晶体结构分析及其发展
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
晶体学中的晶体结构分析技术晶体学是研究晶体结构、晶体生长和晶体性质的学科。
晶体结构分析是晶体学中最基本也是最重要的研究内容之一。
通过晶体结构分析技术,可以揭示晶体中原子的排列方式,从而深入了解晶体的性质与行为。
本文将介绍晶体结构分析技术的基本原理和常用方法。
一、晶体结构分析的基本原理晶体是由周期性排列的原子、离子或分子所构成的连续的结构体。
晶体结构分析的基本原理是通过衍射现象测定入射束与晶体样品之间的相对角度,进而得到晶体的结构信息。
晶体的结构可以通过X射线衍射、中子衍射和电子衍射等技术进行分析。
二、X射线衍射技术X射线衍射是应用X射线对晶体进行分析的主要方法。
通过测量晶体样品对入射X射线所发生的衍射现象,可以得到晶体的结构信息。
X射线衍射技术具有分辨率高、样品制备简便等特点,被广泛应用于晶体结构分析领域。
1. 单晶X射线衍射单晶X射线衍射是通过测量晶体中各个平面的倾角和衍射角,进而得到晶体的结构信息。
该方法可以提供晶体中原子的三维分布情况,得到高分辨率的晶体结构图。
单晶X射线衍射的实验步骤包括晶体生长、晶体定向、数据收集和结构解析等。
该方法需要用到加速器或强X射线源,设备复杂,操作难度较大。
但其分辨率高,可以获得准确的晶体结构信息。
2. 粉末X射线衍射粉末X射线衍射是一种通过将晶体样品研磨成粉末形式进行测试的方法。
通过测量粉末样品对入射X射线的衍射角度和强度,可以得到晶体的结构信息。
粉末X射线衍射的实验步骤包括晶体研磨、粉末样品装填、数据采集和结构解析等。
相比于单晶X射线衍射,粉末X射线衍射无需晶体生长和晶体定向,操作相对较为简便,可以快速获得样品的结构信息。
三、中子衍射技术中子衍射是应用中子对晶体进行结构分析的方法。
相比于X射线衍射,中子衍射具有穿透性强、对重元素和轻元素敏感等特点,能够提供晶体中氢原子的位置信息。
中子衍射的实验步骤与X射线衍射类似,包括样品制备、数据收集和结构解析等。
由于中子源设备的限制,中子衍射技术的实验条件较为苛刻,但可以提供不同于X射线衍射的结构信息。
晶体结构分析晶体结构分析是一门研究物质中原子或离子排列方式的学科。
通过晶体结构分析,科学家可以揭示物质的微观结构和性质,为材料科学、化学、生物学等领域的研究提供基础数据和理论支持。
本文将介绍晶体结构分析的原理和方法,并探讨其在科学研究和工业生产中的重要性。
晶体是一种由原子、分子或离子以规则的方式排列而成的固态物质。
晶体的结构对物质的性质和功能有着重要影响。
晶体结构分析的目标就是确定晶体中原子或离子的排列方式和相互作用。
常见的晶体结构分析方法包括X射线衍射、中子衍射和电子衍射等。
X射线衍射是最常用的晶体结构分析方法之一。
它利用X射线的波长与晶格常数之间的关系,通过测量衍射角和衍射强度,推导出晶体中原子的位置和间距。
X射线衍射可以精确地确定晶体的晶格常数、晶胞形状和原子位置,从而揭示晶体的结构。
中子衍射和电子衍射与X射线衍射类似,但使用的是中子或电子束,适用于不同类型的晶体。
晶体结构分析在材料科学和工程中具有广泛应用。
例如,在材料研究领域,晶体结构分析可以帮助科学家研究材料的物理性质、热性质和导电性等,从而优化材料的设计和制备过程。
在药物和生物化学领域,晶体结构分析可以揭示药物和蛋白质的结构,从而指导药物研发和疾病治疗。
在能源和环境领域,晶体结构分析可以用于研究新型能源材料和催化剂,促进能源转型和环境保护。
晶体结构分析的发展离不开技术的进步。
现代晶体结构分析借助于X射线衍射仪器、中子衍射仪器和电子显微镜等先进设备,能够对复杂的晶体结构进行高精度的分析。
此外,计算机技术的发展也为晶体结构分析提供了支持,通过计算模拟和分子建模,可以预测和优化新材料的性能。
总结起来,晶体结构分析是一门重要的科学技术,对于研究物质的性质和功能具有重要意义。
它在材料科学、化学、生物学等领域的应用越来越广泛,为人类社会的发展和进步做出了重要贡献。
随着技术的不断进步,晶体结构分析将在未来发挥更大的作用,为人类探索未知世界提供更多的契机和可能性。
晶体结构分析技术研究及其应用晶体结构分析是化学、物理、材料科学和生物学等领域中重要的分析手段,它能够给我们提供物质结构详细信息,如原子坐标、键长、键角、晶格对称性等,从而帮助我们深入了解物质的性质和行为。
本文将介绍晶体结构分析技术的原理、方法和应用。
一、原理和方法晶体结构分析是基于X射线衍射原理的。
当X射线照射到物质表面上时,会发生反射或衍射现象。
这些反射或衍射的光束会在空间中形成交叉图案,称为“衍射斑”。
这些衍射斑的分布和强度可以揭示出原子之间的相对位置和间距。
为了进行晶体结构分析,通常需要进行以下步骤:1. 准备晶体:将晶体制备成单晶,并用合适的技术处理。
2. 产生衍射斑:用单色化的X射线照射晶体,使其发生衍射现象,并将衍射斑记录下来。
3. 测量衍射角度:通过对衍射斑的测量,可以得到反射角度、波长和散射强度数据。
4. 解析结构信息:运用软件和数学模型,对测得的数据进行分析和计算,得到晶体结构的详细信息。
