高中数学第二章函数单元小结学案2新人教B版必修1
- 格式:doc
- 大小:188.52 KB
- 文档页数:4
第二章 函数知识建构综合应用专题1复合函数y=f [g(x)]定义:如果y=f(u)的定义域为D ,函数u=g(x)的值域为M ,D∩M 非空,则称y=f [g(x)]为复合函数,x 为自变量,y 为因变量,u 为中间变量.如:已知y=f(u)=u ,u=g(x)=22x -a ,则y=f [g(x)]=a 2-x 2称为复合函数.利用复合函数的概念,一个较复杂的函数可以看成几个简单函数复合而成,这样更便于对函数进行研究使用.【例题1】(1)已知函数f (x )的定义域为(0,1),求f (x 2)的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域;(3)已知函数f (x +1)的定义域为[-2,3],求f (2x-2)的定义域.分析:(1)求函数定义域就是求自变量x 的取值范围,求f (x 2)的定义域就是求x 的范围,而不是求x 2的范围,这里x 与x 2的地位相同,所满足的条件一样.(2)应由0<x <1确定出2x +1的范围,即为函数f (x )的定义域.(3)应由-2≤x≤3确定出x +1的范围,求出函数f (x )的定义域进而再求f (2x-2)的定义域.它是(1)与(2)的综合应用.解:(1)∵f(x )的定义域为(0,1),∴要使f (x 2)有意义,需使0<x 2<1,即-1<x <0或0<x <1.∴函数f (x 2)的定义域为{x |-1<x <0或0<x <1}.(2)∵f(2x +1)的定义域为(0,1),即其中的函数自变量x 的取值范围是0<x <1, 令t =2x +1,∴1<t <3.∴f(t )的定义域为1<t <3.∴函数f (x )的定义域为{x |1<x <3}(3)f (x +1)的定义域为-2≤x≤3.令t =x +1,∴-1≤t≤4.∴f(t )的定义域为-1≤t≤4,即f(x)的定义域为-1≤x≤4.要使f (2x-2)有意义,需使-1≤2x -2≤4, ∴21≤x≤3. ∴函数f (2x-2)的定义域为{x |21≤x≤3}. 绿色通道(1)对于复合函数f [g (x )]而言,如果函数f (x )的定义域为A ,则f [g (x )]的定义域是使得函数g (x )∈A 的x 取值范围.(2)如果f [g (x )]的定义域为A ,则函数f(x)的定义域是函数g(x)的值域.【例题2】已知f(x 2+21x )=x+x 1(x<0),求函数f(x 2+x)的单调减区间. 分析:求复合函数的单调区间时,必须注意两点:一是函数的定义域,二是每个函数在划分出的各区间内必是单调函数.本题先应求f(x)的表达式及其定义域,进而研究f(x 2+x)的单调性.解:∵当x<0时,x+x 1=-|x+x1| =2122++-x x =f(x 2+21x), ∴f(x)=2x -+.又x 2+21x ≥2, ∴f(x)的定义域为{x|x≥2}.则f(x 2+x)=2x x -2++,x 2+x≥2,即y=f(x 2+x)=47)21(2++-x (x≤-2或x≥1). 又∵该函数可看作是y=-t 与t=(x+21)2+47复合而成,而y=-t 单调递减, 故只需在x≤-2或x≥1内求t=(x+21)2+47的增区间. 而t 的对称轴为x=21-,开口向上, ∴在x∈[1,+∞)上t=(x+21)2+47单调递增. 故所求函数y=2x x 2++-的单调减区间为[1,+∞).绿色通道(1)虽然复合函数的概念在现在的教材中不作要求,但在考试中却多次出现.实际上是在考复合函数单调性的问题,函数的单调性是一个知识重点,我们必须加以重视.(2)复合函数的单调性遵循“同增异减”,y=f[g(x)]中,令g(x)=t 时,y=f(t)与t=g(x)的单调性相同时是增函数,不相同时是减函数.如表所示: Y=f(t) 增(+) 增(+) 减(-) 减(-)t=g(x) 增(+)减(-)增(+)减(-)y=f[g(x)]增(+)减(-)减(-)增(+)(3)求y=f[g(x)]的单调区间的步骤:①确定定义域;②将复合函数分解成基本初等函数:y=f(u),u=g(x);③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y=f[g(x)]为增函数,若这两个函数一增一减,则y=f[g(x)]为减函数.专题2赋值法与抽象函数抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的.实际上赋值法所体现的是从一般到特殊的转化思想.【例题1】已知f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,满足f(ab)=af(b)+bf(a).(1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论.分析:题中给的是抽象函数,而要求的是比较特殊的值,可以考虑用赋值法,给出具体的值,再根据题意进行判断.解:(1)令a=b=0,代入得f(0)=0·f(0)+0·f(0),则f(0)=0.令a=b=1,代入得f(1)=1·f(1)+1·f(1),则f(1)=0.(2)由f(1)=f[(-1)2]=-f(-1)-f(-1),得f(-1)=0.令a=-1,b=x,则f(-x)=f(-1·x)=-f(x)+xf(-1)=-f(x).∴f(x)为奇函数.黑色陷阱不能直接用定义进行判断,可通过赋值,找出f(-x)与f(x)的关系.抽象函数常以函数方程的形式出现,求解这类问题通常让变量取一些特殊值或特殊式,以便寻求解题方法. 【例题2】(1)定义在R上的函数f(x)满足f(x)=f(4-x),且f(2-x)+f(x-2)=0,求f(2 000)的值;(2)已知函数f(x)对任意实数x、y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域.