湖北省黄冈中学2014届高三上学期期末考试 数学理试题
- 格式:docx
- 大小:1.15 MB
- 文档页数:11
【全国名校】2014届湖北省黄冈中学等八校高三第一次联考理科数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.方程的一个根是()A. B. C. D.【答案】A【解析】试题分析:由求根公式可得,故选A.考点:1.方程求根公式;2.复数范围内方程的解2.集合,,若,则()A. B. C. D.【答案】C【解析】试题分析:由可知,得,,所以,,故,选C.考点:集合的运算3.下列命题,正确的是()A.命题:,使得的否定是:,均有.B.命题:若,则的否命题是:若,则.C.命题:存在四边相等的四边形不是正方形,该命题是假命题.D.命题:,则的逆否命题是真命题.【答案】B【解析】试题分析:命题:,使得的否定是:,均有,A不对;菱形的四边相等但不一定是正方形,C不对;当时,D不对,故选B.考点:1.全称命题和特称命题;2.四种命题的相互关系;3.命题的真假判断4.已知满足,则关于的说法,正确的是()A.有最小值1B.有最小值C.有最大值D.有最小值【答案】B【解析】试题分析:如图所示,可行域为及内部,则表示点到可行域内的点的距离的平方,由图可知点O到直线AB的距离最小,到点C(2,3)的距离最大,故,,故选B.考点:简单的线性规划问题5.函数有极值点,则()A. B. C. D.【答案】D【解析】试题分析:由函数有极值点可知有异号零点,则,故,选D.考点:1.函数的极值;2.零点存在性6.一个几何体的三视图如图,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,几何体是一底面为如俯视图的菱形,高为1的四棱锥,则,故选B.考点:1.三视图;2.几何体的体积7.△中,角成等差数列是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】试题分析:由可得,化简得,所以,或,则角成等差数列是成立的充分不必要条件,故选A.考点:1.三视图; 2.基本不等式;3.几何体的体积8.在弹性限度内,弹簧所受的压缩力与缩短的距离按胡克定律计算.今有一弹簧原长,每压缩需的压缩力,若把这根弹簧从压缩至(在弹性限度内),外力克服弹簧的弹力做了()功(单位:)A. B. C.0.686 D.0.98【答案】A【解析】试题分析:已知每压缩1cm需0.49N的压缩力,所以由得,则把这根弹簧从压缩至,外力克服弹簧的弹力做功为,选A.考点:定积分在物理上的应用9.在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是()A.点的轨迹是一条线段B.与不可能平行C.与是异面直线D.【答案】B【解析】试题分析:由已知可取的中点,的中点,连结,易证平面∥平面,故可知点的轨迹是一条线段,与是异面直线,A、C对;当点与重合时与平行,B不对;在上取点F,连结,可证为与平面所成的角,当点F在MN的中点时最大,此时,则,D对,故选B.考点:1.直线与平面平行的性质与判断;2.直线和平面的夹角;3.空间两直线的位置关系10.若直线与曲线有四个公共点,则的取值集合是()A. B. C. D.【答案】A【解析】试题分析:由是偶函数,考察的情形,,作图:时,直线与曲线有四个交点,满足题意;时,若直线与相切,由,得,△="0,",直线绕(0,1)逆时针旋转,开始出现5个交点顺时针旋转,3个交点,符合题意.根据对称性,也满足题意.故为,选A.考点:1.函数的图像;2.函数的零点;3.数形结合法处理函数问题二、填空题(本大题共6小题,共30.0分)11.平面向量满足,且,则向量的夹角为.【答案】【解析】试题分析:由,得,可得向量的夹角为.考点:1.向量的数量积;2.向量的夹角12.已知正三角形内切圆的半径与它的高的关系是:,把这个结论推广到空间正四面体,则正四面体内切球的半径与正四面体高的关系是.【答案】【解析】试题分析:由,可得.考点:1.类比推理;2.锥体的体积13.将函数的图象向左平移个单位后得到的函数图象关于点成中心对称,那么的最小值为.【答案】【解析】试题分析:函数的图象向左平移个单位后得到的函数为:,图象关于点成中心对称,可得:,解得,故当时. 考点:1.三角函数的图像变换;2.三角函数图像的性质14.无穷数列中,是首项为10,公差为的等差数列;是首项为,公比为的等比数列(其中),并且对于任意的,都有成立.若,则m的取值集合为____________.记数列的前项和为,则使得的的取值集合为____________.