《解二元一次方程组》教案设计(例题+练习+答案)
- 格式:doc
- 大小:421.24 KB
- 文档页数:11
《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
二元一次方程组的解法一、学习目标1. 使学生能运用加减法解二元一次方程组,掌握用加减法解二元一次方程组的一般步骤。
2. 进一步体会解二元一次方程组的基本思想——消元思想,训练学生的运算技巧。
二、回顾复习1.解二元一次方程组的基本思路是什么?2.用代入法解方程组的一般步骤是什么?三、自主探究问题:在校文化节美食一条街活动中,小王买了2碗臭豆腐和5杯冷饮共花了16元,小李以同样的价格买了2碗臭豆腐和3杯冷饮共花了12元,臭豆腐和冷饮的售价各是多少?思考:(1)能用加减消元法解二元一次方程组的前提是什么?(2)用加减消元法解二元一次方程组的一般步骤是什么?四、自主习得解方程组:(1)231237x y x y +=⎧⎨-=⎩ (2)568235x y x y +=⎧⎨-=⎩五、拓展提高 已知关于x ,y 的方程组⎩⎨⎧-=+=-1872,253m y x m y x 的解x 与y 互为相反数,求m 的值。
1.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩较简便的消元方法是:将两个方程_______,消去未知数_______.2.已知方程组2332x y x y -=⎧⎨+=⎩x 的方法是__________;用加减法消y 的方法是________. 3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.(1) 32155423x y x y -=⎧⎨-=⎩ 消元方法___________. (2) 731232m n n m -=⎧⎨+=-⎩消元方法_____________. 4.方程组241x y x y +=⎧⎨+=⎩的解_________. 5.方程2353x y x -+==3的解是_________. 6.已知方程342--n m x -5143-+n m y =8是关于x 、y 的二元一次方程,则m =_____,n =_______.7.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )A .4B .-4C .8D .-88.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( ) A .代入法 B .加减法 C .换元法 D .三种方法都一样9.若二元一次方程2x +y =3,3x -y =2和2x -my =-1有公共解,则m 取值为( )A .-2B .-1C .3D .410.已知方程组51mx n my m +=⎧⎨-=⎩的解是12x y =⎧⎨=⎩,则m =________,n =________. 11.已知(3x +2y -5)2与│5x +3y -8│互为相反数,则x =______,y =________.12.若方程组22ax by ax by +=⎧⎨-=⎩与234456x y x y +=⎧⎨-=-⎩的解相同,则a =________,b =_________.答案:1.相加y2.①×3-②×2,①×2+②×33.(1)①×2-②消y(2)①×2+②×3消n4.23 xy=-⎧⎨=⎩5.81 xy=⎧⎨=⎩6.-2、-1 7.A8.B9.C 10.1,4 11.1,1 12.22,8。
浙教版数学七年级下册2.3《解二元一次方程组》(第3课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第3课时的重要内容。
这部分内容是在学生已经掌握了二元一次方程的基础知识上,进一步探究如何解二元一次方程组。
本课时主要让学生了解解二元一次方程组的方法,以及如何运用这些方法解决实际问题。
教材通过具体的案例,引导学生掌握解二元一次方程组的基本步骤和技巧。
二. 学情分析学生在进入这一课时之前,已经学习了二元一次方程的基本概念和性质,对解一元一次方程有了初步的认识。
但学生在解二元一次方程组时,可能会遇到一些困难,如对齐、符号判断等。
因此,在教学中,需要引导学生总结解题规律,提高解题速度和正确率。
三. 教学目标1.知识与技能目标:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。
2.过程与方法目标:通过合作交流,让学生学会如何将实际问题转化为二元一次方程组,并运用解方程组的方法解决问题。
