simulink电路仿真
- 格式:ppt
- 大小:304.50 KB
- 文档页数:8
三相桥式全控整流电路Simulink仿真实验背景三相桥式全控整流电路是一种常用的交流调直流电路,可以将交流电源转换为稳定的直流电源,常用于工业生产中的大型电动机驱动系统等。
因此,在电力电子课程中,对于三相桥式全控整流电路的掌握至关重要。
Simulink 是 MATLAB 的拓展模块,可用于系统级模拟和建模,并广泛应用于电力电子学、控制工程、通信和信号处理等领域。
在本文中,我们将介绍三相桥式全控整流电路 Simulink 仿真实验的建模和仿真过程。
实验目的1.了解三相桥式全控整流电路的基本原理和结构;2.掌握 Simulink 的建模方法和使用;3.了解整流电路控制方式,以及开环控制和反馈控制的优缺点;4.通过实验数据分析,验证反馈控制的优势。
实验原理三相桥式全控整流电路三相桥式全控整流电路的基本原理如下图所示:三相桥式全控整流电路原理图三相桥式全控整流电路由三个交流源和六个晶闸管构成,晶闸管分别为 V1、V2、V3、V4、V5 和 V6,其中,V1 和 V6 为两端可控硅,V2 和 V4 为反向可控硅,V3 和 V5 为二极管。
通过对不同晶闸管的控制,可以将交流电源转换为稳定的直流电源。
Simulink 建模在 Simulink 中建立三相桥式全控整流电路模型的过程如下:1.创建模型首先,打开 MATLAB 并创建一个新的模型。
2.添加模块建立三相桥式全控整流电路模型,需要使用到 Simulink 的 SimPowerSystems 模块,因此需要在 Simulink 库中添加此模块。
具体方法为:在主界面上找到“Simulink 库浏览器”,然后在“SimPowerSystems”中选择需要使用的模块,如下图所示。
Simulink 库浏览器添加模块3.建立模型接着,我们开始建立模型。
首先,从 Simulink 库中拖拽“三相 AC Voltage Source”模块,然后拖拽“Three-Phase Controlled Rectifier”模块,连接二者,并设置模块的参数及输入信号。
第五章Simulink模拟电路仿真武汉大学物理科学与技术学院微电子系常胜§5.1 电路仿真概要5.1.1 MATLAB仿真V.S. Simulink仿真利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。
武汉大学物理科学与技术学院微电子系常胜ex5_1.mclear;V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5;R1=(Rb*Rc)/(Ra+Rb+Rc);R2=(Rc*Ra)/(Ra+Rb+Rc);R3=(Ra*Rb)/(Ra+Rb+Rc);Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd));I=V/Req武汉大学物理科学与技术学院微电子系常胜ex5_1武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜注意Simulink仿真中imeasurement模块/vmeasurement模块和Display模块/Scope模块的联合使用Series RLC Branch模块中R、C、L的确定方式R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值武汉大学物理科学与技术学院微电子系常胜MATLAB方式:步骤:建立等效模型→模型数学化→编写M文件计算→得到运算结果优点:理论性强,易于构建算法、模型缺点:较复杂,对电路观测量更改时需更改M文件适用范围:大系统抽象和原理性建模Simulink方式:步骤:选取模块→组成电路→运行仿真→观测仿真结果 优点:直观性强,易于与实际电路对应,易于观察结果 缺点:理论性不强,对电路原理不能得到解析适用范围:具体电路仿真武汉大学物理科学与技术学院微电子系常胜5.1.2 Power System Blockset模块集及powerlib窗口Power System Blockset模块集是MATLAB中专用的电路仿真模块集,其中内含有Electrical Source、Elements等子模块库,而电路仿真常用的DC Voltage Source、Series RLC Branch、Current Measurement等模块都被包含在这个模块集中。
Simulink电力电子仿真模块详细介绍1、二极管1.1、电路符号和静态伏安特性:1.2、模块图标:1.3、外部接口:二极管模块有2个电气接口和1个输出接口。
2个电气接口(a,k)分别位于二极管的阳极和阴极。
输出接口(m)输出二极管的电流和电压测量值(Iak、Vak),其中电流单位A,电压单位V。
1.4参数设置:(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0;(2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0;(3)Forward voltage Vf:正向电压,当二极管正向电压大于Vf后,二极管导通;(4)Initial current Ic:初始电流,通常为0;(5)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻;(6)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路;(7)Show measurement port:选中复选框,出现测量输出接线口m,可观测二极管的电流和电压值。
