第五章 Simulink与电力系统仿真
- 格式:ppt
- 大小:1.96 MB
- 文档页数:739
实验七 基于Simulink 的简单电力系统仿真实验一. 实验目的1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用;3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。
二.实验内容与要求单机无穷大电力系统如图7-1所示。
平衡节点电压044030 V V =∠︒ 。
负荷功率10L P kW =。
线路参数:电阻1l R =Ω;电感0.01l L H =。
发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。
发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。
发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。
发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。
发电机转动惯量和极对数分别为224.9 J kgm =和2p =。
发电机输出功率050 e P kW =时,系统运行达到稳态状态。
在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。
G 发电机节点V负荷lR l LLP图 7.1 单机无穷大系统结构图输电线路三.实验步骤1. 建立系统仿真模型同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。
模块的第1个输入端子(Pm)为电机的机械功率。
当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。
matlab_simulink电力系统建模与仿真大纲标题:MATLAB Simulink电力系统建模与仿真大纲正文:一、引言电力系统的建模与仿真是电气工程中的重要内容之一。
通过使用MATLAB Simulink工具,可以方便快捷地进行电力系统的建模与仿真,以评估系统性能、优化控制策略等。
本文将介绍电力系统建模与仿真的大纲,以帮助读者了解该领域的基本知识和相关技术。
二、电力系统建模1.电力系统概述:介绍电力系统的基本概念和组成部分,包括发电机、变压器、传输线路和负荷等。
2.电力系统参数:讲解电力系统中常用的参数,如电压、电流、功率等,并介绍如何进行测量和计算。
3.母线和节点建模:介绍母线和节点的概念,并详细说明如何进行建模和连接。
4.发电机建模:介绍发电机的建模方法,包括动态模型和静态模型。
5.变压器建模:讲解变压器的建模方法,包括理想变压器模型和实际变压器模型。
6.传输线路建模:介绍传输线路的建模方法,包括电气距离模型和传输线模型。
7.负荷建模:讲解负荷的建模方法,包括恒阻抗负荷模型和恒功率负荷模型。
三、电力系统仿真1.仿真模型的构建:介绍如何在MATLAB Simulink中构建电力系统仿真模型,包括模块的选择和参数的配置。
2.仿真参数的设置:讲解仿真参数的设置,包括仿真时间、步长等。
3.仿真结果的分析:说明如何对仿真结果进行分析,包括波形显示、频谱分析等。
4.仿真案例:通过几个典型的电力系统案例,演示如何进行建模和仿真,以及如何分析仿真结果。
四、总结本文简要介绍了MATLAB Simulink电力系统建模与仿真的大纲。
通过学习和实践,读者可以掌握电力系统建模与仿真的基本方法和技巧,并应用于实际工程中。
希望本文能为读者提供有益的指导,进一步探索和研究电力系统领域。
MATLABSIMULINK在电力系统工程仿真中的应用
的开题报告
本文的主要内容是关于MATLABSIMULINK在电力系统工程仿真中应用的开题报告。
随着科技的迅速发展,电力系统工程的大规模建设,电
力系统的安全和可靠性成为了非常重要的问题。
通过MATLABSIMULINK
在电力系统工程仿真中的应用,可以有效地提高电力系统的安全性和可
靠性。
因此,本文将从以下几个方面展开研究:
1. 介绍电力系统工程的基本概念、结构和传输线路等,以及电力系
统工程仿真的重要性和必要性。
2. 介绍MATLABSIMULINK的基本原理和功能,包括模块库、图形化界面、求解器等。
3. 分析MATLABSIMULINK在电力系统工程仿真中的应用,包括电力系统的稳态和动态仿真、保护系统仿真、调度控制系统仿真等。
4. 指出MATLABSIMULINK在电力系统工程仿真中应用的优点和不足之处,归纳出进一步深入开展研究的方向和建议。