3.情感态度与价值观目标:培养学生勇于探索、克服困难的意志,增强小组合作意识,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。
2.教学难点:如何将实际问题转化为二元一次方程组,以及在不同情况下选择合适的解方程组的方法。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等。
通过设置问题,引导学生主动探究;鼓励学生合作交流,分享解题心得;以具体案例为载体,使学生掌握解二元一次方程组的方法。
六. 教学准备1.准备相关案例和练习题,用于引导学生学习和巩固解二元一次方程组的方法。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考如何将其转化为二元一次方程组。
例如,某商店同时出售两种商品,甲商品每件50元,乙商品每件30元,现有一笔钱,问如何选择购买商品才能使花费最接近总额的一半?2.呈现(10分钟)呈现一个具体的二元一次方程组案例,引导学生进行分析。
《二元一次方程组》教学设计一.课标要求与分析能根据具体问题中的数量关系列出方程,体会方程式刻画现实世界数量关系的有效模型;能根据具体问题的实际意义,检验方程的解是否合理。
第一条是过程性目标,行为动词:体会;第二条是结果性目标。
二.教材分析本节教材是初中数学的重要内容之一。
学生已学过一元一次方程,在此基础上,从解决多个未知量的实际问题出发,建立二元一次方程组,是方程有关方面的继续和深化,也为以后学习多元方程做铺垫,起着承上启下的作用。
三.学情分析优势:学生在七年级上学期,系统地学习一元一次方程的相关概念及一元一次方程的解法,对于实际问题中出现的未知量及数量关系有了较深的认识。
对于建立二元一次方程及方程组的模型描述实际问题有着很大的兴趣,较强的愿望。
劣势:学生缺乏生活实际,分析能力有相对薄弱。
四.教学重、难点重点:二元一次方程、二元一次方程组及其解的含义。
难点:弄懂二元一次方程组解的含义。
五.教学目标1.通过自主学习、自学检测,学生理解二元一次方程,二元一次方程组的概念;2.通过展示反馈、小组探究,学生理解二元一次方程(组)的解,并会检验一对数是不是某个二元一次方程组的解。
3.学生学会用类比的方法迁移知识,并体验二元一次方程组在处理问题中的优越性。
通过对二元一次方程(组)的概念学习,感受数学与生活的联系,感受数学乐趣。
六.教学流程(一)创景(复习)引入(3分钟)学生欣赏三张校内篮球比赛的照片,教师引出问题,请学生利用已学知识解决。
问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?(只列方程不计算)预设:学生用两分钟时间列出方程,并作答。
解:设这个队胜x场,则负(10-x)场. 根据题意知2x+(10-x)=16.追问1:这是我们学过的哪一类方程?追问2:什么是一元一次方程?(符合三点)师:在利用一元一次方程解决此题时,需要用含未知数的式子表示另一个量,那么能不能直接设两个未知数,更容易的列出方程?(引出课题)要求:学生出示学习目标了解本节课学习内容,师板书课题。
《二元一次方程组》教案教学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解.教学过程:篮球联赛中,每场比赛都要分出胜负,每队胜一场得 2 分 . 负一场得 1 分,某队为了争取较好的名次,想在全部22 场比赛中得到40 分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+ y=222x+y= 40表示 .上面两个方程中,每个方程都含有两个未知数(样的方程叫做二元一次方程.把两个方程合在一起,写成x和y),并且未知数的指数都是1,像这x y222 x y40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组探究:.满足方程①,且符合问题的实际意义的x、 y 的值有哪些?把它们填入表中.上表中哪对x、 y 的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.例 1( 1)方程(+ 2)x +(b-1)y= 3 是二元一次方程,试求、b的取值范围 .a a( 2)方程x∣a∣ –1+( a-2)例 2若方程x2 m–1+ 5y3n–2例 3已知下列三对值:x=-6y=-9y = 2是二元一次方程,试求 a 的值. =7 是二元一次方程 . 