分析:(1)可通过巧妙地以t=x-2赋值,由f(-t)+f(t)=0,得f(x)为奇函数;(2)通过当x>0时,f(x)>0,判断函数单调性,再通过巧妙地以y=-x赋值,则f(0)=f(x)+f(-x),进而对x=y=0赋值得f(0)的值,从而判断出f(x)的奇偶性,由此求解.解:(1)由f(2-x)+f(x-2)=0,以t=x-2代入,有f(-t)+f(t)=0,∴f(x)为奇函数,则有f(0)=0.又由f(x+4)=f[4-(x+4)]=f(-x)=-f(x).∴f(x+8)=-f(x+4)=f(x).故f(x)是周期为8的周期函数.∴f(2 000)=f(0)=0.(2)设x1<x2,且x1、x2∈R,则x2-x1>0,由条件当x>0时,f(x)>0,知f(x2-x1)>0.又f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)>f(x1),∴f(x)为增函数.令y=-x,则f(0)=f(x)+f(-x).又令x=y=0,得f(0)=0.∴f(-x)=-f(x).故f(x)为奇函数.∴f(1)=-f(-1)=2,f(-2)=2f(-1)=-4.∴f(x)在[-2,1]上的值域为[-4,2].绿色通道求某些抽象函数的特殊值一般给出定义域,通过某些性质及运算式求解.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.。
课题:函数复习小结(二)教学目的:1.熟悉并掌握函数的对称语言.2.进一步熟悉二次函数性质及其应用.3.把握数形结合的特征和方法.4.能够应用函数思想解题.5.了解与函数有关的数学模型.教学重点:数形结合的特征与方法教学难点:函数思想的应用授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、引入:通过上一节学习,大家了解了本章内容的整体结构,明确了本章的重难点知识,并熟悉了有关函数的基本概念和基本方法,这一节,我们将通过例题分析重点掌握数形结合的特征与方法,并进一步认清函数的思想实质,进而掌握其应用.二、例题分析:例1若函数f(x)=x2+bx+c对任意实数x都有f(2+x)=f(2-x),那么()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)分析:此题解决的关键是将函数的对称语言转化为对称轴方程.解:由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向向,可得f(2)最小,又f(4)=f(2+2)=f(2-2)=f(0)在x<2时,y=f(x)为减函数∵0<1<2,∴f(0)>f(1)>f(2)即f(2)<f(1)<f(4)答案:A通过此题可将对称语言推广如下:(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a是函数f(x)的对称轴(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=2ba是f(x)的对称轴.例2求f(x)=x2-2ax+2在[2,4]上的最大值和最小值.解:先求最小值.因为f(x)的对称轴是x=a ,可分以下三种情况:(1)当a <2时,f(x)在[2,4]上为增函数,所以f(x)min=f(2)=6-4a;(2)当2≤a <4时,f(a)为最小值,f(x)min=2-a 2;(3)当a >4时,f(x)在[2,4]上为减函数,所以f(x)min=f(4)=18-8a综上所述:f(x)min=⎪⎩⎪⎨⎧>-<≤-<-)2( ,818)42( ,2)2( ,462a a a a a a最大值为f(2)与f(4)中较大者:f(2)-f(4)=(6-4a)-(18-8a)=12+4a(1)当a ≥3时,f(2)≥f(4),则f(x)max=f(2)=6-4a;(2)当a <3时,f(2)<f(4),则f(x)max=f(4)=18-8a.故f(x)max=⎩⎨⎧<-≥-)3(,88)3( ,46a a a a 评述:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x=a 与区间[2,4]的位置关系,分三种情况讨论;最大值在端点取得时,只须比较f(2)与f(4)的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两种情况.例3已知f(x)=|lgx|,且0<a <b <c,若f(b)<f(a)<f(c),则下列一定成立的是( )A.a <1,b <1,且c >1B.0<a <1,b >1且c >1C.b >1,c >1D. c >1且c 1<a <1,a <b <a1 分析:画出y=|lgx|的图象如图:f(x)在(0,1上为增函数.观察图象,因为f(a)<f(b)<f(c),所以c >1且c 1<a <1,a <b <a1.答案:D 评述:通过此题体会数形结合思想,体会函数987654321-1-6-4-22468042a 321-1-2-3-4-5-4-22468042a 2-2-4-6-8-10-12-14-16-18-20-22-10-5510152025042a 1.210.80.60.40.2-0.2-0.4-0.60.51 1.52 2.5101a 1c c b a图象在函数单调性问题中的应用.例4函数f(x)=x 2-bx+c ,满足对于任何x ∈R 都有f(1+x)=f(1-x),且f(0)=3,则f(b x )与f(c x )的大小关系是( )A.f(b x )≤f(c x )B.f(b x )≥f(c x )C.f(b x )<f(c x )D.f(b x )>f(c x )分析:由对称语言f(1+x)=f(1-x)可以确定函数对称轴,从而确定b 值,再由f(0)=3,可确定c 值,然后结合b x ,c x 的大小关系及二次函数的单调区间使问题得以解决.