二、应用晶体结构分析广泛应用于化学、材料科学和生物学等领域中,具有重要的科学研究和应用价值。
1. 化学应用通过晶体结构分析,可以深入了解物质的结构和性质,为新材料的研究和制备提供支持。
例如,铂和硼的复合物Pt(BH4)2(C2H5CN)通过晶体结构分析揭示了这种化合物的原子排列方式和键长,有助于控制其反应活性和性质。
此外,晶体结构分析还广泛应用于可持续发展能源领域中。
通过分析半导体和金属材料的晶体结构,可以开发出更高效的太阳能电池和催化剂等。
2. 生物学应用晶体结构分析在生物学中具有重要的应用。
通过测量生物大分子(如蛋白质和DNA)的晶体结构,可以揭示它们之间的相互作用和结构特征,为研究生命过程提供了深入的信息。
例如,通过分析酶的结构,可以了解其催化机制,并帮助设计更有效的药物。
此外,晶体结构分析还为遗传疾病的治疗提供了理论基础,例如通过分析病毒蛋白的结构,可以针对其关键位点设计有效的药物。
3. 材料科学应用晶体结构分析在材料科学中也具有广泛的应用价值。
晶体学与晶体结构分析方法晶体学是研究晶体的形成、结构和性质的学科。
晶体是一种固态物质,由一定数量的原子、离子或分子按照特定的排列方式组成。
晶体的结构对物质的性质有着重要影响,因此晶体学在材料科学、固体物理、化学等研究领域有着广泛的应用。
在晶体学中,晶体结构分析是一项非常重要的技术和方法。
晶体结构分析可以帮助我们理解晶体的内部结构、原子或分子的排列方式以及晶体中的非晶质区域。
下面将介绍一些常用的晶体结构分析方法。
1. X射线衍射法X射线衍射法是一种常见且广泛应用的晶体结构分析方法。
它利用X射线与晶体中的原子或分子相互作用,通过对衍射图样的分析来确定晶体结构。
X射线衍射法可以得到晶体的晶胞参数、原子位置、晶面间距等信息,具有高精度和准确性。
2. 中子衍射法中子衍射法是一种与X射线衍射法类似的晶体结构分析方法。
不同的是,中子与物质相互作用的方式不同于X射线,因此中子衍射法对于轻元素和氢原子有着较好的灵敏度。
中子衍射法在研究生物大分子和轻元素晶体结构方面具有独特的优势。
3. 电子衍射法电子衍射法是利用电子束与晶体中的原子或分子相互作用来确定晶体结构的方法。
与X射线和中子衍射法相比,电子衍射法具有较高的分辨率和成像能力,可用于研究纳米晶体和晶体中的缺陷结构。
4. 原子力显微镜(AFM)原子力显微镜是一种通过测量原子间的相互作用力来观察和测量物质表面和晶体结构的高分辨率显微镜。
AFM可以直接测量晶体表面的原子或分子的位置、高度和形貌,对于研究纳米晶体的结构和表面形貌具有重要意义。
5. 核磁共振(NMR)核磁共振是通过探测原子核的磁共振现象来研究物质的结构和性质的方法。
在晶体学中,核磁共振可以用于研究晶格动力学、宏观晶体中的局部结构和固相反应等。
总之,晶体学与晶体结构分析方法为我们提供了研究晶体结构和性质的重要工具。
通过这些方法,我们可以深入了解晶体内部结构的细节,为材料科学、化学和固体物理等领域的研究和应用提供有力支持。
分析纯铁的晶体结构与结晶过程一、学习目标知识目标:·了解晶体、晶格、晶胞、晶粒的概念及常见的三种晶格类型;·明确金属实际晶体结构;·掌握纯铁的同素异晶转变;·熟悉合金的概念及合金的相结构;·了解金属与合金的结晶过程。
能力目标:·熟悉金属或合金的结晶过程及规律,能有效控制金属的结晶过程,改善金属材料的组织和性能。
二、任务引入纯铁是由铁矿石经冶炼而成的,先得到温度较高的铁水,铁水经冷却后形成高温固态铁,然后在逐渐冷却到室温。
液态铁水经过什么变化形成固态铁,高温固态铁冷却过程中铁的结构是否发生变化?三、相关知识材料的性能取决于材料的组织结构,而材料的组织结构由它的化学组成和加工工艺决定的。
也就是说不同的金属材料具有不同的性能,即使是同一种金属材料,在不同的加工条件下其性能也是不同的。
金属性能的这些差异,从本质上来说,是由其内部结构所决定的。
(一)常见的金属晶格类型1.晶体与非晶体自然界中的固态物质都是由原子组成的,根据原子排列的状况不同,可以将物质分为晶体和非晶体两大类。
(1)晶体物质的原子都是按一定几何形状有规则地排列的称为晶体,如金刚石、石墨及固态金属和合金。
(2)非晶体在物质内部,凡是原子呈无规则、杂乱地堆砌在一起的称为非晶体,如松香、普通玻璃、沥青、石蜡等。
晶体与非晶体因原子排列方式不同,它们的性能也有差异。
晶体具有固定的熔点,其性能呈各向异性,而非晶体没有固定的熔点,呈各向同性。
2.晶格与晶胞晶体内部的原子是按照一定规则排列的。
为了便于理解,将金属晶体中原子看成一个小球,图1-7(a)是金属晶体中原子在空间作有规则排列的简单模型。
为了说明排列的方式,人为地把原子看成一个点,用假想的线将各原子的中心连结起来,这样就得到一个抽象化了的空间格架,见图1-7(b)。
这种用于描述原子在晶体中排列规律的空间格架称为晶格。
(a)晶体的原子排列模型(b)晶格(c)晶胞图1-7 晶体、晶格和晶胞示意图由上图可见,晶格是由许多形状、大小相同的最小几何单元重复堆积而成的。
金属材料的晶格结构分析金属材料是工业制品的重要组成部分,也是人类文明发展的重要带动力。
在金属材料的微观结构中,晶格结构是一项至关重要的参数,它关系到了该材料的力学性能、热学性能以及化学性能等多方面的特性。
