行的离散性,所以很多情况下需要将连续系统进行离散化,从而使用离散系统进行建模和控制。
1.自控系统的基本要求:稳定性、快速性、准确性(P13)稳定性是由系统结构和参数决定的,与外界因素无关,这是因为控制系统一般含有储能元件或者惯性元件,其储能元件的能量不能突变。
因此系统收到扰动或者输入量时,控制过程不会立即完成,有一定的延缓,这就使被控量恢复期望值或有输入量有一个时间过程,称为过渡过程。
快速性对过渡过程的形式和快慢提出要求,一般称为动态性能。
准确性过渡过程结束后,被控量达到的稳态值(即平衡状态)应与期望值一致。
但由于系统结构,外作用形式及摩擦,间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差的存在,称为稳态误差。
+2.选作典型外作用的函数应具备的条件:1)这种函数在现场或试验室中容易得到2)控制系统在这种函数作用下的性能应代表在实际工作条件下的性能。
3)这种函数的数学表达式简单,便于理论计算。
常用典型函数:阶跃函数,幅值为1的阶跃称为单位阶跃函数斜坡函数脉冲函数,其强度通常用其面积表示,面积为1的称为单位脉冲函数或δ函数正弦函数,f(t)=Asin(ωt-φ),A角频率,ω角频率,φ初相角3.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。
(P21)静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程动态数学模型:描述变量各阶导数之间关系的微分方程建立数学模型的方法:分析法根据系统运动机理、物理规律列写运动方程实验法人为给系统施加某种测试信号,记录其输出响应,并用合适的数学模型去逼近,也称为系统辨识。
时域中的数学模型有:微分方程、差分方程、状态方程复域中的数学模型有:传递函数、结构图频域中的数学模型有:频率特性4.非线性微分方程的线性化:切线法或称为小偏差法(P27)小偏差法其实质是在一个很小的范围内,将非线性特性用一段直线来代替。
连续变化的非线性函数y=f(x),取平衡状态A为工作点,在A点处用泰勒级数展开,当增量很小时略去高次幂可得函数y=f(x)在A点附近的增量线性化方程y=Kx,其中K是函数f(x)在A 点的切线斜率。