解:∵f(1+x)=f(1-x)∴f(x)的对称轴x=-2b =1 ∴b=2,又f(0)=3,∴c=3,∴f(x)=x 2-2x+3 (1)当x >0时,1<2x <3x ,且f(x)在[1,+∞)上是增函数所以f(2x )<f(3x ),即f(b x )<f(c x ) (2)当x <0时,1>2x >3x ,且f(x)在(-∞,1)上是减函数,所以f(2x )<f(3x ),即f(b x )<f(c x ) (3)当x=0时,2x =3x=1则f(2x )=f(3x ),即f(b x )=f(c x )综上所述,f(b x )≤f(c x ).答案:A三、课堂练习:已知f(x)=x 2-4x-4,x ∈[t,t+1](t ∈R),求f(x)的最小值φ(t )的解析式.解:f(x)=(x-2)2-8(1)当2∈[t,t+1]时,即1<t <2时,φ(t)=f(2)=-8.(2)当t >2时,f(x)在[t,t+1]上是增函数,故φ(t)=f(t)=t 2-4t-4.(3)当t+1<2,即t <1时,f(x)在[t,t+1]上是减函数.故φ(t)=f(t+1)=t 2-2t-7综上所述:φ(t)=⎪⎩⎪⎨⎧≥--<<-≤--)2( ,44)21( ,8)1( ,7222t t t t t t t四、课时小结:本节学习了二次函数在给定区间上求最值的方法,把握数形结合的特征与方法,逐步掌握函数思想在实际问题中的应用.五、课后作业:1.某农工贸集团开发的养殖业和养殖加工生产业的年利润分别是T 和Q (万元),这两项生产与投入的奖金a(万元)的关系是P=a Q a 310,3=,该集团今年计划对这两项生产共投入奖金60万元,为获得最大利润,对养殖业与养殖加工生产业投入应各为多少万元?最大利润为多少万元?解:设投入养殖业为x 万元,则投入养殖加工生产业为60-x 万元由题意:P+Q=x x -+603103 (0≤x ≤60) 设t=x -60,则0≤t ≤60,x=60-t 2 P+Q=31(60-t 2)+310t=-31(t-5)2+385 ∴当t=5时,即x=35时,(P+Q )max=385. ∴对养殖业投入35万元,对养殖加工生产业投入25万元,可获最大利润385万元. 2.已知)91(log 2)(3≤≤+=x x x f ,求函数22)]([)(x f x f y +=的最大值和最小值,并求取最大值和最小值的相应的x 的值 答案:3=x 时,y 取最大值13;1=x 时,y 取最小值63.设集合]1,1[-=A ,]22,22[-=B ,函数2)(2-+=mx x x f(1)设不等式0)(≤x f 的解集为C ,当B A C ⊆时,求实数m 的取值范围;(2)若对任意实数x ,均有)1()(f x f ≥恒成立,求B x ∈时,)(x f 的值域;(3)当B x A m ∈∈,时,证明8|)(|≤x f 答案:(1)11≤≤-m (2)22,22[- (3)因为对称轴]22,22[]41,41[4-⊂-∈-=m x , 故只需证明89|)22(|≤-f ,89|)22(|≤f ,89|)4(|≤m f 即可十二、板书设计(略) 十三、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
2018版高中数学第二章函数2.1.1 函数学案新人教B版必修1(1) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章函数2.1.1 函数学案新人教B版必修1(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章函数2.1.1 函数学案新人教B版必修1(1)的全部内容。
2.1.1 第1课时变量与函数的概念1.理解函数的概念,了解函数构成的三要素.(难点)2.会求一些简单函数的定义域、值域.(重点、易错点)3.能正确使用区间表示数集.(重点)[基础·初探]教材整理1 变量与函数的概念阅读教材P29~P31“倒数第11行”以上部分,完成下列问题.1.函数的定义设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.也经常写作函数f或函数f(x).2.函数的定义域在函数y=f(x),x∈A中,x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.3.函数的值域如果自变量取值a,则由法则f确定的值y称为函数在a处的函数值,记作y=f(a)或y|x 。
所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.=a判断(正确的打“√",错误的打“×")(1)函数的定义域和值域一定是无限集合.()(2)根据函数有定义,定义域中的一个x可以对应着不同的y.( )(3)f(a)表示当x=a时函数f(x)的值,是一个常量.( )【答案】(1)×(2)×(3)√教材整理2 区间的概念及表示阅读教材P31“倒数第10行”以下~P32“例1”以上的内容,完成下列问题.1.一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半闭半开区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.特殊区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)填空:(1)集合{x|1〈x≤3}用区间可表示为________;(2)集合{x|x>-2}用区间可表示为________;(3)集合{x|x≤2}用区间可表示为________.【答案】(1)(1,3] (2)(-2,+∞)(3)(-∞,2][小组合作型]函数的概念及应用(1)(2)下列各组函数是同一函数的是( )①f(x)=错误!与g(x)=x错误!;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=错误!;④f(x)=x2-2x-1与g(t)=t2-2t-1。