2、晶闸管模块2.1、原理当晶闸管承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸管导通。
触发脉冲必须足够宽,才能使阳极电流Iak大于设定的晶闸管擎住电流I1,否则晶闸管任要转向关断。
导通晶闸管阳极电流下降到0,或者承受反向电压时关断。
2.2、电路负荷和静态伏安特性2.3、模块图例详细模块简化模块2.4、外部接口晶闸管模块有2个电气接口,1个输入接口和1个输出接口。
2个电气接口(a,k)分别对应晶闸管的阳极和阴极。
输入接口(g)为门极逻辑信号。
输出接口(m)输出晶闸管的电流和电压测量值(Iak、Vak),其中电流单位为A,电压单位为V。
2.5、参数设置:(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0;(2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0;(3)Forward voltage Vf:正向电压,晶闸管的门槛电压Vf;(4)Latching current Il:擎住电流,(简单模块无该选项);(5)Turn-off time Tq:单位s,它包括阳极电流下降到0的时间和晶闸管正向阻断的时间,(简单模块无该项);(6)Initial current Ic:初始电流,单位A,当电感值大于0时,可以设置仿真开始晶闸管的初始电流值,通常为0;(7)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻;(8)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路;(9)Show measurement port:选中复选框,出现测量输出接线口m,可观测晶闸管的电流和电压值。
《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。
(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。
2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。
后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。
2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。
2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。
解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。
实验五基于Simulink的电路系统仿真一、实验目的1)熟悉Simulink的工作环境;2)掌握Simulink电力系统工具箱的使用;3)掌握在Simulink的工作环境中建立电路系统的仿真模型。
二、实验内容1、仿真电路选择适当的电路元件,连接仿真电路,连接好的仿真电路如图1所示。
图1. 仿真电路2、电路元件参数的设置1)设置电压源参数将电压源输出电压设为100v,频率设为50Hz,具体参数设置如图2所示。
图2. 电压源参数设置2)设置电流源参数将电流源输出电流设为10A,频率设为250Hz,具体参数设置如图3所示。
图3. 电流源参数设置3)设置Parallel RLC Branch的参数将Branch type设为RL,电阻R设为30Ω,电感L设为10e-3H,具体参数设置如图4所示。
图4. Parallel RLC Branch参数设置4)设置Series RLC Branch的参数将Branch type设为RL,电阻R设为30Ω,电感L设为202.6e-3H,电容C设为2e-6F,具体参数设置如图5所示。
图5. 电压源参数设置5)设置示波器Scope的参数示波器Scope的具体参数设置如图6所示。
图6. 示波器参数设置3、仿真结果运行仿真,双击示波器Scope元件的图标,得到的仿真结果如图7所示。
图7. 仿真结果4、仿真结果的分析电流表所测波形与电流源的基本一样,而电压表所测波形发生明显变化,是因为负载Series RLC Branch中的感性负载和容性负载造成正弦波波形发生改变。
simlinke中电路仿真求功率因数方法
在Simulink中进行电路仿真并求取功率因数,可以采用以下步骤:
1. 建立模型:在Simulink中创建一个新的模型,并添加所需的电路元件和测量仪器。
2. 配置参数:为电路元件配置适当的参数,例如电阻、电容、电感等。
3. 连接电路:使用Simulink的连接线将电路元件和测量仪器连接起来,形成完整的电路。
4. 运行仿真:配置仿真参数,例如仿真时间、采样率等,并运行仿真。
5. 记录数据:在仿真过程中,记录所需的测量数据,例如电压、电流、功率等。
6. 分析数据:使用Simulink的分析工具对记录的数据进行分析,例如波形分析、频谱分析等。
7. 计算功率因数:根据测量的数据和定义,计算电路的功率因数。
