第三章 探地雷达
- 格式:pdf
- 大小:8.16 MB
- 文档页数:94
探地雷达成像算法研究摘要探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。
性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。
本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。
以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。
其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。
Imaging Algorithmof Ground Penetrating RadarABSTRACTGPR (Ground Penetrating Radar, referred GPR)set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint undergroundtargets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used.In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain,etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.1 绪论1.1 选题的背景及意义雷达是利用电磁波探测目标的电子设备。
第一章绪言一、实习背景探地雷达技术作为一种非侵入性地球物理探测方法,在工程地质、考古、环境监测等领域有着广泛的应用。
为了提高我们的实际操作能力和对地质探测技术的理解,我们选择了探地雷达技术作为实习项目。
本次实习在XX地质研究所进行,实习时间为2023年6月15日至7月10日。
二、实习目的1. 理解探地雷达的工作原理和基本技术。
2. 掌握探地雷达的野外操作流程。
3. 学习探地雷达数据处理与分析方法。
4. 培养团队合作和问题解决能力。
三、实习内容本次实习主要包括以下几个方面:1. 探地雷达原理与设备介绍。
2. 野外数据采集与处理。
3. 数据分析与解释。
4. 实际案例分析。
第二章探地雷达原理与设备一、探地雷达原理探地雷达(Ground Penetrating Radar,GPR)是一种利用电磁波在地下传播特性进行探测的技术。
当电磁波从地面发射后,遇到地下不同介质的界面时,会发生反射和折射现象。
通过分析反射波的特征,可以推断地下介质的分布情况。
二、探地雷达设备本次实习使用的探地雷达设备为XX型号,主要技术参数如下:- 频率范围:100MHz-1GHz- 发射功率:1kW- 探测深度:0-100m- 数据采集频率:50Hz第三章野外数据采集与处理一、数据采集1. 确定探测区域:根据实习目的,选择合适的地形地貌作为探测区域。
2. 布设测线:按照设计好的测线进行布设,保证测线长度和间距符合要求。
3. 数据采集:启动探地雷达设备,按照设定参数进行数据采集。
二、数据处理1. 数据预处理:包括滤波、去噪、增益调整等。
2. 数据可视化:将处理后的数据以波形图的形式展示。
3. 数据分析:根据波形特征,分析地下介质分布情况。
第四章数据分析与解释一、案例分析以某工程地质项目为例,通过探地雷达技术探测地下管线分布情况。
1. 数据采集:在地下管线附近布设测线,进行数据采集。
2. 数据处理:对采集到的数据进行预处理和可视化。
3. 数据分析:根据波形特征,判断地下管线的分布情况。
探地雷达方法原理及应用一、课程说明课程编号:010353Z10课程名称:探地雷达方法原理及应用/ Principle and Application of Ground Penetrating Radar课程类别:专业教育课程(专业选修课)学时/学分:32/2先修课程:地球物理场论适用专业:地球物理学教材、教学参考书:1. 《探地雷达方法原理及应用》,曾昭发等,科学出版社2. 《探地雷达方法与应用》,李大心,地质出版社二、课程设置的目的意义本课程为地球物理学专业的专业选修课,地质雷达是用高频无线电磁波来探测地下介质或物体内部分布规律的一种重要浅层地球物理方法,该课程的设置主要是考虑到地质雷达在工程、环境、资源、城市地下管线等领域越来越广泛的应用。
课程主要内容包括地质雷达探测的原理、天线、系统、测量方法技术、数据处理和模拟解释,以及在不同领域的应用。
课程所包含的内容是以上专业本科学生开展工程地球物理勘探所应具备的知识结构的重要组成部分。