必修一第二章 函数--教学案2.1.1函数(一)变量与函数的概念 学习目标1. 了解并掌握函数的概念和函数的要素,并会求一些简单函数的定义域和值域,注意搜集日常生活中的实例,整理与分析量与量之间的关系,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
2. 记录,了解函数模型的广泛应用,树立数学应用观点 自主学习1. 变量的概念:在一个变化过程中,有两个变量x 和y,如果给定了一个x 值,相应的就确定唯一的一个y 值,那么就称y 是x 的函数。
叫自变量, 叫因变量。
例1、s=πr 2其中r 是 ,s 是 。
例2、 I =220R其中R 是 ,I 是 。
2. 函数的概念:设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数。
记作:y=f(x) , x ∈A 。
其中x 叫 。
3. 定义域:函数中自变量x 的允许取值范围 例3、求下列函数的定义域:1)y x=2)y =3)4、 函数的值域:如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作:y=f(a), 或y ︱x=a ,所有的函数值构成的集合{y ︱y=f(x),x A ∈},叫做这个函数的值域。
例4、求函数21()1f x x =+,x R ∈,在0,1,2x =处的函数值和函数的值域。
例5、已知函数f(x)=1-2x ,求f(0), f(-2), f(15)。
5、 函数的三要素:关于函数定义的理解:① 定义域、对应关系是决定函数的二要素,是一个整体,值域由定义域、对应法则唯一确定; ②f (x )与f (a )不同:f (x )表示“y 是x 的函数”;f (a )表示特定的函数值。
常用f (a )表示函数y =f (x )当x =a 时的函数值;③f(x)是表示关于变量x 的函数,又可以表示自变量x 的对应函数值,是一个整体符号,不能分开.符号f 可以看做是对”x ”施加的某种运算步骤或指令.例如,f(x)=3x 2,表示对x 施加“平方后再扩大3倍”的运算。
«第二章思想方法总结»教学设计一、教学目标:1. 知识目标:让学生学会用不同的思想方法解决问题并能够总结解决函数问题的一般方法;2. 能力目标:让学生具备用基本思想方法解决问题的能力;3. 情感目标:培养学生的数学学习兴趣。
二、教学重、难点:1.教学重点:数形结合思想、分类讨论思想、函数与方程思想的应用;2.教学难点:数形结合思想、分类讨论思想、函数与方程思想的应用与方法总结。
三、教学方法:讲练结合教学法四、讲授新知:1、数形结合思想例:偶函数())(R x x f ∈满足0)1()4(==-f f ,在区间]3,0[与),3[+∞上分别递减和递增,则不等式0)(<x xf 的解集为( )A 、),4()4,(+∞--∞B 、)4,1()1,4( --C 、)0,1()4,(---∞D 、)4,1()0,1()4,( ---∞ 方法点评:数形结合的实质是“以形助数”或“以数助形”,运用数形结合思想解题,不仅直观易于寻找解题途径,而且可以避免繁杂的计算和推理,简化解题过程.图示形象直观,一目了然,巧妙运用数形结合的方法解题,可起到事半功倍的效果.练习:已知定义域为R 的函数)(x f 在区间),8[+∞上为减函数,且函数)8(+=x f y 为偶函数,则( )A 、)7()6(f f >B 、)9()6(f f >C 、)9()7(f f >D 、)10()7(f f >2、分类讨论思想例:已知()2)42(2+--=x a x x f 在]1,1[-内的最小值为)(a g ,求)(a g 的解析式。
方法点评:解分类讨论问题的实质是:将整体问题化为部分问题来解决,化成部分从而增加题设条件,这也是解分类讨论问题总的指导思想。
⑴ 做到分类讨论不重复、不遗漏;⑵ 不断总结经验教训,克服分类讨论中的主观性和盲目性;⑶ 注意掌握好基础知识、基本方法,这是解好分类讨论问题的前提条件。
精心整理必修1函数复习教案一、教学目标1、知识目标:复习巩固本章所学知识和方法,形成比较系统的整体认识。
2、能力目标:培养学生总结归纳能力和综合应用知识方法的能力。
3、情感目标:通过复习提问,激发学生兴趣,形成整体化认识。
二、教学重点、难点重点是系统复习本章知识和方法,难点是形成整体认识。
三、教学方法教师引导,学生回答;总结归纳,典例训练。
本章知识结构知识要点归纳:1、 在学习函数映射的概念时,要注意它们之间的联系。
2、 函数定义域的求法:(一) 自然定义域:注意常涉及以下依据⑴ 分母不为零⑵偶次根式中被开方数不小于零⑶指数幂的底数不等于零⑷实际问题要考虑实际意义(二) 复合函数的定义域:若()g x D ∈得定义域为D ,则函数[]()y f g x =的定义域要由()g x D ∈的求解 映函函数的函数的表函数的一次函定义域值域 对应法列表法图象法 解析法单调性 奇偶性 函数的一次函二分法函数的分段函二次函二次函3、 函数值域的求法:要注意定义域对值域的决定作用。
