Simulink机械振动仿真简例共52页
- 格式:ppt
- 大小:7.10 MB
- 文档页数:52
基于Simulink的振动模态分析引言振动模态分析是一种常用的工程分析方法,用于研究结构体在不同频率下的振动特性和模态。
本文将介绍如何使用Simulink软件进行振动模态分析。
Simulink简介Simulink是一种基于模型的设计和仿真工具,常用于解决动态系统建模和仿真问题。
该软件提供了丰富的工具箱,便于用户搭建模型和进行模拟实验。
振动模态分析步骤1. 结构体建模:首先,需要将待分析的结构体进行建模。
在Simulink中,可以使用各种元件来描述结构体的物理特性,例如质量、弹性等参数。
2. 模态分析设置:在建模完成后,可以设置模态分析的参数,包括分析频率范围、模态数量等。
这些参数会影响模态分析的精度和计算效率。
3. 模型求解:通过在Simulink中运行模型求解器,可以得到结构体在不同频率下的振动模态。
求解过程可以得到每一个模态对应的频率、振型和阻尼比等信息。
4. 结果分析:最后,可以对求解得到的振动模态进行进一步分析和可视化。
比如,可以绘制模态频率与振型的关系图,用于评估结构体的振动特性。
模态分析应用领域振动模态分析在工程领域有着广泛的应用。
它可以帮助工程师了解结构体的固有振动特性,从而优化设计和改进结构体的性能。
在航空航天、汽车工程、建筑设计等领域,振动模态分析被广泛应用于结构体的优化和故障诊断。
结论通过Simulink软件进行振动模态分析是一种简单而高效的方法。
它可以帮助工程师更好地理解结构体的振动特性,并在实际工程项目中起到重要作用。
在使用Simulink进行振动模态分析时,合理设置参数和精确分析结果对于获得准确的振动特性信息尤为重要。
山东大学Matlab 课程作业学院:机械工程学院专业:姓名:学号:基于Simulink仿真得振动学问题解决实例1.单自由度无阻尼自由振动仿真表达式:仿真框图:参数设置:k=100N/m m=4kg初始状态:初速度为0 初始位移为5仿真结果:2.简谐波形得里沙茹图形分析仿真框图:参数设置:K=100m=4→rad/sSin wave参数设置:Amplitude1 ;Frequency 5 1015初始状态:①→φ=②→φ=③=1,=5→φ=45;④=1,=−5→φ=135;⑤=0,=−1→φ=180XY Graph参数x-min -2;x-max 2;y-min—2; y-max 2Frequency 5时仿真结果:Frequency 10时仿真结果:Frequency 15时仿真结果:3.单自由度有阻尼自由振动表达式:仿真框图:参数设置:ﻫ令k=100,m=10,c=10 初始状态:ﻫ初始速度为0,位移为1仿真结果:4、衰减振荡得阻尼比得估计参数:k=100,m=10,c=2初始条件:x0=1,v0=0仿真图框:初始振幅为1,约7个周期时衰减为0、25,对数减幅:δ=(ln4)/7≈0、099阻尼比§≈δ/2≈0、032理论值§=0、5c(km)−0、5≈0、0325、单自由度有阻尼+正弦激励表达式:令激励则方程变形为参数设置:令k=4,m=1,c=0、2初始状态:ﻫ初始速度为0,位移为0、05 仿真框图:仿真结果:6、利用速度共振得里沙茹图进行固有频率与阻尼系数分析仿真框图:改变激励频率:=1、2;1、6;1、8;1、9;1、95;2;2、05;2、1;2、2等7、两自由度无阻尼系统自由振动表达式:参数设置:m1=1,m2=2 k1=1,k2=1,k3=2初始状态:①速度0,m1、m2位移均为1②速度0,m1位移1,m2位移−0、5③速度0,m1位移1,m2位移0 仿真结果:①②③。
0引言在实际工程中,许多物体都涉及到振动问题,比如在行驶过程中的汽车、城市轨道车辆、高速运行的动车等。
但是对于很多复杂物体的振动分析较为困难,因此在分析的过程中要加以简化才可以。
通常而言,大部分物体振动可以简化为简单的三自由度系统,这样更加方便计算和分析。
比如现在的汽车在满足安全的同时追求更好的驾驶舒适性,其车的结构也是越来越复杂。