三、课程的基本要求要求学生通过本课程的学习,能够清楚了解Maxwell方程的物理意义、雷达电磁波传播规律,系统的掌握探地雷达基本理论、正演方法、工程应用和资料解释。
当面对实际工程问题时,能利用所学知识选取合适雷达天线系统,设计地质雷达探测方案,并能独立进行数据处理和资料解译。
四、教学内容、重点难点及教学设计五、实践教学内容和基本要求六、考核方式及成绩评定根据《地质雷达探测》的课程性质,着重对该探测方法技术原理的理解与实际应用能力的培养;要求学生除了掌握课堂内容之外,多查找资料与文献,然后开展分组讨论。
考核方试包括:课堂小测试、课堂讨论、小论文及期末考试。
其七、大纲主撰人:大纲审核人:。
L TD-2100探地雷达用户手册中国电波传播研究所二○○九年五月本手册的信息受到版权保护,本手册的任何部分未经中国电波传播研究所的事先书面许可,不得以任何方式影印或复印。
本手册的内容如有变动,恕不另行通知。
中国电波传播研究所对本手册负有说明和解释的权利和义务,并提供相应的技术支持,但对于因用户误解而造成的损失恕不负责。
本手册提及的其它产品和公司名称均可能是各自所有者的商标。
我们随时为您提供周到地服务:登陆网站进行实时交流或留言;服务热线:4008-110511;联系电话:*************;发邮件至:********************目录前言第一部分LTD-2100探地雷达仪器操作手册第一章初识LTD-2100探地雷达§1.1 LTD-2100型探地雷达简介 (01)§1.2 LTD-2100探地雷达挂接天线 (02)§1.3 LTD-2100探地雷达的性能指标 (04)§1.4 LTD-2100探地雷达的应用范围 (05)第二章使用LTD-2100前的准备工作§2.1 现场探测计划的制订 (06)§2.2 完成常规探测所需的基本设备 (06)§2.3 相关资料收集 (07)第三章数据采集过程§3.1 探地雷达主机面板的功能键说明 (08)§3.2 探地雷达仪器的联接和启动 (09)§3.3 LTD-2100探地雷达采集软件的启动 (11)§3.4 雷达采集参数的动态调试 (12)§3.5 探地雷达数据采集过程 (17)§3.6 LTD探地雷达探测数据回放 (20)第二部分LTD数据处理软件IDSP5.0用户手册第四章初识事后处理软件IDSP5.0§4.1 LTD雷达数据处理软件IDSP5.0 (21)§4.2 LTD雷达数据处理软件IDSP5.0的工具栏说明 (22)§4.3 LTD雷达数据处理软件IDSP5.0的状态栏说明 (22)第五章软件IDSP5.0的安装和执行§5.1 IDSP5.0软件系统的组成和安装 (23)§5.2 IDSP5.0软件的执行 (23)第六章LTD探地雷达数据预处理过程 (24)第七章LTD探地雷达数据处理过程 (27)第八章LTD用于公路检测时的工程评价 (29)第九章LTD雷达剖面的编辑和打印输出 (32)附录A 新型配套低频天线使用操作说明 (34)附录B LTD雷达使用中的常见问题解答 (37)附录C LTD产品的售后服务条款 (48)前言随着世界经济建设和材料科学的发展,对地下非金属类目标探测技术的需求变得愈来愈迫切,国内外兴起了利用探地雷达进行地下目标无损探测的研究和应用热潮,探地雷达在城建、交通、地质、考古、国防、公安等部门扮演着越来越重要的角色。
探地雷达法特点-概述说明以及解释1.引言1.1 概述概述部分的内容可以介绍探地雷达的基本概念和其在地下勘探和探测领域中的重要性。
概述部分内容:探地雷达是一种利用电磁波穿透地下物质进行探测和勘测的仪器。
它通过发射电磁波到地下,并接收反射回来的信号来得到地下结构的信息。
探地雷达的原理是利用电磁波在不同介质中的传播速度差异和反射特性来确定地下物质的性质和分布。
探地雷达在地下勘探和探测领域中具有重要的应用价值。
它可以广泛应用于矿产勘探、地质灾害预测、土壤污染调查、考古发掘等领域。
通过探地雷达,我们可以非破坏性地获取地下的信息,避免了传统勘探方法中需要进行大量开挖和钻探的情况,减少了勘探成本和对环境的影响。
探地雷达具有高分辨率、远距离探测能力、快速获取数据等特点。
它可以对地下物质进行高精度的成像和探测,能够获得准确的地下结构和物质分布信息。
同时,探地雷达还可以进行实时数据采集和处理,提高了勘探工作的效率。
随着科技的不断进步,探地雷达的技术和应用领域也在不断发展和拓展。
未来,我们可以期待探地雷达在地下勘测和探测领域中发挥更大的作用。
通过不断优化和创新,探地雷达的性能和功能将会不断提升,为我们的勘探工作带来更大的便利和效益。
1.2 文章结构文章结构主要包括引言、正文和结论三个部分。