因此,对于金属材料的晶格结构进行分析具有重要的意义。
本文将结合实例,对金属材料的晶格结构分析进行探究。
一、晶格结构的基本概念晶格是指由等间距的点组成的几何图形,是表征晶体结构的重要参数之一。
晶格结构的特征在于其中的原子排布和其相邻原子组成的键合方式。
晶格的形状特征可以用晶面和晶向体现出来。
晶面是与晶体界面平行的平面,晶向是连接两个晶体表面上某一点的直线。
晶向和晶面的交线即为晶向线。
晶格结构通过对材料内部原子之间键合的强度和确定的空间构型进行分析来进行表征。
二、晶体结构分析的常用方法在对晶体结构进行分析时,常用的方法包括X射线衍射、电子衍射及计算机模拟等。
其中,X射线衍射是一种高精度、无损伤、不接触、直观、全面分析晶体结构的方法,被广泛应用于金属材料、陶瓷材料、高分子材料等晶体物质的研究领域。
通过X射线衍射的方式,可以确定晶体的原子排列及其空间构型,进而确定晶体的晶格结构、晶体结晶水平等参数。
电子衍射技术是指通过将电子束入射在样品表面或将灵敏的探测器放置在样品表面,使电子在晶体中发生散射现象,从而获取晶体结构的有关参数的一种技术。
电子衍射技术由于其测量范围狭窄,不适用于晶体面及其相互关系的测量,但具有操作便捷、测量可重复性高、分辨率高等优点,在某些领域中具有重要应用价值。
计算机模拟是模拟晶体中原子间相互作用的计算方法,它可在不涉及实际物质的情况下,建立具有实际晶体结构的模型,并对该模型进行分析。
计算机模拟技术具有计算结果可重复,可观察不同条件下的计算结果等优点,在现代材料科学研究领域中默默耕耘。
三、晶格结构分析的实例探讨以铝为例,通过X射线衍射技术对铝钨合金进行晶格结构的分析。
①晶体检测:用标准铝样品对仪器进行标定,调节样品和X光散射装置角度,设置合适的探测器以接收X射线的类型和能量;②数据采集:在探测器与样品之间留下足够宽的散射角度,以收集不同角度的X射线,记录下每个角度散射的X射线计数值;③数据处理:将得到的计数值分析处理,反演出样品中晶格的结构参数。
晶体生长与组织结构分析晶体是由具有有序排列的原子、分子或离子组成的固体物质。
晶体生长是指晶体从溶液、气体或熔体中通过物质沉积或原子、分子的有序排列过程逐渐增长的过程。
晶体生长的研究对于了解物质的性质和制备高质量晶体等领域具有重要意义。
而晶体的组织结构分析则是通过利用各种先进的研究手段来揭示晶体内部的有序结构、缺陷分布等信息,进一步深入了解晶体的性质和特点。
晶体的生长过程受到多种因素的影响,其中溶液浓度、温度、pH值等物理化学条件是重要的控制因素。
晶体的生长过程发生在溶液中,当溶液中具有高浓度的溶质时,就有可能形成饱和度高的环境,使得溶质以固体的形式沉淀下来。
此时,溶质分子或离子围绕晶种有序排列,按照规则的晶胞结构逐渐形成晶体。
晶体生长过程中,晶体的形态和尺寸受到溶液中溶质浓度、溶液温度、浓度梯度等因素的影响。
当溶液中存在浓度梯度时,晶体的生长速率不均匀,从而导致晶体在径向和轴向上的外形变化。
此外,晶体表面的吸附也会影响晶体的生长。
溶质分子和离子在晶体表面上吸附,形成一层化学组成上略有不同的表面吸附层。
这些吸附层可以为后续的晶体生长提供了一定的条件,也会对晶体的生长速率和形态起到一定的制约作用。
除了晶体生长的过程,晶体的组织结构分析也是研究晶体性质的关键。
晶体的组织结构分析可以通过多种手段来实现。
例如,X射线衍射是一种常见的方法。
通过照射晶体样品,根据衍射图谱可以确定晶体的空间组别、晶格参数和原子的排列方式等。
电子显微镜也是晶体组织结构分析的重要手段,特别是高分辨透射电子显微镜(TEM)能够揭示晶体内部的微观结构。
此外,核磁共振(NMR)等技术也可用于晶体结构的解析。
通过晶体的组织结构分析,可以进一步了解晶体内部的有序结构和缺陷分布。
有序结构是指晶体的原子、分子或离子的排列以及它们之间的相互作用。
晶体的有序结构决定了其物理、化学性质和应用特性。
而缺陷分布则是指晶体中的缺陷种类和分布状态,如空位、附加原子、晶格位错等。
多晶材料的晶体结构分析多晶材料是由数个晶体组成的,在这些晶体中,每个晶体都具有着自己的晶体结构。
因此,要理解多晶材料的性质,需要对每个晶体的晶体结构进行分析。
多晶材料的晶体结构分析主要可以通过X射线衍射方法进行。
这种方法利用了X射线的特性,通过对X射线的衍射图形进行分析,可以得到晶体的晶格参数、原子位置和晶体对称性等重要信息。
在进行X射线衍射分析时,需要使用X射线衍射仪。
该仪器可以将X射线照射到样品上,并将衍射图形记录在检测器上。
通过对这些图形的分析,可以得到样品的晶体结构。
X射线衍射图形的形成是由于X射线与晶体中的晶胞结构相互作用所致。
当入射光线照射到晶胞上时,由于晶体中原子的周期性排列,会发生衍射现象,形成特定的衍射图形。
这些图形的形态与晶格参数、晶体对称性以及晶体中原子的位置密切相关。
通过对X射线衍射图形进行分析,可以确定晶体的晶格参数。
晶格参数包括晶胞的长度和角度,可以用来描述晶体中原子的排列方式。
同时,晶格参数还可以用来计算晶体的密度和体积。
此外,X射线衍射图形还可以用来确定晶体中原子的位置。
每个原子对应于衍射图形中的一个峰,根据这些峰的位置和强度可以确定原子的位置。