大多数汽车座椅下面使用了弹簧和橡胶来吸收振动、缓解冲击,同时在汽车底盘和轮胎处都采用了减振装置,这所有就可以看成一个三自由度的系统。
简化模型来解决复杂振动问题,可以采用理论分析和数值仿真,数值仿真通常用Matlab 。
本文主要针对工程中常用的三自由度系统的简化模型进行了分析,综合采用理论计算和数值仿真。
理论计算做了三自由度的运动微分方程、固有频率和主振型的计算,数值仿真做了系统的模型用来分析各部分在外界激励的作用下的位移响应曲线。
本文用的是Simulink 动态分析,它可以在做出实际系统之前,预先对设计的系统进行仿真分析,并可以根据仿真结果随时进行参数的修正,提高系统的性能和稳定性,以减少对实际系统的设计与修改,实现高效率的开发和设计分析系统的目的。
1三自由度振动系统理论计算本节用一个三自由度有阻尼系统来近似模拟简化的机械物体在运动过程中的振动。
问题描述:已知一个系统刚度K=500N/m ,系统质量M 3=20kg 、M 2=20kg 、M 1=20kg ,阻尼器系数C=2Ns/m ,弹簧和质量块为蓄能元件,阻尼器为耗能元件。
三个质量块的位移分别为X 1、X 2和X 3,外部激励X (t )为,系统初值为零。
图1多自由度系统实物图具体分析过程如下:根据对质量块受力分析,可以得到系统的动力学方程如下:(1)整理为下面的形式方便建模:(2)矩阵形式为:(3)即振动系统可以表示为:式中:、、下面进行系统的模态分析:系统矩阵可以写为(4)其中M -1表示系统质量逆矩阵,K 表示刚度矩阵,可以表示为:系统矩阵为:(5)令,则有———————————————————————作者简介:黄兵(1998-),男,重庆人,本科,重庆交通大学机电与车辆工程学院,研究方向为城市轨道交通车辆。
基于Simulink的机械振动系统仿真
席平原
【期刊名称】《机床与液压》
【年(卷),期】2005(000)006
【摘要】通过列举一些实例,分析了Matlab/Simulink软件在二自由度机械振动系统仿真中的应用,不但大大地提高了编程的效率,而且提高了编程的质量和可靠性,取得了很好的效果.
【总页数】2页(P175-176)
【作者】席平原
【作者单位】淮海工学院机械系,江苏,连云港,222001
【正文语种】中文
【中图分类】TP312
【相关文献】
1.基于Matlab/Simulink的多自由度机械振动系统仿真 [J], 曾德惠;黄松和
2.基于系统仿真的旋转机械振动故障诊断方法 [J], 庄莉莉
3.基于MATLAB and Simulink的波浪能装置液压能量转换系统仿真研究 [J], 叶寅;盛松伟;乐婉贞;王坤林;张亚群
4.基于Matlab/Simulink风电机组测试平台液压加载系统仿真研究 [J], 朱怡;孙渊;陈国初
5.基于Simulink的多自由度机械振动系统仿真 [J], 匡伟春;张柏清;张传才
因版权原因,仅展示原文概要,查看原文内容请购买。
科技风2016年11月下科教论坛4D01:10.19392/ki.l671-7341.201622030使用MATLAB-SIMULINK仿真简谐振动物理实验王兆旭山东省历城二中高51级高三24班山东历城250001摘要:本文介绍了用Simulmk对简谐振动和阻尼振动物理实验进行仿真的方法。
仿真出了位移、速度等振动曲线;并完成了振动过程中的动 能、势能以及机械能进行监测0,实现了用Simulmk仿真物理实验的目的。
关键词:简谐振动;实验仿真;SimulinkSimulink是美MathWorks公司出品的商业数学软件MATLAB最重要的组件之一,它无需大量书写裎序,只需要通过简单直观的鼠标操作,就可组建复杂的系统,完成|个动态系统建模、仿真和綜合分析,已经被应用于数字信号和控制理论的大量仿真和设计。
将Simulink仿真精细、贴近实际、效率高的优点运用到物理实验的模拟屮太%可以直观、客观、生动地仿真物理实验,更好地理解物理规律,一、简谐振动及其数学模型简谐振动是最简单最基本的振动,其振动过程关于平衡位置对称,它是一种往复运动。
质点的位移和时间的关系遵从正弦函数的规律,它的振动图像U-t图像)是一条正弦曲线的图像。