引言部分主要概述了本文的内容以及目的,使读者对文章有一个整体的了解。
同时,引言部分还介绍了探地雷达的背景和重要性,引发读者对于探地雷达的兴趣。
正文部分是文章的核心,主要包括探地雷达的定义、原理和应用领域的详细介绍。
首先,我们将对探地雷达的定义进行阐述,解释其基本概念和特点。
然后,我们将介绍探地雷达的原理,包括电磁波的传播和反射机制等。
最后,我们将深入探讨探地雷达在不同领域的应用,比如地质勘探、军事防范和文物保护等,通过实际案例来说明其重要性和实际价值。
结论部分是对整个文章内容进行总结,并对探地雷达的特点进行概括。
在这一部分,我们将回顾探地雷达的定义和原理,并总结其在应用领域的优势和局限性。
地质雷达学习一、什么是雷达?radio detection and ranging(无线电探向和测距)雷达最初是用于军事目的,探测空中目标体.二、什么是探地雷达(GPR) ?1、采用无线电波探测的一种技术, 频率一般在5 - 2000MHz, 对地下结构和埋藏物以及人造结构成像.2、它不是所谓的“黑匣子”, 直接告诉你地下异常体的位置.3、三种基本模式: 反射, 速度探测, 层析成像.三、GPR 的优点和局限性1、GPR 的优点a)携带方便;b)GPR 是无损探测技术;c)与其它地球物理方法相比,数据采集速度非常快;d)水平和垂直位置精度高;e)高分辨率地下图像2、GPR 的局限性a)探测深度和目标体的分辨能力依赖于土壤(或地下介质)特性. 高导电率介质会使GPR方法无效(如海水、盐碱地、金属矿、粘土层等);b)目标体和周围介质要有足够的电性差异(介电常数和电阻率);c)GPR数据的解释因人而异,解释者的经验非常重要.四、基本原理•Tx发射Rx接收target目标•电磁波速度和穿透深度取决于介质的介电常数和电导率•记录反射时间•速度一般在33 - 212 m/µs五、GPR 方法–反射雷达探测的95% 是用偶极反射模式从原理上讲,GPR 类似于声纳设备发射机发射一“列”电磁脉冲,该脉冲在介质中传播在地下介质的电特性有变化的地方发生反射(即散射)接收机拾取“背散射”信号,记录它并将其显示在计算机屏幕中六、基本原理–速度(地面雷达)•需要可分离天线(Tx发射/Rx接收)•给出速度剖面用于把时间记录转换成深度•CMP, common midpoint measurement(共中心点)•WARR, wide angle reflection refraction(宽角反射折射)七、介电常数、相对介电常数和波速1、介电常数(permittivity)1)定义:介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数,又称诱电率。
第三章第五节探地雷达技术ppt 课件•探地雷达技术概述•探地雷达系统组成•探地雷达数据处理与解释•探地雷达在不同领域中的应用实例目•探地雷达技术发展趋势与挑战•总结回顾与拓展思考录探地雷达技术概述01CATALOGUE定义与发展历程定义探地雷达(Ground Penetrating Radar,GPR)是一种利用高频电磁波在地下介质中传播并反射回来的特性,对地下目标体进行探测和成像的无损检测技术。
发展历程自20世纪70年代初期,探地雷达开始被应用于地质勘探、考古、环境工程等领域。
随着计算机技术和信号处理技术的不断发展,探地雷达的分辨率和探测深度不断提高,应用领域也不断扩展。
原理及工作方式原理探地雷达通过发射高频电磁波,当电磁波遇到不同电性的地下介质界面时,会发生反射和折射。
接收天线接收反射回来的电磁波信号,并通过信号处理技术对信号进行处理和成像,从而得到地下目标体的位置和形态信息。
工作方式探地雷达可以采用不同的工作频率、天线类型和扫描方式等参数设置,以适应不同的探测需求和地下环境。
常见的工作方式包括剖面扫描、三维成像、实时监测等。
应用领域与意义应用领域探地雷达广泛应用于地质勘探、考古、环境工程、建筑工程、军事等领域。
例如,在地质勘探中,可以用于探测矿藏、油气藏等;在考古中,可以用于探测古墓、遗址等;在环境工程中,可以用于探测污染物分布、土壤层结构等。
意义探地雷达作为一种无损检测技术,具有非破坏性、高分辨率、高效率等优点。
它可以提供丰富的地下信息,为相关领域的研究和决策提供有力支持。
同时,随着技术的不断发展,探地雷达的应用前景将更加广阔。
探地雷达系统组成02CATALOGUE发射机与接收机设计发射机产生高频电磁波,通常采用脉冲体制或连续波体制。
脉冲体制具有高峰值功率、宽频带等特点,适用于浅层高分辨率探测;连续波体制则具有低功耗、易于实现等优点,适用于深层探测。
接收机接收来自地下的反射信号,并进行放大、滤波等处理。