本文将通过对电力系统工程仿真的相关资料和文献的综合分析,对MATLABSIMULINK在电力系统工程仿真中的应用进行系统的研究和探讨。
希望该研究结果可以为电力系统工程的建设和改进提供有益的参考和指导。
第五章Simulink模拟电路仿真武汉大学物理科学与技术学院微电子系常胜§5.1 电路仿真概要5.1.1 MATLAB仿真V.S. Simulink仿真利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。
武汉大学物理科学与技术学院微电子系常胜ex5_1.mclear;V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5;R1=(Rb*Rc)/(Ra+Rb+Rc);R2=(Rc*Ra)/(Ra+Rb+Rc);R3=(Ra*Rb)/(Ra+Rb+Rc);Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd));I=V/Req武汉大学物理科学与技术学院微电子系常胜ex5_1武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜注意Simulink仿真中imeasurement模块/vmeasurement模块和Display模块/Scope模块的联合使用Series RLC Branch模块中R、C、L的确定方式R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值武汉大学物理科学与技术学院微电子系常胜MATLAB方式:步骤:建立等效模型→模型数学化→编写M文件计算→得到运算结果优点:理论性强,易于构建算法、模型缺点:较复杂,对电路观测量更改时需更改M文件适用范围:大系统抽象和原理性建模Simulink方式:步骤:选取模块→组成电路→运行仿真→观测仿真结果 优点:直观性强,易于与实际电路对应,易于观察结果 缺点:理论性不强,对电路原理不能得到解析适用范围:具体电路仿真武汉大学物理科学与技术学院微电子系常胜5.1.2 Power System Blockset模块集及powerlib窗口Power System Blockset模块集是MATLAB中专用的电路仿真模块集,其中内含有Electrical Source、Elements等子模块库,而电路仿真常用的DC Voltage Source、Series RLC Branch、Current Measurement等模块都被包含在这个模块集中。
MATLAB-SIMULINK在电力系统工程仿真中的应用MATLAB/SIMULINK在电力系统工程仿真中的应用随着电力系统的规模日益庞大和复杂性的增加,为确保电力系统的安全可靠运行,电力系统工程仿真成为了工程设计和运维过程中的重要环节。
MATLAB/SIMULINK作为一种强大的仿真工具,可以有效地模拟电力系统的各种电路、设备与系统,为电力系统工程提供精确的仿真分析与设计。
电力系统工程仿真是一种通过计算机模拟的方法,用以预测和分析电力系统的运行状况和特性。
在传统的电力系统工程中,工程师们常常使用基于经验公式和简化模型的手工计算方法进行设计和评估。
然而,由于电力系统的复杂性和不确定性,采用手工计算方法不仅效率低下,而且容易出现误差。
相比之下,MATLAB/SIMULINK具有更高的仿真精度和灵活性,能够更准确地模拟电力系统的各个方面。
首先,MATLAB/SIMULINK可以用来模拟电力系统的电路和设备。
在电力系统中,包括变压器、发电机、电动机等各种电器设备都是电路连接的要素。
MATLAB/SIMULINK提供了丰富的电路模型和元件库,可以很方便地构建各种电路模型。
例如,我们可以根据电路拓扑结构和参数数据构建一个发电机的模型,通过输入不同的工作条件和控制信号,可以模拟发电机在各种负载情况下的工作状态。
其次,MATLAB/SIMULINK还可以用来模拟电力系统的控制策略。
在电力系统中,各种控制策略被用来保持电力系统的稳定运行。
例如,电力系统中常用的电压控制和频率控制都是通过调节发电机和变压器的控制信号来实现的。
在MATLAB/SIMULINK中,我们可以根据电力系统的实际控制策略,构建相应的控制模型,通过输入系统的状态量和反馈信号,并根据设计的控制逻辑进行仿真分析。
这使得工程师们可以在设计阶段对控制策略进行优化,以提高电力系统的稳定性和鲁棒性。
此外,MATLAB/SIMULINK还可以用于电力系统的故障分析和可靠性评估。
matlabsimulink电力系统建模与仿真源代码Matlab Simulink是一款功能强大的系统级建模和仿真工具,用于电力系统建模与仿真。