见图1。
动力学方程(牛顿第二运动定律,不考虑摩擦等外力):mX=-kX以尤表示位移,i表示时间,这种振动的数学表达式为:x=Asin(〇)nt+(p)(1)式中,4为位移%的最大值,称为振幅,它表示振动的强度;叫表示每秒中的振动的幅角增量,称为角频率,也称圆频率;p称为初相位s以表示每秒中振动的周数,称为频率;它的倒数,T=l//,表示振动j j周所需的时间,称为周期s振幅4、频率/(或角频率队)初相位,称为简谐振动三要素4可 见速度和加速度也是按正(余)弦规律随时间变化,二*只是相位和幅值不同。
对于简谐振子,其动能+w i2和势能之和为一常量,即系统的总机械能守恒f在振动过程中,动能和势能不断相互转化$ _考虑摩 擦阻尼,振动会逐步衰减,机械能全部转变为热能逸散。
基于Simulink的多自由度机械振动系统仿真
匡伟春;张柏清;张传才
【期刊名称】《煤矿机械》
【年(卷),期】2007(28)12
【摘要】针对多自由度机械振动问题,以弹簧质量系统、轴上带有若干圆盘的扭转振动系统和梁上有集中质量的横向振动系统为例,详细介绍在Matlab/Simulink平台上利用状态空间法进行多自由度系统仿真的方法及步骤,并对仿真结果进行了分析。
【总页数】4页(P54-57)
【关键词】多自由度;机械振动;Simulink;仿真;状态空间
【作者】匡伟春;张柏清;张传才
【作者单位】景德镇陶瓷学院;西安建筑科技大学
【正文语种】中文
【中图分类】TP391;TH113.1
【相关文献】
1.基于Simulink的机械振动系统仿真 [J], 席平原
2.基于Matlab/Simulink的多自由度机械振动系统仿真 [J], 曾德惠;黄松和
3.基于Simulink的多自由度系统振动仿真研究 [J], 黄兵;孔程程
4.基于Simulink的多自由度系统振动仿真研究 [J], 黄兵;孔程程
5.基于ADAMS与Simulink的六自由度摇摆台系统联合仿真研究 [J], 陈勇军;韩霄翰;张炎;张海坤
因版权原因,仅展示原文概要,查看原文内容请购买。
基于MATLABSimulink的机械系统仿真技术基于 MATLAB/Simulink 的机械系统仿真技术在当今科技飞速发展的时代,机械系统的设计和优化变得日益复杂。
为了更高效、准确地预测和分析机械系统的性能,基于MATLAB/Simulink 的机械系统仿真技术应运而生。
这项技术为机械工程师和研究人员提供了强大的工具,帮助他们在实际制造之前,就能对机械系统的行为有深入的了解和准确的预测。
机械系统仿真技术的核心在于通过建立数学模型来模拟真实世界中机械系统的运行。
而 MATLAB/Simulink 作为一款功能强大的数学计算和建模软件,为实现这一目标提供了丰富的资源和便捷的操作环境。
首先,让我们来了解一下 MATLAB/Simulink 的一些基本特点。
MATLAB 具有强大的数值计算和数据分析能力,能够处理复杂的数学公式和算法。
Simulink 则是一个基于图形化的建模环境,用户可以通过拖拽和连接各种模块来构建系统模型,这种直观的操作方式大大降低了建模的难度,提高了工作效率。
在机械系统仿真中,常见的模型类型包括刚体动力学模型、柔性体模型、传动系统模型等。
以刚体动力学模型为例,我们可以使用牛顿定律和欧拉方程来描述物体的运动。
通过在 Simulink 中定义质量、惯性矩、力和力矩等参数,以及它们之间的关系,就能模拟出刚体的运动轨迹和受力情况。
对于复杂的机械系统,如汽车的悬挂系统,不仅需要考虑刚体的运动,还需要考虑弹性元件和阻尼器的特性。
这时,就可以引入柔性体模型。
通过有限元分析等方法,可以将柔性体的模态信息导入到Simulink 中,与刚体模型相结合,从而更真实地反映系统的动态特性。
传动系统也是机械系统中的重要组成部分。
例如,齿轮传动系统的建模需要考虑齿轮的齿数、模数、压力角等参数,以及齿面接触和摩擦等因素。
在 MATLAB/Simulink 中,可以使用专门的模块来构建齿轮传动模型,并与其他部件的模型进行集成,以分析整个传动系统的性能。