求m、n的值x=10x=10y=-6y=-1(1)哪几对数值使方程1x- y=6的左、右两边的值相等?21x- y=6(2)哪几对数值是方程组2的解?2x+ 31y=- 11例 4求二元一次方程3x+2y= 19 的正整数解 .课堂练习:教科书第102 页练习习题 8.11、2 题作业:教科书第102 页 3、4、 5 题1.下列方程中,是二元一次方程的是()A . 3x - 2y =4zB . 6xy +9=0C .1+4y =6D . 4x =y 2x42.下列方程组中,是二元一次方程组的是()x y 4 2a 3b 11 x 2 9 x y 8 A .B.C.2xD.y 42x 3y 75b 4c 6yx 23.二元一次方程 5a - 11b =21 ()A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程 y =1- x 与 3x +2y =5 的公共解是()x 3x 3x 3 D.x 3 A .2B.C.2y2yy 4y5.若│ x -2│+( 3y +2) 2=0,则的值是()A .-1B .- 2C.- 3D.326.方程组4x 3 y kk 等于()2x 3 y 的解与 x 与 y 的值相等,则57.下列各式,属于二元一次方程的个数有()① xy +2x - y =7; ②4x +1=x - y ;③ 1+y =5; ④ x =y ;22⑤x - y =2x⑥6x -2y⑦ x +y +z=1⑧ y (y - 1) =2y 2- y 2+x A .1B .2C .3D . 48.某年级学生共有 246 人,其中男生人数 y 比女生人数 x 的 2 倍少 2 人,则下面所列的方程组中符合题意的有()xy 246x y246C.x y 216xy 246A .B.y 2x 2 D.2 y x 2 2x y 22 y x 2答案:1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是 1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为 1;③每个方程都是整式方程.3. B 解析:不加限制条件时,一个二元一次方程有无数个解.4. C解析:用排除法,逐个代入验证.5. C解析:利用非负数的性质.6. B7. C解析:根据二元一次方程的定义来判定,含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8. B。
《消元——二元一次方程组的解法》教案教学目标:一.教学知识点1、会用代入消元法解二元一次方程组2、了解代入消元法解二元一次方程组的基本步骤二.能力训练要求1、理解消元的思想,知道消元是一种重要的思想方法2、会用代入消元法解二元一次方程组3、能说出代入消元法解二元一次方程组的基本步骤教学重点:会用代入消元法解二元一次方程组教学难点:理解代入消元法,灵活消元,解二元一次方程组.教学方法:讲练结合法教学过程:(一)巧设现实情景,引入新课上一节课,我们学习了二元一次方程,二元一次方程组的有关概念,这一节我们来学习二元一次方程组的解法例1:篮球联赛中,每场比赛都要分出胜负每队胜一场得2分,负一场得1分,队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?(1)若设这个队胜场数是场,负场数是场,可列方程组(2)若只设一个未知数,设这个队胜场数是场,负场数是场,可列方程解这个方程,可得这个队胜场数是场,负场数是场(二)讲授新课1、自学(1)什么叫消元?(2)什么叫代入消元法?2、老师点评代入消元法解:由①得:Y=22-X ③把③代入②得:2X+(22-X)=40解这个方程得:X=18把X=18代入③得:Y=4∴这个方程组的解是 X=18Y=43、师生总结代入消元法的基本步骤⑴变形:使两个方程中某个相同未知数的系数相等或互为相反数.⑵加减:将两个方程相加减,消去一个未知数,化二元一次方程组为一元一次方程.⑶求解:求出一元一次方程的解.⑷回代:将其代入到变形后的方程中,求出另一个未知数的解.⑸结论:写出方程组的解.点拨:(1)求表达式时,一般选择未知数系数的绝对值最小的方程及未知数.(2)将变形后的方程代入没有变形的方程中,不能代入变形的方程.4、比一比,谁做的又对又快例1:用代入法解下列方程组⑴⑵⑶⑷答案:⑴⑵⑶⑷5、应用举例例2:根据市场调查;一种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量(按瓶计算)比为2:5,工厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小瓶两种产品各多少瓶?