这样就可以建立起晶胞中原子的坐标系,进而确定晶体中各个原子之间的距离和键长。
晶体对称性也是X射线衍射图形中一个重要的特征。
晶体的对称性可以用不同的几何操作描述,例如旋转、反转和平移等。
通过对衍射图形进行分析,可以确定晶体中存在的所有对称性操作,从而建立晶体结构的空间群和点群。
总之,多晶材料的晶体结构分析是非常重要的,可以揭示出晶体中的各种结构参数和对称性信息。
这些信息可以为我们研究多晶材料的性质提供重要的参考。
同时,随着技术的不断发展,晶体结构分析方法也在不断改进,让我们更好地理解各种材料的性质和行为。
实验一、晶体结构分析一一、实验目的掌握14种空间格子的几何特征与球体密堆积理论,了解配位多面体的配置。
二、实验仪器十四种空间点阵结构模型,球形模型三、实验内容1.了解14种空间格子的几何形态,分析空间格子类型;2.熟悉密堆积理论,注意观察球体堆积时,周围空隙的类型、位置与数量情况;3.了解几种配位多面体的配置情况。
四、实验方法1.观察14种空间格子模型表征14种空间格子,用晶格常数α、β、γ和a、b、c;并判断其所属晶系。
2.观察球体密堆积模型用球体模型进行面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积,分析球体周围空隙的类型、数目和位置分布。
观察分析面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积的单位晶胞,注意其四、八面体空隙分布,判断其数量。
3.观察配位多面体模型模型五、实验报告1.绘制14种空间格子的几何形态,并用注明晶格常数的形式表示出所有14种空间格子;2.分析三种常见的球体堆积情况,绘制出其单位晶胞,画出其(111)、(110)(100)晶面原子排布图[ 密排六方需画出(0001)晶面 ];3.分析体心立方与面心立方单位晶胞中四、八面体空隙的位置分布与数量,并绘图;4.对不同配位多面体绘图,讨论其临界半径比。
(注:在预习报告中要将14种空间格子的几何图形画好)六、思考题面心立方结构中四面体空隙的数目有几个?他们都是如何分布的?八面体空隙有几个?如何分布?实验二、典型晶体结构分析一、实验目的掌握几种典型矿物的结构,了解晶胞的几何特征。
二、实验仪器晶体结构模型,球和短棒三、实验内容1.对照实际具体结构模型,熟悉金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石的晶体结构特征;2.观察层状和架状硅酸盐矿物的晶体结构模型的特点,注意观察高岭土、方石英的结构;3.标定萤石模型中所有质点的几何位置;4.组装一个晶体结构模型。
四、实验方法1.分析晶胞模型金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石均为一个单位晶胞,通过一个单位晶胞,分析晶胞所属空间格子类型及正负离子或原子所处的空间位置,对照模型,分析正负离子的配位数。
新材料的晶体结构与性能分析随着科技的不断进步,新材料的研究与应用越来越受到人们的关注。
在材料科学中,晶体结构与性能是一个重要的研究领域。
晶体结构是指晶体内原子或离子的排列方式和空间排列结构,而性能则是指材料在外界作用下表现出的特定物理、化学以及机械性质。
晶体结构与性能的研究不仅对材料设计和性能优化具有重要意义,同时也为高新技术的开发和推广提供了支撑。
一、晶体结构的研究晶体结构的研究是晶体学的核心内容,也是材料科学的基础研究领域之一。
晶体结构的研究可以帮助科学家深入理解物质的内在结构和构成,进而揭示物质的一些性质和行为机制。
晶体结构研究主要依赖于X射线衍射技术和电子显微技术。
X射线衍射技术是指将X射线通过晶体样品后形成的衍射图案进行解析,推导出晶体内原子(离子)的位置和晶面间的距离等信息。
电子显微技术则是通过电子注入在样品表面影响到形成的衍射斑点,从而得到晶体内部的结构信息。
晶体结构的研究不仅可以探究单晶体的结构,还可以研究晶体之间的组合方式和构成。
复合材料、奇异量子材料等就是通过现代晶体学研究的结果而得到的。
晶体结构研究还可以帮助科学家优化现有材料的结构,从而提高其性能和应用价值。
二、晶体结构与性能的关系晶体结构和性能是紧密相连的。
晶体结构的差异可以导致材料性能的巨大差距,因此科学家们通过对晶体结构与性能的关系研究,可以优化材料性能,提高其在实际应用中的效率。
1. 密度:晶体的密度是由其原子、分子或离子的大小和排列方法决定。
具有相同分子量和元素组成的物质密度可能会因其晶体结构的不同而产生差异。
比如金刚石和石英都是由二氧化硅构成的,但金刚石晶体更密集,密度比石英高得多。
2. 机械性能:晶体结构中原子的排列方式会影响晶体的强度和韧性。
比如,金属材料的强度主要是由其可能的应变和双晶数量决定的。
通过对材料进行原子掺杂或组合,可以改变其晶格结构,从而提高其材料强度和韧性,具体应用如工业金属、半导体材料等。
对固体物理晶体结构的简单分析及看法摘要:自身的微观结构是物质的各种宏观性质源。
物质与性质之间的关系则是物理、化学、材料科学以及分子生物等多种学科的重要研究内容。
而对于与众多学科有着密切相关联系的晶体结构的分析,是测定固态无知的微观结构在原子层次上的主要手段。