它极大地简化了系统级建模和仿真的流程,使得系统级建模和仿真不再是一项困难和耗时的工作。
这篇文章将介绍如何使用Matlab Simulink来进行电力系统建模与仿真,并给出相应的源代码。
1. 建立电力系统首先,我们需要建立电力系统。
可以通过添加各种组件来建立电力系统,比如发电机、变压器、传输线等。
在Matlab Simulink中,这些组件可以通过搜索库获得。
2. 设置模型参数在建立电力系统之后,我们需要设置模型的参数。
这些参数包括电压、电流、频率、相位等等。
根据不同的模型和实验条件,模型参数可能有所不同。
3. 添加输入和输出接下来,我们需要添加输入和输出。
这些输入和输出可能是电流、电压、功率等等。
在添加输入和输出之后,我们需要定义它们的格式,并将它们与相应的模型参数相连。
4. 编写MATLAB函数在建立电力系统之后,我们需要编写MATLAB函数。
这些函数可能包括方程、差分方程或其他类型的方程。
这些函数可以用于计算电力系统的各种参数,比如电阻、电感、电容等等。
5. 编写电力系统仿真源代码最后,我们需要编写电力系统仿真源代码。
这些代码将根据设置的模型参数和输入输出来模拟电力系统的各种行为。
在编写电力系统仿真源代码之前,我们需要先了解系统的行为和响应。
以下是一个简单的Matlab Simulink电力系统建模与仿真源代码实例:```% Example: Simulate a simple electrical systemclc;time = 0:0.01:10; % Time vectorV1 = 2*sin(2*pi*60*time); % AC voltage waveformR = 10; % ResistanceL = 1; % InductanceC = 0.01; % CapacitanceI = zeros(size(time)); % CurrentQ = zeros(size(time)); % Capacitor voltage% Simulate systemfor i=2:length(time)dt = time(i) - time(i-1);V2 = V1(i) - I(i-1)*R;I(i) = I(i-1) - dt*(R*I(i-1)/L + Q(i-1)/L - V2/L);Q(i) = Q(i-1) + dt*(I(i-1) - Q(i-1)/(R*C));end% Plot Resultsfigure;subplot(2,1,1);plot(time,V1,'r',time,I,'b');xlabel('Time (s)'); ylabel('V (V), I (A)');title('Voltage and Current vs. Time');legend('Voltage','Current');subplot(2,1,2);plot(time,Q,'g');xlabel('Time(s)'); ylabel('Q(C,V) (Coulombs, Volts)');title('Charge and Voltage vs. Time');legend('Charge');```以上是一个简单的电力系统建模和仿真源代码实例,包括电压、电流、电感、电容等基本元素。
simulink的电力系统仿真实验原理电力系统仿真实验原理:电力系统仿真实验是利用Simulink软件对电力系统进行建模、仿真和分析的过程。
该实验主要包括如下几个步骤:1. 建立电力系统模型:在Simulink环境中,根据实际电力系统的结构和特性,利用各种电力元件如发电机、变压器、传输线路、负荷等构建电力系统模型。
可以根据具体需要设置不同的电路参数和拓扑结构,以便对各种电力系统问题进行仿真分析。
2. 设定仿真参数:根据实验要求,设定仿真的时域范围、仿真步长以及模型的输入和输出要求。
例如,可以设定仿真时间为几百毫秒或几秒钟,仿真步长为毫秒级别,以获取系统各个节点的电压、电流等参数。
3. 添加模型控制器:根据需要,可以在模型中添加各种控制器如PID控制器、调速器等,以实现对电力系统的调节和控制。
控制器的参数可以根据实验要求进行设定和调整,以达到理想的控制效果。
4. 进行仿真实验:单击Simulink软件中的"运行"按钮,系统便开始进行仿真计算。
Simulink根据所设定的仿真参数和模型的输入,采用数值计算方法对电力系统进行仿真计算,并输出各个节点的电压、电流等参数。
仿真的过程也可以通过实时仿真功能进行可视化展示。
5. 分析仿真结果:根据仿真结果,可以对电力系统的运行情况进行分析和评估。