解:设这些消毒液应该分装x大瓶和y小瓶根据题意得: x:y=2:5①500x+250y=22500000②由①得:y=2.5x③把③代入②得:500x+250×2.5x=22500000解这个方程得:X=20000把X=20000代入③得:Y=50000∴这个方程组的解是x=20000y=50000答:这些消毒液应该分装20000大瓶和50000小瓶(三)课时小结这节课我们知道了什么叫消元?,会用代入消元法解二元一次方程组,还知道了代入消元法解二元一次方程组的基本步骤.(四)知识检测1.解下列方程组.(1)(2)(3)(4)2.有48个队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.篮、排球队各有多少队参赛?(五)活动与探究(1)已知(x+y-5)与∣3y-2x+10∣互为相反数,求x与y的值(2)解下列方程组:(x+1)÷3﹣(y+2)÷4=0①(x-3)÷4-(y-3)÷3=1÷12②(六)板书设计例1:用代入消元法解二元一次方程组解:解:由①y=x+3得:y=3-x ③把③代入②7x+5y=9得:7x+5(3-x)=9解这个方程得:X=-3把X=-3代入③得:∴这个方程组的解是y=61.甲、乙两人同求方程ax-by=7的整数解,甲正确的求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a、b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩2.解方程组:(1)23123417x yx y+=⎧⎨+=⎩(2)6323()2()28x y x yx y x y+-⎧+=⎪⎨⎪+--=⎩3.若方程组23352x y mx y m+=⎧⎨+=+⎩的解满足x+y=12,求m的值.4.已知方程组25264x yax by+=-⎧⎨-=-⎩和方程组35368x ybx ay-=⎧⎨+=-⎩的解相同,求(2a+b)2005的值.5.已知方程组82x yx y+∆=⎧⎨∆-=⎩中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,△也表示同一个数,11xy=⎧⎨-⎩是这个方程组的解,你能求出原方程组吗?6.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可以加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,因此,公司制定了三种可行方案:方案一:将蔬菜全部进行精加工.方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接出售.方案三:将一部分蔬菜进行精加工,其余蔬菜进行精加工,并恰好用15天完成.你认为选择哪种方案获利最多?为什么?答案:1.B2.(1)32xy=⎧⎨=⎩(2)84xy=⎧⎨=⎩3.144.a=1,b=-15.2.8 2.48 2.4 2.82x yx y+=⎧⎨-=⎩6.解:选择第三种方案获利最多.方案一:因为每天粗加工16吨,140吨可以在15天内加工完,总利润W1=4500×140=630000(元).方案二:因为每天精加工6吨,15天可以加工90吨,其余50吨直接销售,总利润W2=90×7500+50×1000=725000(元).方案三:设15天内精加工蔬菜x吨,粗加工蔬菜y吨,依题意得:14015616x yx y+=⎧⎪⎨+=⎪⎩,解得6080xy=⎧⎨=⎩,总利润W3=60×7500+80×4500=810000(元),因为W1<W2<W3,所以第三种方案获利最多.。
二元一次方程组的解法1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。
例1.下列方程组中,哪些是二元一次方程组_______________判断一个方程是为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程想一想:二元一次方程的解与一元一次方程的解有什么区别?①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。
例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意:①含未知项的次数为1; ②含有未知项的系数不能为02.二元一次方程组的解二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。