功率因数可以通过以下公式计算:
功率因数 = 有功功率 / 总功率
其中,有功功率是指电路实际消耗的功率,总功率是指电路中电压和电流的乘积。
8. 优化电路:根据仿真结果和计算出的功率因数,对电路进行优化,以提高功率因数。
以上是在Simulink中进行电路仿真并求取功率因数的步骤。
需要注意的是,在进行仿真之前,需要了解电路的基本原理和元件参数,以确保仿真的准确性和可靠性。
同时,还需要注意仿真结果的解读和分析,以便更好地理解电路的性能并优化电路设计。
第六章Simulink数字电路仿真武汉大学物理科学与技术学院微电子系常胜从功能结构上将,数字电路可以分为组合逻辑电路和时序逻辑电路两种,我们的Simulink数字电路仿真也分这两部分讲授。
§6.1 组合逻辑电路的仿真6.1.1 组合逻辑电路仿真常用模块1、构建组合逻辑电路本体常用模块:Logical Operator(逻辑操作)模块位于Simulink节点下的Math Operations模块库(MATLAB6.5)或Logic and Bit Operations模块库(MATLAB7.0)中,用于实现基本的逻辑门单元。
根据具体需要,其可例化为与门、与非门、或门、或非门、异或门、反相器。
武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜Combinatonial Logic(组合逻辑)模块位于Simulink节点下的Math Operations模块库(MATLAB6.5)或Logic and Bit Operations模块库(MATLAB7.0)中,用于实现逻辑表达式的运算。
采用真值表的方式来描述组合逻辑表达式。
真值表的具体描述方式见其Block Parameters中的help 对于组合逻辑的多个输入端,combinationial logic模块需要和Mux模块组合使用。
武汉大学物理科学与技术学院微电子系常胜真值表中填入对应位置的输出值武汉大学物理科学与技术学院微电子系常胜e.g. 函数Y=AB+BC+CA的实现ex6_1注意将仿真参数中Optimization中的Implement logic signals as boolean data(V.S. double)去掉,避免数据类型的不匹配。
武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜2、信号输入常用模块:Pulse Generator(脉冲序列发生器)模块位于Simulink节点下的Source库中,根据要求可以产生占空比不同的脉冲序列。
第五章Simulink模拟电路仿真武汉大学物理科学与技术学院微电子系常胜§5.1 电路仿真概要5.1.1 MATLAB仿真V.S. Simulink仿真利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。
武汉大学物理科学与技术学院微电子系常胜ex5_1.mclear;V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5;R1=(Rb*Rc)/(Ra+Rb+Rc);R2=(Rc*Ra)/(Ra+Rb+Rc);R3=(Ra*Rb)/(Ra+Rb+Rc);Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd));I=V/Req武汉大学物理科学与技术学院微电子系常胜ex5_1武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜注意Simulink仿真中imeasurement模块/vmeasurement模块和Display模块/Scope模块的联合使用Series RLC Branch模块中R、C、L的确定方式R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值武汉大学物理科学与技术学院微电子系常胜MATLAB方式:步骤:建立等效模型→模型数学化→编写M文件计算→得到运算结果优点:理论性强,易于构建算法、模型缺点:较复杂,对电路观测量更改时需更改M文件适用范围:大系统抽象和原理性建模Simulink方式:步骤:选取模块→组成电路→运行仿真→观测仿真结果 优点:直观性强,易于与实际电路对应,易于观察结果 缺点:理论性不强,对电路原理不能得到解析适用范围:具体电路仿真武汉大学物理科学与技术学院微电子系常胜5.1.2 Power System Blockset模块集及powerlib窗口Power System Blockset模块集是MATLAB中专用的电路仿真模块集,其中内含有Electrical Source、Elements等子模块库,而电路仿真常用的DC Voltage Source、Series RLC Branch、Current Measurement等模块都被包含在这个模块集中。
第六章Simulink数字电路仿真武汉大学物理科学与技术学院微电子系常胜从功能结构上将,数字电路可以分为组合逻辑电路和时序逻辑电路两种,我们的Simulink数字电路仿真也分这两部分讲授。
§6.1 组合逻辑电路的仿真6.1.1 组合逻辑电路仿真常用模块1、构建组合逻辑电路本体常用模块:Logical Operator(逻辑操作)模块位于Simulink节点下的Math Operations模块库(MATLAB6.5)或Logic and Bit Operations模块库(MATLAB7.0)中,用于实现基本的逻辑门单元。