晶体结构分析服务于许多学科的同时也被许多学科所促进着。
关键词:晶体结构;物质内部结构;衍射; x—射线单晶体结构;分子生物学;同晶体置换法作为物理学研究之一的晶体结构分析,主要是研究怎样能够利用晶态物质对x—射线、电子及中子的衍射效应来测定物质的微观结构。
晶体结构分析与许多学科都是相辅相成的,它能够服务于许多学科,学多学科的发展也能对晶体结构分析产生深刻的影响。
另外由于晶体分析拥有自己独体的体系,所以从它自身角度而言,是能够对所服务的学科起到促进作用的。
晶体结构是以物理学中几项重要进展为奠基,同时也是伦琴发现x—射线之后所创设的最重要学科之一。
从1895年w.c roentgen 发现x—射线一直到1931年e. ruska建造出第一台电子显微镜,这其中几年所发生的几项重大的物理学进展使人类对怎样在原子层次上研究物质内部结构有了重大突破,可以说是掌握了其研究手段。
他们也因此而获得了当年的诺贝尔物理学奖。
通过对物质内部结构与性质的关系进行研究得出了晶体结构分析能够有力的促进各个相关学科的发展。
可以说,晶体结构分析的发展是一个在完善自身的同时不断扩大应用的过程。
而诺贝尔奖的年谱也将记录下晶体结构分析历史上的重大事件并展示出其与其他各学科相互作用所产生的丰硕果实。
以x—射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法是晶体结构分析的两类主要方法。
再加上电子显微成像也可以说是两上相继的电子衍生过程,所以说,晶体结构分析的核心是衍射分析。
晶体结构同它的衍射效应之间所存在的互为fourier变换的关系就是衍射分析方法测定晶体结构的理论依据。
金属材料的晶体结构分析金属材料作为重要的结构材料,其性能与其晶体结构密切相关。
晶体结构分析可以揭示金属材料的微观组织及其物理性质的起源。
本文将介绍金属材料的晶体结构分析方法、常见的晶体结构类型以及晶体缺陷的影响。
一、金属材料的晶体结构分析方法金属材料的晶体结构分析可以通过多种方法进行。
下面将介绍常用的晶体结构分析方法。
1. X射线衍射X射线衍射是一种常用的晶体结构分析方法。
通过将X射线照射到金属材料上,观察其衍射图样,可以得到材料的晶体结构信息。
这是因为X射线在晶体中的衍射受到晶体原子间的排列和晶体平面的间距等因素的影响。
2. 电子衍射电子衍射是以电子束代替X射线来照射样品进行衍射分析的方法。
电子衍射具有高分辨率和灵敏度的优势,可以用于研究金属材料的晶体结构以及晶体缺陷。
3. 中子衍射中子衍射是利用中子束照射样品进行衍射分析的方法。
中子具有波长和能量与晶体结构相匹配的特点,可以透射或散射到晶体中,通过测量散射角度和强度等信息来分析晶体结构。
二、金属材料的晶体结构类型金属材料的晶体结构可以分为多种类型,下面将介绍几种常见的晶体结构类型。
1. 面心立方结构(FCC)面心立方结构是一种常见的金属晶体结构。
在该结构中,晶体的顶点和每个面的中心都有原子存在。
这种结构具有高密度和良好的塑性,常见于铝、铜、银等金属中。
2. 体心立方结构(BCC)体心立方结构是另一种常见的金属晶体结构。
在该结构中,晶体的顶点处有原子,同时晶体的中心也有一个原子存在。
这种结构具有较高的强度和韧性,常见于铁、钴、钽等金属中。
3. 密排六方结构(HCP)密排六方结构是一种特殊的金属晶体结构。
在该结构中,晶体的顶点和面的中心都有原子存在,呈现出六边形的密排模式。
这种结构常见于钛、锆等金属中。
三、金属材料晶体缺陷的影响晶体缺陷是晶体结构中存在的不完美区域,对金属材料的性能和性质产生重要影响。
1. 点缺陷点缺陷是晶体结构中最简单的缺陷,例如晶格中原子的缺失或位错。
材料的晶体结构和应变分析材料的晶体结构和应变分析是材料科学研究领域不可或缺的重要课题。
通过对材料的晶体结构进行分析,可以深入了解材料的内部构造和性能特点。
同时,应变分析可以帮助我们预测材料在外部力作用下的变形行为,指导工程设计和制造过程。
一、晶体结构材料的晶体结构是指由原子、分子或离子按照一定的顺序排列而形成的结晶体的内部构造。
晶体结构充分体现了材料的物理性质和化学行为。
晶体结构的研究分为几何结构和周期性结构两个方面。
几何结构指的是晶体中原子或离子的空间排列方式,有助于我们理解晶体的形状、尺寸和原子间的距离关系。
周期性结构则描述了晶体的周期性重复规律,例如晶体的对称性、晶胞、晶格常数等。
通过对晶体结构的分析,可以了解晶体中原子的排列方式以及晶格结构的特征。
二、应变分析应变是指物质在外界外力作用下发生的形变或形状改变。
应变分析旨在研究材料在外部应力作用下的应变行为,为制造过程和材料设计提供理论依据。
应变分析的方法包括机械压力测定、光栅测量、应变计测量等。
其中,光栅测量是一种常用的非接触式方法,利用光栅缚腰测试样品的应变情况。
应变计测量则通过测量材料中的形变来反推出应变情况。
这些方法可以帮助我们了解材料的弹性恢复性能、屈服强度和塑性变形规律等重要参数。
应变分析在材料工程中有广泛的应用。
例如,在材料设计和制造过程中,可以通过应变分析来优化材料的成型工艺,提高产品的质量和性能。
此外,应变分析还有助于研究材料的疲劳寿命、断裂行为和变形机制等关键问题。
三、晶体结构与应变分析的关系晶体结构与应变分析有着密切的关系。