⑴直接观察法⑵配方法⑶换元法⑷判别式法⑸单调性法(6)图象法等4、 函数的解析式求法:⑴待定系数法⑵复合函数的解析式⑶换元法或配凑法⑷实际问题中利用的等量关系典型例题 题型1:函数定义例下列各组函数中,表示同一函数的是() A.||2x y x y ==与 B.2lg lg 2x y x y ==与C.23)3)(2(+=--+=x y x x x y 与 D.10==y x y 与答案:B题型2:函数的定义域值域例函数322-+=x xy 在区间[-3,0]上的值域为()A.[-4,-3]B.[-4,0]C.[-3,0]D.[0,4]答案:A题型3:函数的图像与性质出它们的例画出函数x x y -=2的图象,并指单调区间.解:22110124110124()()()()()x x x f x x x ⎧--≤≥⎪⎪=⎨⎪--+<<⎪⎩或增区间:1012[,][,)+∞和 减区间;1012(,][,]-∞和 题型4:单调性与奇偶性例试判断函数xx x f 2)(+=在[2,+∞)上的单调性.解:设+∞<<≤212x x ,则有=-)()(21x f x f )2(22211x x x x +-+=)22()(2121x x x x -+- =)22()(211221x x x x x x ⋅-+-=)21)((2121x x x x ⋅-- =)2)((212121x x x x x x⋅--. +∞<<≤212x x ,021<-x x 且0221>-x x ,021>x x ,所以0)()(21<-xf x f ,即)()(21x f x f <.所以函数)(x f y =在区间[2,+∞)上单调递增.题型5:函数的零点已知函数22()(1)(2)f x x a x a =+-+-的一个零点比1大,一个零点比1小,则有()题型6:二分法借助计算器或计算机,用二分法求方程3224310x x x --+=的最大的根。
2.2 一次函数和二次函数自主整理(1)定义:函数y=kx+b(k≠0)叫做一次函数,又叫线性函数;它定义域为R ,值域为R .(2)性质:①函数改变量y 2-y 1与自变量改变量x 2-x 1比值等于常数k;k 大小表示直线与x 轴倾斜程度; ②当k>0时,一次函数为增函数,当k<0时,一次函数为减函数;③当b=0时,一次函数为正比例函数,是奇函数;当b≠0时,一次函数既不是奇函数也不是偶函数;④直线y=kx+b(k≠0)与x 轴交点为(kb -,0),与y 轴交点为(0,b).(1)定义:函数y=ax 2+bx+c(a≠0)叫做二次函数,它定义域为R .(2)性质:①函数图象是一条抛物线,它顶点坐标为(a b 2-,),它对称轴为x=ab 2-. ②当a>0时,抛物线开口向上,函数在x=a b 2-处取得最小值,在区间(-∞,a b 2-]上是减函数,在区间[ab 2-,+∞)上是增函数. ③当a<0时,抛物线开口向下,函数在x=a b 2-处取得最大值,在区间[a b 2-,+∞)上是减函数,在区间(-∞,ab 2-]上是增函数. ④当二次函数图象对称轴与y 轴重合即b=0时二次函数为偶函数,否那么既不是奇函数也不是偶函数.⑤在y=ax 2(a≠0)中,假设a>0,a 越大,抛物线开口越小,a 越小,抛物线开口越大;反之,假设a<0,a 越大,抛物线开口越大,a 越小,抛物线开口越小.总之,y=ax 2(a≠0)中,假设|a|越大,抛物线开口越小,|a|越小,抛物线开口越大.(3)三种形式:①一般式:f(x)=ax 2+bx+c(a≠0),其中a 是开口方向与大小,c 是y 轴上截距,而a b 2-是对称轴.②顶点式(配方式):f(x)=a(x-h)2+k(a≠0),其中(h,k)是抛物线顶点坐标.h=ab 2 ,k=. ③两根式(因式分解):f(x)=a(x-x 1)(x-x 2)(a≠0),其中x 1、x 2是抛物线与x 轴两个交点横坐标.如果知道一个函数一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数,这种通过求待定系数来确定变量之间关系式方法称为待定系数法. 高手笔记1.常数函数是较为特殊函数,原因在于在函数解析式y=b 中没有出现自变量x.其实常数函数就是一个多对一映射.注意:当a=0时,函数y=ax 2=0是一个常数函数,其图象即为x 轴.2.式子x=a(a 是一固定常数)虽然含有x,但不能称其为函数,原因在于一个x 对应无穷多个y,不符合函数定义,应将其与y=b 区别开来.3.二次函数是重要根底函数,必须作为重点内容来掌握.应从解析式、定义域、值域、图象、单调性、奇偶性几个方面内容进展把握.4.解决二次函数问题一定要牢牢树立数形结合思想,通过对函数图象分析寻找解决问题思路和分类讨论依据.名师解惑1.如何认识与理解常数函数?剖析:要全面认识一个函数,主要从解析式、定义域、值域、单调性、奇偶性等五个方面来认识,对于常数函数:解析式:当k=0时,y=kx+b 就变成了y=b,这就是常数函数解析式,其中b 是某一固定常数.这个解析式特点在于没有出现自变量x,这也是许多同学对常数函数感到难于理解原因.定义域:自变量x 可以取任意实数.解析式中没有出现x,说明解析式对x 没有要求,可以取任意实数.值域:常数函数值域为{b}.常数函数只有一个函数值b,就是说不管自变量怎么取值,都对应同一个函数值b.图象:因为不管自变量x 取什么值都对应一个函数值b,所以函数图象是平行于x 轴水平直线(特殊情况是x 轴).单调性:因为函数值是固定常数b,没有增减变化,函数图象也是一条水平直线,没有起伏变化,所以常数函数在定义域上没有单调性.奇偶性:定义域为R ,并且f(-x)=f(x)=b,所以一定是偶函数.如果b=0那么既是奇函数又是偶函数.2.如何由函数y=x 2图象变化得到函数y=a·x 2(a≠0)图象?又如何由函数y=ax 2(a≠0)图象变化得到y=a(x+h)2+k(a≠0)图象?再如何由函数y=ax 2(a≠0)图象得到函数y=ax 2+bx+c(a≠0)图象?剖析:(1)二次函数y=a·x 2(a≠0)图象可由y=x 2图象各点纵坐标变为原来a 倍得到,而横坐标保持不变.(2)二次函数y=a(x+h)2+k(a≠0)可由y=ax 2(a≠0)图象向左(或向右)平移|h|个单位,再向上(或下)平移|k|个单位得到.(3)要得到二次函数y=ax 2+bx+c(a≠0)图象,先将其化为y=a(x+h)2+k(a≠0)形式,再通过y=ax 2(a≠0)图象上下左右平移得到.3.二次函数性质常见有哪些综合应用?