练一练:1、若 =-⎧⎨=⎩x 1y 2是关于 x 、y 的方程 5x +ay = 1 的解,则a=( ).2、方程组 +=⎧⎨-=⎩y z 180y z ()的解是 =⎧⎨=⎩y 100z ().3、若关于x 、y 的二元一次方程组––=⎧⎨+=⎩4x 3y 1kx k 1y 3()的解x 与 y 的值相等,则k =( ).3、用一个未知数表示另一个未知数想一想:(1)24x y +=,所以________x =; 2(1)3x y y z +=⎧⎨+=⎩,5(2)6x y xy +=⎧⎨=⎩,7(3)6a b b -=⎧⎨=⎩,2(4)13x y x y +=-⎧⎪⎨-=⎪⎩,52(5)122y x x y=-⎧⎪⎨+=⎪⎩,25(6)312x y -=⎧⎨+=⎩,213257m n x y --+=211321m n -=⎧⎨-=⎩1(2)2a x a y -+-=(2)345x y +=,所以________x =,________y =; (3) 2y x ,所以x =,________y =.总结出用一个未知数表示另一个未知数的方法步骤:①被表示的未知数放在等式的左边,其他的放在等式的右边. ②把被表示的未知数的系数化为1.4.二元一次方程的解法(1)用代入法解二元一次方程组将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数;②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值;④把这个未知数的值代入一次式,求出另一个未知数的值; ⑤检验,并写出方程组的解.例3:方程组92x y y x ……①………②ì+=ïïíï=ïî 解:把②代入①得,29x x +=3x 9= 3x =把x=3代入②,得6y =所以,原方程组的解是36x y ì=ïïíï=ïî 总结:解方程组的方法的图解:练一练:1、如果31014x y +=,那么x =________;2、解方程组35,23 1.x y x y ì-=ïïíï-=ïî3、解方程组31014101532x y x y ì+=ïïíï+=ïî3、以⎩⎨⎧-=-=5.05.1y x 为解的方程组是( )A.⎩⎨⎧=-+=--05301y x y x B. ⎩⎨⎧=++=+-05301y x y x C. ⎩⎨⎧-=+=-y x y x 531D. ⎩⎨⎧=+=-531y x y x 4、用代入消元法解下列二元一次方程组:(1)23321y x x y =-⎧⎨+=⎩ (2)⎩⎨⎧-=-=+42357y x y x (3) 233418x yx y ⎧=⎪⎨⎪+=⎩(2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
二元一次方程组的解法1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。
例1.下列方程组中,哪些是二元一次方程组_______________判断一个方程是为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程想一想:二元一次方程的解与一元一次方程的解有什么区别?①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。
例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意:①含未知项的次数为1; ②含有未知项的系数不能为02.二元一次方程组的解二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。
练一练:1、若 =-⎧⎨=⎩x 1y 2是关于 x 、y 的方程 5x +ay = 1 的解,则a=( ).2、方程组 +=⎧⎨-=⎩y z 180y z ()的解是 =⎧⎨=⎩y 100z ().3、若关于x 、y 的二元一次方程组––=⎧⎨+=⎩4x 3y 1kx k 1y 3()的解x 与 y 的值相等,则k =( ).3、用一个未知数表示另一个未知数想一想:(1)24x y +=,所以________x =;2(1)3x y y z +=⎧⎨+=⎩,5(2)6x y xy +=⎧⎨=⎩,7(3)6a b b -=⎧⎨=⎩,2(4)13x y x y +=-⎧⎪⎨-=⎪⎩,52(5)122y x x y=-⎧⎪⎨+=⎪⎩,25(6)312x y -=⎧⎨+=⎩,213257m n x y --+=211321m n -=⎧⎨-=⎩1(2)2a x a y -+-=(2)345x y +=,所以________x =,________y =; (3) 2y x ,所以x = ,________y =.