根据具体需要,其可例化为与门、与非门、或门、或非门、异或门、反相器。
武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜Combinatonial Logic(组合逻辑)模块位于Simulink节点下的Math Operations模块库(MATLAB6.5)或Logic and Bit Operations模块库(MATLAB7.0)中,用于实现逻辑表达式的运算。
采用真值表的方式来描述组合逻辑表达式。
真值表的具体描述方式见其Block Parameters中的help 对于组合逻辑的多个输入端,combinationial logic模块需要和Mux模块组合使用。
武汉大学物理科学与技术学院微电子系常胜真值表中填入对应位置的输出值武汉大学物理科学与技术学院微电子系常胜e.g. 函数Y=AB+BC+CA的实现ex6_1注意将仿真参数中Optimization中的Implement logic signals as boolean data(V.S. double)去掉,避免数据类型的不匹配。
武汉大学物理科学与技术学院微电子系常胜武汉大学物理科学与技术学院微电子系常胜2、信号输入常用模块:Pulse Generator(脉冲序列发生器)模块位于Simulink节点下的Source库中,根据要求可以产生占空比不同的脉冲序列。
matlab simulink 电路仿真书以下是一些关于Matlab Simulink电路仿真的书籍推荐:1.《MATLAB and Simulink for Engineers》by Agam Kumar Tyagi这本书提供了有关使用MATLAB和Simulink进行电路仿真的全面指南。
它涵盖了从基本概念到高级技术的各种主题,并提供了许多实例和练习,以帮助读者更好地理解和应用这些工具。
2.《Digital Control Engineering: Analysis and Design》by M. Sami Fadali and Antonio Visioli这本书专注于数字控制系统的分析和设计,并使用Simulink作为主要的仿真工具。
它介绍了控制理论的基本概念,并演示了如何使用Simulink构建和仿真数字控制系统。
3.《Signals and Systems with MATLAB Applications》by Steven T. Karris 这本书探讨了信号和系统的基本概念,并介绍了如何使用MATLAB和Simulink 进行信号处理和系统仿真。
它包含了大量的例子和实践问题,以帮助读者深入理解这些概念和工具。
4.《Power Electronics: Devices, Circuits, and Applications》by MuhammadH. Rashid这本书涵盖了电力电子领域的基本知识,并使用Simulink作为仿真工具来演示电路设计和性能分析。
它探讨了各种电力电子设备和电路的原理,并提供了一些练习和案例研究,以帮助读者更好地理解和应用这些概念。
这些书籍都是针对Matlab Simulink电路仿真的初学者或进阶者的,可以帮助读者系统地学习和应用这些工具。
simulink仿真电路原理实例simulink是一种用于建模和仿真动态系统的软件工具,它使用图形化编程界面,可以帮助工程师和科学家们更快速地开发和调试各种电路原理。
本文将以一个实例来介绍如何使用simulink进行电路仿真。
假设我们要设计一个简单的RC电路,其中包含一个电阻R和一个电容C。
我们希望通过simulink来验证这个电路的性能和响应。
我们需要打开simulink并创建一个新的模型。
然后,我们可以在模型中添加电阻和电容的模块。
simulink提供了许多预定义的模块,我们只需要在库浏览器中找到并拖动这些模块到模型中即可。
接下来,我们需要定义电阻和电容的数值。
我们可以通过双击相应的模块来打开参数设置界面,并在其中输入我们想要的数值。
在这个例子中,我们假设电阻的阻值为100欧姆,电容的容值为1微法。
我们还可以设置初始条件,例如电容的初始电压或电阻的初始电流。
完成模型的搭建后,我们需要设置仿真的参数。
例如,我们可以定义仿真的时间范围、步长和求解器选项。
simulink提供了几种不同的求解器,我们可以根据需要选择最合适的求解器。
在设置好仿真参数后,我们可以运行仿真并查看结果。
simulink会生成一个图形界面,显示电路的响应曲线。
我们可以观察电容的电压随时间的变化,以及电阻的电流随时间的变化。
除了观察仿真结果外,simulink还提供了一些分析工具,可以帮助我们更深入地理解电路的行为。
例如,我们可以使用频谱分析工具来查看电路的频率响应,或者使用参数扫描工具来研究不同参数对电路性能的影响。
通过simulink,我们可以快速而准确地模拟和分析各种电路原理。
无论是简单的RC电路还是复杂的控制系统,simulink都提供了强大的功能和灵活的工具,可以满足各种仿真需求。
它不仅可以节省开发时间和成本,还可以提高设计的准确性和可靠性。
simulink是一种强大的仿真工具,适用于各种电路原理的建模和仿真。
通过simulink,我们可以更好地理解电路的行为,优化设计方案,并加速产品的开发和调试过程。