剖析:(1)关于对称轴问题:假设二次函数f(x)满足f(t+x)=f(t-x),那么f(x)关于直线x=t对称,这一性质对于一般函数也适用.(2)关于二次函数在闭区间上最值问题:当a>0时,f(x)在区间[p,q ]上最大值为M,最小值为m,令x 0=21(p+q). 假设a b 2-<p,那么f(p)=m,f(q)=M; 假设p≤a b 2-<x 0,那么f(ab 2-)=m,f(q)=M; 假设x 0≤a b 2-<q,那么f(p)=M,f(ab 2-)=m; 假设a b 2-≥q,那么f(p)=M,f(q)=m. (3)关于二次方程f(x)=ax 2+bx+c=0实根分布问题:①方程f(x)=0两根中一根比r 大,另一根比r 小a·f(r)<0.②二次方程f(x)=0两根都大于r ⇔③二次方程f(x)=0在区间(p,q)内有两根⇔讲练互动【例题1】方程ax-by+c=0(ab≠0)所对应一次函数,当a 、b 满足什么条件时函数为减函数 分析:首先将直线方程化为一次函数y=kx+b 形式,然后根据k>0时函数为增函数,k<0时函数为减函数,进而求得a 、b 所满足条件,即ab<0. 解:把ax-by+c=0整理,得y=b a x+bc , 要使得一次函数为减函数,那么b a <0,即只要a 、b 异号就可以了. 绿色通道处理一次函数问题常把解析式整理成标准形式,然后再求解.变式训练1.直线mx+(m-2)y=3(m≠2,m≠0)所对应一次函数,当函数为增函数时m 满足条件是( )A.0<mB.m<2C.0<m<2解析:把mx+(m-2)y=3整理,得y=x+,要使得一次函数为增函数,那么>0,即只要-m 、m-2同号就可以了,所以易得0<m<2. 答案:C【例题2】二次函数f(x)=ax 2+(2a-1)x+1在区间[23-,2]上最大值为3,求实数a 值. 分析:这是一个逆向最值问题,假设从求最值入手,需分a>0与a<0两大类五种情形讨论,过程烦琐不堪.假设注意到f(x)最值总是在闭区间端点或抛物线顶点处取到,因此先计算这些点函数值,再检验其真假,过程简明.解:(1)令f()=3,得a=21-. 此时抛物线开口向下,对称轴为x=-2,且-2[23-,2],故a=21-不合题意. (2)令f(2)=3,得a=21,此时抛物线开口向上,对称轴为x=0,闭区间右端点2距离对称轴远些,故a=21符合题意. (3)假设f(23-)=3,得a=32-,此时抛物线开口向下,对称轴为x=47-,闭区间为单调减区间,所以a=-32符合题意. 综上,a=21或a=32-. 绿色通道此题利用特殊值检验法,先计算特殊点(闭区间端点、抛物线顶点)函数值,再检验其真假,思路明了、过程简洁,是解决逆向型闭区间二次函数最值问题一种有效方法.变式训练2.二次函数y=x 2+2ax-3,x∈[1,2],试求函数最小值.分析:首先观察到函数图象过(0,-3),再考虑对称轴位置,由于对称轴在不同位置会出现不同结果,所以需要分三种情况讨论.解:y=x 2+2ax-3=(x+a)2-a 2-3,当-a∈(2,+∞),即a<-2时,此时函数在[1,2]上为减函数,故此时最小值为f(2)=4a+1; 当-a∈(-∞,1),即a>-1时,函数最小值为f(1)=2a-2;当-a∈[1,2],即-2≤a≤-1时,函数最小值为f(-a)=-a 2-3.【例题3】二次函数图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数解析式.分析:是二次函数,且知三个点坐标,所以可以先设出二次函数解析式,用待定系数法求得.解:根据题意设这个二次函数解析式为y=ax 2+bx+c(a≠0),然后将图象所经过三个点坐标分别带入方程,联立三个方程,得解得故f(x)=23x 223-x+1. 绿色通道使用待定系数法解题根本步骤是第一步,设出含有待定系数解析式;第二步,根据恒等条件,列出含待定系数方程或方程组;第三步,解方程或方程组解出待定系数,使问题得到解决.变式训练3.假设f(x)为一次函数,且满足f [f(x)]=1+2x,那么f(x)解析式为______.解析:f(x)为一次函数,可以使用待定系数法.设f(x)=kx+b,那么f [f(x)]=f(kx+b)=k(kx+b)+b=k 2x+kb+b,利用对应系数相等即可求得k=2-,b=2--1或k=2,b=2-1.答案:f(x)=2-x 2--1或f(x)=2x+2-14.〔2007黄冈第一次高三诊断试卷,17〕二次函数f(x)满足条件f(0)=1,及f(x+1)-f(x)=2x.(1)求f(x)解析式;(2)求f(x)在[-1,1]上最值.分析:此题求函数解析式根本方法仍然是待定系数法,但确定待定系数方法是根据代数式恒等对应项系数相等来确定.求函数在给定区间上最值时,要注意对称轴位置.解:(1)由f(0)=1,可设f(x)=ax 2+bx+1.那么由f(x+1)-f(x)=2x,可得2ax+a+b=2x.∴a=1,a+b=0,即b=-1.∴f(x)=x 2-x+1.(2)∵f(x)=x 2-x+1=(x 21-)2+43, 又x∈[-1,1],∴当x=21时有最小值43,x=-1时有最大值3. 【例题4】二次函数f(x)=ax 2+bx+c,a∈N *,c≥1,a+b+c≥1,方程ax 2+bx+c=0有两个小于1不等正根,那么a 最小值为( )B.3C.4解析:由题意有由于方程有两个小于1不等正根,画图可知0<a b 2-<1,即b 2<4a 2. ∴4ac<b 2<4a 2,即a(a-c)>0.又a∈N *,且c≥1,∴a 最小值为2.答案:A绿色通道一般地,一元二次方程根分布情况问题往往从三个角度加以考虑:Δ符号,对称轴是否在区间内,端点函数值正负.变式训练2+2mx+2m+1=0.假设方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 范围. 