线性系统1
- 格式:ppt
- 大小:510.50 KB
- 文档页数:41
第三章 线性时不变系统的标准形与最小阶实现把系统动态方程化为等价的简单而典型的形式,对于揭示系统代数结构的本质特征,以及系统的分析与设计将会带来很大的方便,因此利用等价变换化系统动态方程为标准形的问题成为线性系统理论中的一个重要课题。
在第一章中已经指出,动态方程等价变换的矩阵P 是由状态空间基底的选取来决定的。
因此常把构造P 阵的问题化为选取状态空间适当基底的问题来讨论。
由于所给的条件不同和选取基底的方法不同,从而可以得到各种不同形式的标准形。
在实际实用中,常是根据所研究问题的需要而决定采用什么样的标准形。
本章所介绍的几种标准形,是以后讨论极点配置和观测器设计等问题时要用到的。
实现问题,也是线性系统理论的重要课题之一。
这是因为:状态空间方法在系统设计和计算上都是以动态方程为基础的,为了应用这些方法,我们需要把传递函数阵用动态方程予以实现,特别是在有些实际问题中,由于系统物理过程比较复杂,通过分析的方法来建立它的动态方程十分困难,甚至不可能,这时可能采取途径之一就是先确定输入输出间的传递函数阵,然后根据传递函数阵来确定系统的动态方程。
其次,复杂系统的设计往往希望能在模拟计算机或数字计算机上仿真,以便在构成物理系统之前就能检查它的特性,系统的动态方程描述则比较便于仿真,例如在模拟机上指定积分器的输出作为变量,就很容易仿真系统。
在实际应用中,动态方程实现也提供了运算放大器电路综合传递函数的一个方法。
每一个可实现的传递函数阵,可以有无限多个实现。
我们感兴趣的是这些实现中维数最小的实现,即最小阶实现。
在实用中,最小阶实现在网络综合和系统仿真时,所用到的元件和积分器最少,从经济和灵敏度的角度来看是必要的。
关于有理函数阵的最小阶实现问题,定理2—20及定理2—21是基本的,本章则着重于构成最小阶实现的方法。
§3—1系统的标准形关于等价变换 等价变换的关系A PAPB PBC CP 11,,--===其中P 为坐标变换阵,即有x Px =。
线性系统理论线性系统理论是一个广泛应用的数学分支,该分支研究线性系统的性质、行为和解决方案。
线性系统可以描述很多现实世界中的问题,包括电子、机械、化学和经济系统等。
在这篇文章中,我们将探讨线性系统理论的基础、应用、稳定性和控制等不同方面。
一、线性系统基础线性系统是一种对于输入响应线性的系统。
当输入为零时,系统的响应为零,称之为零输入响应。
当没有外界干扰时,系统内部存在固有的动态响应,称之为自然响应。
当有外界输入时,系统将对输入做出响应,称之为强制响应。
线性系统具有很多性质,可以让我们更好地理解系统的行为。
其中一个重要的性质是线性可加性,就是说当输入是线性可加的时候,输出也是线性可加的。
换句话说,如果我们有两个输入信号,将它们分别输入到系统中,我们可以在系统的输出中将它们加起来,并得到对应的输出信号。
另外一个重要的性质是时不变性,就是说当输入信号的时间变化时,输出信号的时间变化也会随之发生。
这个性质告诉我们,系统的行为不随着时间的改变而改变。
除此之外,线性系统还有其他很多性质,比如可逆性、稳定性、因果性等等。
二、线性系统的应用线性系统有着广泛的应用,它们可以用来描述很多各种各样的问题,包括但不限于电子电路、航天控制、化学反应、经济系统等等。
下面我们来看看这些应用领域中的具体案例。
1. 电子电路线性系统在电子电路中有着广泛应用。
例如,如果我们想要设计一个低通滤波器,以使高频信号被抑制,我们可以使用线性系统来描述它的行为。
我们可以将电子电路看作一个输入信号到输出信号的转换器。
这个转换器的输出信号可以通过控制电子器件的电流、电压等参数来实现。
这种线性系统可以用来滤掉任何频率的信号,因此在广播和通信中也有广泛的应用。
2. 航天控制航天控制是线性系统理论的一个应用重点。
它包括控制飞行器姿态、轨道以及动力学行为。
在这些问题中,线性可变系统被广泛应用。
这种系统的输出信号是受到飞行器的控制和环境因素的影响。
控制器的任务是计算信号,以引导飞行员和总体系统实现期望的性能和特征。
第1章线性系统的数学描述建立起系统中各变量间的数学关系和变换关系,是系统分析与综合的前提条件。