例如,可以分析系统的稳定性、安全性、损耗情况等。
如果仿真结果与实际情况存在差异,可以进一步调整电力系统模型和仿真参数,以提高仿真的准确性。
通过Simulink软件的电力系统仿真实验,可以有效地分析和解决实际电力系统中的问题。
同时,仿真实验也为电力系统的运行和优化提供了可靠的依据,减少了实验成本和风险。
第5章电力电子电路仿真分析5.1 电力电子开关模块5.2 桥式电路模块5.3 驱动电路模块习题5.1 电力电子开关模块SIMULINK的SimPowerSystems库提供了常用的电力电子开关模块,各种整流、逆变电路模块以及时序逻辑驱动模块。
SIMULINK库中的各种信号源可以直接驱动这些开关单元和模块,因此使用这些元件组建电力电子电路并进行计算机数值仿真很方便。
为了真实再现实际电路的物理状态,MATLAB对几种常用电力电子开关元件的开关特性分别进行了建模,这些开关模型采用统一结构来表示,如图5-1所示。
图5-1 电力电子开关模块图5-1中,开关元件主要由理想开关SW、电阻Ron、电感Lon 、直流电压源Vf组成的串联电路和开关逻辑单元来描述。
电力电子元件开关特性的区别在于开关逻辑和串联电路参数的不同,其中开关逻辑决定了各种器件的开关特征;模块的串联电阻Ron 和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的电压降;串联电感Lon限制了器件开关过程中的电流升降速度,同时对器件导通或关断时的变化过程进行模拟。
由于电力电子器件在使用时一般都并联有缓冲电路,因此MATLAB电力电子开关模块中也并联了简单的RC串联缓冲电路,缓冲电路的阻值和电容值可以在参数对话框中设置,更复杂的缓冲电路则需要另外建立。
有的器件(如MOSFET)模块内部还集成了寄生二极管,在使用中需要加以注意。
由于MATLAB的电力电子开关模块中含有电感,因此有电流源的性质,在没有连接缓冲电路时不能直接与电感或电流源连接,也不能开路工作。
含电力电子模块的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s,这样可以得到较快的仿真速度。
如果需要离散化电路,必须将电感值设为0。
电力电子开关模块一般都带有一个测量输出端m,通过它可以输出器件上的电压和电流值,不仅观测方便,而且可以为选择器件的耐压性能和电流提供依据。
基于Simulink的电力系统仿真研究【摘要】本文阐述了电力系统稳定运行的重要意义,建立了系统的simulink模型,通过迭代计算,得到了系统的动态性能的仿真结果,为系统的合理化设计奠定了理论基础。
【关键词】电力系统;simulink模型;仿真电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产、传输、分配和消费的系统[1]。
为实现这些功能,在系统的各个环节都设置了相应的自动控制元件。
因此,系统本身的结构是非常复杂的。
这样的特性也同时决定了其检修和维护是非常繁琐的。
所以,要保障整个系统的长期稳定运行,必须首先从设计入手,保证其性能的优越。
而该阶段对系统进行仿真计算,能够及时地了解系统的性能,并对参数进行相应调整,以期望达到一种良好的性能状态。
鉴此,本文以一个简单的电路系统为例,建立simulink数学模型,再进行迭代计算。
最终,得到了它的性能动态性能曲线,为系统的合理化设计提供了理论依据。
1 电路系统分析本文以一个电路系统为例,进行仿真计算。
而在模型构建之前,首先必须明确需要对系统进行的是哪一个阶段的仿真,更具电力系统控制的阶段性,分为动态过程和稳态过程。
而系统最容易出现动荡和故障的阶段,是动态过程,因此,对系统的仿真,也是只需要针对这一个部分进行。
其次,必须对组成系统的元件(如给定元件、信号元件、反馈元件等)进行分析,了解它们之间信号传递的关系,以及各个元件的拉普拉斯变换式(或是微分方程、传递函数)。
在该系统中,主要包含的部分元件有:(1)电源,系统的线电压为380v,频率为50hz;(2)电源的等值阻抗;(3)线路,线路采用π形集中参数;(4)串联电容器;(5)并联电抗器。
2 电路系统simulink模型的构建根据上述章节的系统元件分析,在该电路系统的simulink模型构建过程中,主要分为3个步骤进行:(1)典型环节的确定[2]。
该步骤的具体操作,针对系统的被控对象、给定元件、典型输入信号(如阶跃信号、斜坡信号、正弦信号等)、系统性质(开环控制系统、闭环控制系统)等特点,分别在simulink当中的sources、math operations、continuous等模块选择函数,定时器,运算符等,将其拖入simulink的运行模块。