分析:二次方程根问题实质上是讨论二次函数图象与x 轴交点与坐标原点位置关系问题,因此,理解交点及二次函数系数(a ——开口方向,a 、b ——对称轴,c ——图象与y 轴交点)几何意义,掌握二次函数图象特点,是解决此类问题关键.解:条件说明抛物线f(x)=x 2+2mx+2m+1与x 轴交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=.65,21,,21056)2(024)1(02)1(012)0(m m R m m m f m f f m f ∴65-<m<21-. 教材链接1.[探索与研究]设一次函数y=5x-3,取一系列x值,使得每一个x值总是比前一个大2,然后计算对应y值,这一系列函数值之间有什么关系?对任意一个一次函数都有类似性质吗?答:对于一次函数y=5x-3,取一系列x值总是比前一个大2时,那么有与之对应每一个y值总是比前一个大10;对任意一个一次函数y=kx+b(k>0),假设取一系列x值总是比前一个大m 时(m为正整数),那么有与之对应每一个y值总是比前一个大mk.2.[探索与研究]结合课件1207,对一次函数性质进展探索.答:注意强调一次函数定义中一次项系数k≠0这一条件,当k=0时,函数为y=b,它不再是一次函数,它图象是一条与x轴平行直线,通常称为常值函数.函数值改变量y2-y1与自变量改变量x2-x1比值,称作函数x1到x2之间平均变化率,对一次函数来说它是一个常数,等于这条直线斜率.一次函数y=kx+b(k≠0)单调性与一次项系数正负有关,当k>0时,函数为增函数,当k<0时,函数为减函数.理由如下:设x1、x2是任意两个不相等实数,且x1<x2,那么Δx=x2-x1>0,所以Δy=f(x2)-f(x1)=(kx2+b)-(kx1+b)=k(x2-x1)=kΔx.当k>0时,kΔx>0,所以Δy>0,所以f(x)在R上是增函数;当k<0时,同理可证f(x)在R上是减函数.要准确地作出一次函数图象,只要找准图象上两个点即可,这两个点通常是找图象与坐标轴交点.3.[探索与研究]在同一坐标系中,作函数y=x2,y=(x+1)2,y=(x-1)2,y=x2+1,y=x2-1图象,研究它们图象之间关系.答:列表:x …-3 -2 -1 0 1 2 3 …y=x2…9 4 1 0 1 4 9 …y=(x+1)2… 4 1 0 1 4 9 16 …y=(x-1)2…16 9 4 1 0 1 4 …y=x2+1 …10 5 2 1 2 5 10 …y=x2-1 …8 3 0 -1 0 3 8 …在同一坐标系中画出这五个图,如图2-2-1所示:图2-2-1通过图象,可知后四个图象都可以由y=x2通过左右上下平移得到,y=(x+1)2由y=x2向左平移一个单位得到;y=(x-1)2由y=x2向右平移一个单位得到,y=x2+1由y=x2向上平移一个单位得到,y=x 2-1由y=x 2向下平移一个单位得到.4.[探索与研究]二次函数y=ax 2+bx+c=a(x+a b 2)2+中a 、b 、c 对函数性质与图象各有哪些影响? 答:二次函数y=ax 2+bx+c(a≠0)中系数a 、b 、c 决定着函数图象和性质.(1)二次项系数a 决定了函数图象开口方向、开口大小和单调性,当a>0时,开口向上,a 越大,开口越小,函数在对称轴两侧先减后增.当a<0时,开口向下,a 绝对值越大开口越小,函数在对称轴两侧先增后减.(2)b 是否为零决定着函数奇偶性.当b=0时,函数为偶函数;当b≠0且c≠0时,函数既不是奇函数也不是偶函数.(3)c 是否为零决定着函数图象是否经过原点.另外,a 和b 共同决定着函数对称轴,a 、b 和c 三者共同决定着函数顶点位置.5.[探索与研究]请同学们自己探索研究一下,给定哪些条件,才能求出一个具体二次函数.答:运用待定系数法求二次函数解析式时,一般可设出二次函数一般形式y=ax 2+bx+c(a≠0),但如果函数对称轴或顶点坐标或最值,那么解析式可设为y=a(x-h)2+k 会使求解比拟方便.具体来说:(1)顶点坐标为(m,n),可设为y=a(x-m)2+n,再利用一个独立条件求a;(2)对称轴方程x=m,可设为y=a(x-m)2+k,再利用两个独立条件求a 与k;(3)最大值或最小值为n,可设为y=a(x+h)2+n,再利用两个独立条件求a 与h;(4)二次函数图象与x 轴只有一个交点时,可设为y=a(x+h)2,再利用两个独立条件求a 与h.。
第二章 函数
知识建构
综合应用
专题1复合函数y=f [g(x)]
定义:如果y=f(u)的定义域为D ,函数u=g(x)的值域为M ,D∩M 非空,则称y=f [g(x)]为复合函数,x 为自变量,y 为因变量,u 为中间变量.
如:已知y=f(u)=u ,u=g(x)=22x -a ,则y=f [g(x)]=a 2-x 2
称为复合函数. 利用复合函数的概念,一个较复杂的函数可以看成几个简单函数复合而成,这样更便于对函数进行研究使用.
【例题1】(1)已知函数f (x )的定义域为(0,1),求f (x 2)的定义域;
(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域;
(3)已知函数f (x +1)的定义域为[-2,3],求f (2x-2)的定义域.
分析:(1)求函数定义域就是求自变量x 的取值范围,求f (x 2)的定义域就是求x 的范围,
而不是求x 2的范围,这里x 与x 2的地位相同,所满足的条件一样.
(2)应由0<x <1确定出2x +1的范围,即为函数f (x )的定义域.
(3)应由-2≤x≤3确定出x +1的范围,求出函数f (x )的定义域进而再求f (2x-2)的定义域.它是(1)与(2)的综合应用.
解:(1)∵f(x )的定义域为(0,1),
∴要使f (x 2)有意义,需使0<x 2<1,即-1<x <0或0<x <1.
∴函数f (x 2)的定义域为{x |-1<x <0或0<x <1}.