总结出用一个未知数表示另一个未知数的方法步骤:①被表示的未知数放在等式的左边,其他的放在等式的右边. ②把被表示的未知数的系数化为1.4.二元一次方程的解法(1)用代入法解二元一次方程组将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数;②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值;④把这个未知数的值代入一次式,求出另一个未知数的值; ⑤检验,并写出方程组的解.例3:方程组92x y y x ……①………②ì+=ïïíï=ïî 解:把②代入①得,29x x +=3x 9= 3x =把x=3代入②,得6y =所以,原方程组的解是36x y ì=ïïíï=ïî 总结:解方程组的方法的图解:练一练:1、如果31014x y +=,那么x =________;2、解方程组35,23 1.x y x y ì-=ïïíï-=ïî3、解方程组31014101532x y x y ì+=ïïíï+=ïî3、以⎩⎨⎧-=-=5.05.1y x 为解的方程组是( )A. ⎩⎨⎧=-+=--05301y x y x B. ⎩⎨⎧=++=+-05301y x y x C. ⎩⎨⎧-=+=-y x y x 531 D. ⎩⎨⎧=+=-531y x y x4、用代入消元法解下列二元一次方程组:(1)23321y x x y =-⎧⎨+=⎩ (2)⎩⎨⎧-=-=+42357y x y x (3) 233418x yx y ⎧=⎪⎨⎪+=⎩(2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
例4:解方程组2x+5y=13 ① 3x-5y=7 ②提示:①式中的5y 和②式中的-5y 是互为相反数的 分析:(2x + 5y )+(3x - 5y )=13 + 7 ①左边+ ②左边 = ①左边+②左边 2x+5y +3x - 5y=20 5x+0y =20 5x=20解:由①+②得: 5x=20x =4 把x =4代入①,得 y =1 所以原方程组的解是 x=4y=1例5:解方程组x--5y=7 ① x+3y=-1 ②分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程.解:把 ②-①得:8y =-8y =-1 把y =-1代入①,得2x -5×(-1)=7 解得:x =1所以原方程组的解是 x=1 y=-1练一练:用加减消元法解下列二元一次方程组:(1)⎩⎨⎧=+=-13y x y x (2)⎩⎨⎧=+=-8312034y x y x (3)⎩⎨⎧=+=-1464534y x y x5.解二元一次方程组需要注意的几个问题:(1)应重视加与减的区分例6 解方程组⎩⎨⎧=-=+②①.5n m 3,7n 2m 3错解:①~②,得n =2。
分析与解:①~②,即57)n m 3()n 2m 3(-=--+。
去括号,得2n m 3n 2m 3=+-+。
合并同类项,得2n 3=,即32n =。
把32n =代入①,得917m =。
所以原方程组的解是⎪⎪⎩⎪⎪⎨⎧==.32n ,917m失误警示:学习了二元一次方程组的解法后,同学们会感到加减消元法比代入消元法方便好用。
但用加减消元法解方程组常常受到符号问题的困扰。
解决问题的关键是要正确应用等式性质,重视加与减的区分。
(2)应重视方程组的化简例7 解方程组⎩⎨⎧=-=-②①.19y 5.0x 2.0,1y x 3.0繁解:由①得1x 3.0y -=。
③ 把③代入②,得19)1x 3.0(5.0x 2.0=--。
化简,得5.18x 05.0=。
解得370x =。
把370x =代入③,得110y =。
所以原方程组的解是⎩⎨⎧==.110y ,370x分析与简解:没有把原方程组化为整数系数的方程组,含有小数的计算容易出错。
原方程组可化为⎩⎨⎧=-=-.190y 5x 2,10y 10x 3以下解答略。
失误警示:这道题解法上并没有错误,但思想方法不是很完美,解题应寻找最简便的方法。
把含小数系数的二元一次方程组化为整数系数方程组,可以简化运算。
(3)应重视方程组变形的细节例8 解方程组⎩⎨⎧-=+-=-②①).2y (24x ),1y (31x错解:整理,得⎩⎨⎧=--=-.0y 2x ,4y 3x分析与解:将原方程组整理为⎩⎨⎧-=--=-④③.8y 2x ,2y 3x④~③,得6y -=,代入③,得20x -=。
所以原方程组的解是⎩⎨⎧-=-=.6y ,20x失误警示:解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变。