由于分析方法或解决问题的目的不同,描述系统行为的数学方程也有所不同。
在线性系统时域理论中所使用的数学描述可分为两大类,即系统的输入-输出描述和系统的状态空间描述。
系统的输入-输出描述又称为外部描述,他是通过建立系统的输入和输出之间的数学关系来描述系统特性的。
在经典线性系统控制理论中的传递函数和微分方程都属于系统的外部描述。
系统的状态空间描述又称为内部描述,它选用能够完善描述系统行为的被称为状态的内部变量,通过建立状态和系统的输入以及输出之间的数学关系,来描述系统行为的。
系统的外部描述不是对系统的全部特性的描述,而状态空间描述是对系统行为的完善描述。
本章首先论述系统的外部描述,接着着重讨论系统的内部描述。
线性系统的状态空间描述是分析和综合线性系统的基础,在此给出线性系统状态空间的概念、组成方法、基本性质、描述特性和变换等,这些概念和结论对于后面的各章的讨论是不可缺少的。
1.1线性系统的输入-输出描述系统的输入-输出描述揭示了系统的输入和输出之间的某种数学关系。
在建立系统输入—输出描述时,可以假设系统的内部特性是完全未知的,即将系统看作一个“黑箱”。
向该“黑箱”施加各种类型的输入并测量出与之相应的输出,根据这些输入-输出数据,可以确定出系统的输入和输出之间的数学关系。
在图1-1所示的系统中,外部对系统施加的作用或激励称为系统的输入变量,系统对外部的影响则称为系统的输出变量。
假设系统有p 个输入,q 个输出,分别用12,,p u u u ⋅⋅⋅和12,,,q y y y ⋅⋅⋅来表示,或记为向量的形式:12[]Tp u u u =⋅⋅⋅u ,12[]T q y y y =⋅⋅⋅y ,称u 、y 为系统的外部变量,其中"T"表示向量的转置。
图1-1系统的外部描述如果系统只有一个输入和一个输出(p 1,1)q ==,则称系统为单变量系统,用符号SISO 表示;当系统的输入量或输出量多于一个时.则称其为多变量系统,用符号MIMO 表示。
第二章 线性系统的状态空间描述§2-1 状态空间的基本概念1、状态:系统的状态,是指系统的过去、现在和将来的状况。
(如:一个质点作直线运动,它的状态就是它每个时刻的位置和速度)2、状态变量:能完全表征系统运行状态的最小数目的一组变量。
(如果用最少的n 个变量x 1(t), x 2(t),……, x n (t)就能完全描述系统的状态,那么这n 个变量就是一组状态变量。
)3、状态向量:设一个系统有n 个状态变量,即x 1(t),x 2(t),……,x n (t),用这n 个状态变量作为分量构成的向量x(t)称为该系统的状态向量。
记为Tn t x t x t x t x )](,),(),([)(21 =4、状态空间:由n 个状态变量作为坐标轴所构成的n 维空间,称为状态空间。
引入了状态和状态空间的概念之后,就可以建立动力学系统的状态空间描述了。
从结构的角度讲,一个动力学系统可用图2-1所示的方块图来表示。
其中x(t)表征系统的状态变量,u(t)为系统控制量(即输入量),y(t)为系统的输出变量。
与输入—输出描述不同,状态空间描述把系统动态过程的描述考虑为一个更为细致的过程:输入引起系统状态的变化,而状态和输入则决定了输出的变化。
5、状态方程:状态变量的一阶导数与状态变量、输入量的关系,称为系统的状态方程。
例:设单输入线性定常系统(LTI-Linear Time Invariant )的状态变量为x 1(t),x 2(t),……,x n (t),输入为u(t),则一般形式的状态方程为:)()()()()()()()()()()()()()()()()()()()()(2211222221212112121111t u b t x t a t x t a t x a t x t u b t x t a t x t a t x a t x t u b t x t a t x t a t x a t x n n nn n n nn n n n ++++='++++='++++='图2-1 动力学系统结构示意图上式可写成向量—矩阵形式:其中:6、输出方程:在指定系统输出的情况下,该输出与状态变量、输入量之间的函数关系式,称为系统的输出方程。