晶体结构决定了材料的性质特点,而应变则反映了材料在外部力作用下的响应行为。
通过研究晶体结构与应变之间的关系,可以进一步了解材料的变形行为和性能特点。
一方面,晶体结构对材料的应变行为有着重要影响。
不同晶体结构的材料在外部应力的作用下会表现出不同的变形特点。
例如,金属材料的晶体结构决定了其良好的塑性变形能力,而陶瓷材料的晶体结构则限制了其变形能力,表现出较强的脆性。
晶体的结构和性质分析晶体是由原子、离子或分子按照一定的空间排列规律组成的固体。
其具有有序排列的结构和特殊的物理性质,引人入胜。
本文将从晶体的结构和性质两个层面,对晶体进行详细的分析。
一、晶体的结构分析晶体的结构是其特殊性质的基础。
晶体的结构塑造了其形状、机械性质、热学性质等多种性质。
晶体的结构可以通过X射线衍射、电子衍射等方法进行研究。
X射线衍射是解析晶体结构最常用的手段之一。
通过射入晶体的X射线在晶体内发生衍射,然后根据衍射的图样来确定晶体的结构。
衍射图样由一系列强度峰组成,每个峰对应着晶体中的一组由原子或离子构成的平面,通过解析衍射图样的峰位置和强度,可以推断晶体的晶胞参数、晶体的对称性等。
这些参数和信息有助于我们理解晶体结构中的一些相互作用和性质。
另一个常用的方法是电子衍射。
电子衍射适用于微小晶体或纳米晶体的结构分析,因为电子束能够更容易进入晶体内部的微小空间。
通过电子束与晶体相互作用,发生散射,然后根据衍射图样来确定晶体结构。
相比X射线衍射,电子衍射具有更高的分辨率。
晶格是晶体结构的基本单位。
晶格是由一系列相互平行、等间距的平面和这些平面上的点组成的。
晶格起着排列晶体内原子、离子或分子的作用。
晶格中的原子、离子或分子分布着周期性,从而决定了晶体的物理性质。
二、晶体的性质分析晶体的结构直接影响了其物理性质,并且晶体的物理性质多样且复杂。
首先是光学性质。
晶体能够吸收、反射、透射电磁辐射,因此具有许多独特的光学性质。
晶体的吸收光谱和透射光谱可用于研究晶体中的电子能级和电子激发态。
其次是机械性质。
晶体通常是坚硬而脆弱的,因为晶体中的离子或分子受到晶格的限制,无法随意移动。
晶体的机械性质可以通过其硬度、强度、脆性等来描述。
另外,离子晶体还具有特殊的导电性。
离子晶体中的离子可以在晶体中移动,使得晶体能够导电。
这种导电性与离子的大小和电荷有关。
晶体还表现出很多其他特殊的物理性质,例如磁性、压电效应、热学性质等。
晶体结构的研究与分析晶体结构是一门涵盖物理学、化学和材料科学等多个学科的交叉领域,广泛应用于材料设计、催化剂开发、能源存储等领域。
对晶体结构的研究与分析,不仅能够深入理解物质的性质和行为,还能为新材料的开发提供重要的指导。
一、晶体结构的基本概念晶体是由原子、分子或离子有序排列而成的固体物质,具有一种长程有序的结构。
晶体结构的研究基于固体的一维晶格、二维晶面和三维空间。
晶体通过晶格参数和空间群来描述,晶格参数包括晶胞常数和晶胞角度,而空间群则描述了晶体重复单元的对称性。
二、晶体结构的研究方法1. X射线衍射X射线衍射是研究晶体结构的重要方法之一。
X射线与晶体相互作用时会发生衍射现象,通过测量衍射的角度和强度,可以推测出晶体的结构信息。
这是因为X 射线波长与晶格常数之间存在特定的关系,当X射线射到晶体上时,会在特定角度形成衍射斑点,这些斑点的形状和强度可以揭示晶体的空间排列。
2. 红外光谱红外光谱是另一种常用的晶体结构分析方法。
不同的物质具有不同的振动模式,这些振动会在特定波长的红外光射入时产生吸收。
通过测量物质在不同频率下的吸收强度,可以确定晶体中不同化学键的存在和结构。
3. 电子显微镜电子显微镜(EM)是一种常用于研究纳米材料和晶体结构的工具。
与光学显微镜不同,EM使用电子束代替光束,能够获得更高的空间分辨率。
通过与样品相互作用,电子显微镜可以观察到原子级别的结构细节,从而揭示晶体中的不同晶面和晶界的存在。
三、晶体结构与物质性质的关系晶体结构的排列方式直接影响物质的性质和行为。
例如,金刚石和石墨都是由碳原子组成的晶体,但由于晶体结构的不同,它们具有截然不同的性质。
金刚石由三维的碳原子晶格构成,每个碳原子都与四个相邻的碳原子形成共价键,因此具有良好的热导性和高硬度;而石墨由平行的碳原子层构成,每个碳原子只与三个相邻的碳原子共价键,因此具有良好的导电性和润滑性。
此外,晶体结构的变化还可以通过掺杂和合金化来调控物质的性质。
晶体结构分析及其发展范海福中国科学院,物理研究所,北京,100080物质的各种宏观性质源出于本身的微观结构。
探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。
晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。
就其本身而言,晶体结构分析是物理学中的一个小分支。
这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。
晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。
另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。
晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。
它奠基于物理学的几项重要进展。
其中包括1895年W. C. Roentgen 发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。
上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。
其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。
通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。
晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。
诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。
晶体结构分析的方法主要有两大类。
这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。
电了显微成像也可以认为是两上相继的电子衍射过程。
因此,可以说衍射分析是晶体结构分析的核心。
用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。
这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。
从衍射实验可以记录下各个方向上衍射波的振幅。
但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。
因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。
这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。
紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。
这使人类得以定量地观测原子在晶体中的位置。
为此他们两人同获1915年的诺贝尔物理学奖。
晶体结构分析最初用于一些简单的无机化合物。
对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。
不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。
硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。
晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。
英国从二十年代中期就开始研究有机物晶体结构。
但是过了十年多仍未见有重大的突破。
原因是当时的分析技术和方法还很原始。
于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。
如前所述,晶体结构分析中所谓"相位问题"。
早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。
其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。
上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。
用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。
它显然适应不了测定复杂的晶体结构的需要。
早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。
重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。
用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。
同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。
这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。
但是它们的诞生后相当长的一段时间里并未发挥很大的作用。
原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。
1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。
Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。
这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。
经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。
再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。
美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。
这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。
为此Pauling获得1954年的诺贝尔化学奖。
英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素。
她因此获得1964年的诺贝尔化学奖。
美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。
所有这些获奖工作都是以晶体结构分析为研究手段。
可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。
英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。
但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。
这里还有一段插曲。
原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。
随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。
Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。
这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。
分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。
第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。
它把遗传学的研究推进到分子的水平。
这项工作获得了1962年的诺贝尔生理学和医学奖。
另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。
它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。
这两个蛋白质的晶体结构终于在1960年被测定出来。
这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。
它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。
作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。
看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。
为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。
他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。
不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。
MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。
这一慷慨的支持,过了十五年之后才开始得到回报。
顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。
在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。
他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。
晶体结构分析中的"直接法"走过了一条与Patterson法有所不同的路。
它不象Patterson法那样由于迫切需要而降临人间并且很快就肩负得任。
1947年,直接法诞生之日正值Patterson法春风得意之时。
许多晶体学家捧着各种晶体的Patterson图而孜孜以求。
他们无意采用另一种方法来改换口味。
但是,在晶体学家当中有一小批人却要弄清衍射分析本身的规律。
他们怀疑:衍射相到底是"丢了"还是我们自己凡胎肉眼视而不见?他们的答案是:没丢,而且就藏在衍射振幅当中。
这样就产生了"直接法"。
它的特点是利用数学方法,在一定的约束条件下,由一组衍射的振幅直接推出它们自己的相位。
起初,由于直接法本身尚不完善,又由于当时采集衍射数据的精度还达不要求,直接法从诞生至六十年代初的十几年间,基本上是纸上谈兵。
以H. Hauptman和J. KKarle为代表的一批人把整个五十年代用于建立直接法的理论体系。
在此基础上,I. L. Karle和J. Karle于1963年和1964年取得了两项重大的突破;解出两个用其他方法不容易解决的晶体结构。
其中包括一个非中心对称结构。
在此之前,人们普遍认为直接法不能用于非中心对称结构。
稍后,M. M. Woofson等人在发展直接法的新算法,并使之标准化和自动化方面,取得了革命性的进展。