解二元一次方程组课后练习一、基础知识回顾1、 指出下列方程那些是二元一次方程?并说明理由。
(1)3x+y=z+1 ( ) (2) x(y+1)=6 ( ) (3) 2x(3-x)=x 2-3(x 2+y) ( ) 2、下列方程中,是二元一次方程的有( ) ①1225=-n m ② a z y -=-61147 ③ 312=-+ba ④ mn+m=7⑤ x+y=6 A 、1个 B 、2个 C 、3个 D 、4个 3、下列方程中,是二元一次方程组的是 ( )① ⎩⎨⎧=+=-7232z y y x ② ⎪⎩⎪⎨⎧-=-=+1241xy y x ③ ⎩⎨⎧=-=--512)4(3y x x x ④ ⎪⎩⎪⎨⎧=+=-2132132y x y xA 、①②③B 、②③C 、③④D 、①②4、用加减法解二元一次方程解方程组: (1)⎩⎨⎧=-=+12354y x y x (2)⎩⎨⎧=+=+132645y x y x (3)⎩⎨⎧=+=-1732723y x y x5、代入消元法解方程组:563640x y x y +=⎧⎨--=⎩二、.填空题1.在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =;2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________;3. 已知⎩⎨⎧==12y x 是方程2x +ay=5的解,则 a= .4.二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,则m=______,n=_____;5.已知2|2|(3)0a b b -++-=,那么______ab = 三、选择题1.对于方程组5322(1),(2),(3),(4)161021x y x y x x y x xy x y x y y +=⎧+===⎧⎧⎧⎪⎨⎨⎨⎨-==-+=--=⎩⎩⎩⎪⎩,是二元一次方程组的为( )A.(1)和(2)B.(3)和(4)C.(1)和(3)D.(2)和(4)2.若25x y =⎧⎨=⎩是方程22kx y -=的一个解,则k 等于( )858 (6).533A B C D -3.方程组34111238x y x y =⎧⎪⎨-=⎪⎩的解为( )12142 (43)33028x x x x A B C D y y y y ⎧==⎧⎧⎪==⎧⎪⎪⎪⎨⎨⎨⎨==⎩⎪⎪⎪==⎩⎩⎪⎩4.已知,a b 满足方程组2827a b a b +=⎧⎨+=⎩,则a b -的值为( )A.-1B.0C.1D.25、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值。
6、已知等式(2A -7B)x+(3A -8B)=8x+10,对一切实数x 都成立,求A 、B 的值。
解下列方程:(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x(7)⎪⎩⎪⎨⎧=+-+=-+-04235132423512y x y x (8)⎪⎩⎪⎨⎧=+--=++-57326231732623y x y x y x y x二元一次方程组综合练习1. 下列方程组中,是二元一次方程组的是 ( )A .⎪⎩⎪⎨⎧=+=+65115y x y x B .⎩⎨⎧-=+=+2102y x y x C .⎩⎨⎧==+158xy y x D .⎩⎨⎧=+=31y x x 2. 方程组⎩⎨⎧=+=-15253y x y x 的解是 ( )A .3,5==y xB .1,4==y xC .5,1==y xD .0,3==y x3. 用代入法解方程组⎩⎨⎧=+=+ΛΛΛΛ832152y x y x ,下列解法中最简便的是( ) A .由①得y x 25221-=代入② B .由①得x y 52521-=代入②①②C .由②得y x 38-=代入①D .由②得338x y -=代入①4. 下列方程组中与⎩⎨⎧=-=+10352y x y x 具有相同的解的方程组是 ( )A .⎩⎨⎧-=+-=521y x yB .⎩⎨⎧=+-=-24y x y x C .⎪⎩⎪⎨⎧=-=+23236732y x y x D . ⎩⎨⎧=+=+1123932y x y x5. 已知m n m y x 344-与y x n 5是同类项,则m 与n 的值分别是 ( ) A .4、1 B .1、4 C .0、8 D .8、06.用代入法解方程组⎩⎨⎧+==12543y x yx 中,以下各式代入正确的是 ( )。