(2)∵f(2x +1)的定义域为(0,1),即其中的函数自变量x 的取值范围是0<x <1, 令t =2x +1,∴1<t <3.
∴f(t )的定义域为1<t <3.
∴函数f (x )的定义域为{x |1<x <3}
(3)f (x +1)的定义域为-2≤x≤3.
令t =x +1,∴-1≤t≤4.
∴f(t )的定义域为-1≤t≤4,
即f(x)的定义域为-1≤x≤4.要使f (2x-2)有意义,需使-1≤2x -2≤4, ∴2
1≤x≤3. ∴函数f (2x-2)的定义域为{x |2
1≤x≤3}. 绿色通道
(1)对于复合函数f [g (x )]而言,如果函数f (x )的定义域为A ,则f [g (x )]的定义域是使得函数g (x )∈A 的x 取值范围.
(2)如果f [g (x )]的定义域为A ,则函数f(x)的定义域是函数g(x)的值域.
【例题2】已知f(x 2+21x )=x+x 1(x<0),求函数f(x 2+x)的单调减区间. 分析:求复合函数的单调区间时,必须注意两点:一是函数的定义域,二是每个函数在划分出
的各区间内必是单调函数.本题先应求f(x)的表达式及其定义域,进而研究f(x 2+x)的单调
性.
解:∵当x<0时,x+x 1=-|x+x
1| =2122++-x
x =f(x 2+21x ), ∴f(x)=2x -+.又x 2+2
1x ≥2, ∴f(x)的定义域为{x|x≥2}.则
f(x 2+x)=2x x -2++,x 2+x≥2,即y=f(x 2+x)=4
7)21
(2++-x (x≤-2或x≥1). 又∵该函数可看作是y=-t 与t=(x+
21)2+4
7复合而成,而y=-t 单调递减, 故只需在x≤-2或x≥1内求t=(x+21)2+4
7的增区间. 而t 的对称轴为x=2
1-,开口向上, ∴在x∈[1,+∞)上t=(x+21)2+47单调递增. 故所求函数y=2x x 2++-的单调减区间为[1,+∞).
绿色通道(1)虽然复合函数的概念在现在的教材中不作要求,但在考试中却多次出现.实际上是在考复合函数单调性的问题,函数的单调性是一个知识重点,我们必须加以重视.
(2)复合函数的单调性遵循“同增异减”,y=f[g(x)]中,令g(x)=t 时,y=f(t)与t=g(x)的单调性相同时是增函数,不相同时是减函数.
如表所示: Y=f(t) 增(+) 增(+) 减(-) 减(-)
t=g(x) 增(+)减(-)增(+)减(-)
y=f[g(x)]增(+)减(-)减(-)增(+)
(3)求y=f[g(x)]的单调区间的步骤:
①确定定义域;
②将复合函数分解成基本初等函数:y=f(u),u=g(x);
③分别确定这两个函数的单调区间;
④若这两个函数同增或同减,则y=f[g(x)]为增函数,若这两个函数一增一减,则y=f[g(x)]为减函数.
专题2赋值法与抽象函数
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的.实际上赋值法所体现的是从一般到特殊的转化思想.
【例题1】已知f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,满足f(ab)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论.
分析:题中给的是抽象函数,而要求的是比较特殊的值,可以考虑用赋值法,给出具体的值,再根据题意进行判断.
解:(1)令a=b=0,代入得f(0)=0·f(0)+0·f(0),则f(0)=0.
令a=b=1,代入得f(1)=1·f(1)+1·f(1),则f(1)=0.
(2)由f(1)=f[(-1)2]=-f(-1)-f(-1),得f(-1)=0.
令a=-1,b=x,则f(-x)=f(-1·x)=-f(x)+xf(-1)=-f(x).
∴f(x)为奇函数.
黑色陷阱不能直接用定义进行判断,可通过赋值,找出f(-x)与f(x)的关系.抽象函数常以函数方程的形式出现,求解这类问题通常让变量取一些特殊值或特殊式,以便寻求解题方法. 【例题2】(1)定义在R上的函数f(x)满足f(x)=f(4-x),且f(2-x)+f(x-2)=0,求f(2 000)的值;
(2)已知函数f(x)对任意实数x、y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域.
分析:(1)可通过巧妙地以t=x-2赋值,由f(-t)+f(t)=0,得f(x)为奇函数;
(2)通过当x>0时,f(x)>0,判断函数单调性,再通过巧妙地以y=-x赋值,则f(0)=f(x)+f(-x),进而对x=y=0赋值得f(0)的值,从而判断出f(x)的奇偶性,由此求解.
解:(1)由f(2-x)+f(x-2)=0,
以t=x-2代入,有f(-t)+f(t)=0,
∴f(x)为奇函数,则有f(0)=0.
又由f(x+4)=f[4-(x+4)]
=f(-x)
=-f(x).
∴f(x+8)=-f(x+4)=f(x).故f(x)是周期为8的周期函数.
∴f(2 000)=f(0)=0.
(2)设x1<x2,且x1、x2∈R,则x2-x1>0,
由条件当x>0时,f(x)>0,知f(x2-x1)>0.
又f(x2)=f[(x2-x1)+x1]
=f(x2-x1)+f(x1)>f(x1),
∴f(x)为增函数.
令y=-x,则f(0)=f(x)+f(-x).
又令x=y=0,得f(0)=0.
∴f(-x)=-f(x).故f(x)为奇函数.
∴f(1)=-f(-1)=2,f(-2)=2f(-1)=-4.
∴f(x)在[-2,1]上的值域为[-4,2].
绿色通道
求某些抽象函数的特殊值一般给出定义域,通过某些性质及运算式求解.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.。