【答案】;【解析】试题分析:由知等比数列部分最少6项,即,由,得时,;,,=,时,即时,最大,,故,则考点:1.等比数列的定义;2.等比数列的前项和15.已知⊙O1和⊙O2交于点C和D,⊙O1上的点P处的切线交⊙O2于A、B点,交直线CD于点E,M是⊙O 2上的一点,若PE=2,EA=1,,那么⊙O2的半径为.【答案】【解析】试题分析:由切线定理和割线定理可知:,所以可得,连结,由可得为直角三角形,故意.考点:1.切线定理;2.割线定理;3.圆周角定理16.在极坐标系中,曲线上有3个不同的点到曲线的距离等于2,则.【答案】【解析】试题分析:曲线可化为:,曲线可化为为:,曲线上有3个不同的点到曲线的距离等于2可知圆心到直线的距离为2,即:,所以.考点:1.直线的参数方程;2.圆的极坐标方程;3.点到直线的距离公式三、解答题(本大题共6小题,共72.0分)17.已知向量,,函数的图象与直线的相邻两个交点之间的距离为.(Ⅰ)求的值;(Ⅱ)求函数在上的单调递增区间.【答案】(Ⅰ);(Ⅱ)的单调增区间为和.【解析】试题分析:(Ⅰ)先由向量数量积坐标运算得,再由图象与直线的相邻两个交点之间的距离为得,从而求得;(Ⅱ)由得,再由余弦函数的单调性可得的单调增区间为和.试题解析:(Ⅰ)1分5分由题意,,6分(Ⅱ),时,故或时,单调递增9分即的单调增区间为和12分考点:1.向量的数量积;2.三角恒等变换;3.三角函数的单调性18.设等差数列的前项和为,满足:.递增的等比数列前项和为,满足:.(Ⅰ)求数列,的通项公式;(Ⅱ)设数列对,均有成立,求.【答案】(Ⅰ),;(Ⅱ)【解析】试题分析:(Ⅰ)先由等差数列的性质得出从而求出,再结合求出,从而得出;由,可构造方程,从而求出,由求出,故;(Ⅱ)当时,求得;当时由,,作差可得,故,从而可求. 试题解析:(Ⅰ)由题意得,则2分,方程的两根,得4分,代入求得,6分(Ⅱ)由,两式相减有,9分又,得考点:1.数列的通项公式的求法;2.数列的前项和19.如图,在直三棱柱中,底面△为等腰直角三角形,,为棱上一点,且平面⊥平面.(Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.【答案】(Ⅰ)见解析;(Ⅱ)=【解析】试题分析:(Ⅰ)先点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF,然后通过平面和平面垂直的性质定理及直三棱柱的定义可证EF∥AA1,又点F是AC的中点,则DB =BB 1,即为的中点;或者先证,再证得. (Ⅱ)先在点D处建立空间直角坐标系,然后求出两平面DA1C和ADA1的法向量分别为和,由二面角的平面角为可知,得据题意有:,从而=.或者利用几何法可求.试题解析:(Ⅰ)过点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF∵面DA1 C⊥面AA1C1C且相交于A1 C,面DA1 C内的直线DE ⊥ A1 C故直线面3分又∵面BA C⊥面AA1C1C且相交于AC,易知BF⊥AC,∴BF⊥面AA1C1C由此知:DE∥BF ,从而有D,E,F,B共面,又易知BB1∥面AA1C1C,故有DB∥EF ,从而有EF∥AA 1,又点F是AC的中点,所以DB =EF =AA1=BB1,即为的中点.6分(Ⅱ)解法1:建立如图所示的直角坐标系,设AA1=2b,AB=BC =,则D(0,0,b),A1 (a,0,2b), C (0,a,0)所以,设面DA1C的法向量为则可取8分又可取平面AA1DB的法向量:据题意有:解得:=12分过B作BH⊥A1 G于点H,连CH,由三垂线定理知:A1 G⊥CH,由此知∠CHB为二面角A -A1D -C的平面角;9分设AA1=2b,AB=BC =;在直角三角形A1A G中,易知AB =BG.在DBG中,BH ==,CHB中,tan∠CHB ==,据题意有:=tan600=,解得:所以=12分考点:1.平面和平面垂直的性质定理;2.直线和平面平行的判定和性质;3.用空间向量处理二面角20.如图,山顶有一座石塔,已知石塔的高度为.(Ⅰ)若以为观测点,在塔顶处测得地面上一点的俯角为,在塔底处测得处的俯角为,用表示山的高度;(Ⅱ)若将观测点选在地面的直线上,其中是塔顶在地面上的射影.已知石塔高度,当观测点在上满足时看的视角(即)最大,求山的高度.【答案】(Ⅰ);(Ⅱ)【解析】试题分析:(Ⅰ)直接由正弦定理可得,从而,故时看的视角(即)最大可先求出,然后由基本不等式求出及最值取到的条件得出.试题解析:(Ⅰ)在△中,,,由正弦定理得:则=4分(Ⅱ)设,,6分当且仅当即时,最大,从而最大, 由题意,,解得.考点:1.正弦定理的应用;2.三角恒等变换;3.基本不等式的应用21.已知是关于的方程的根,证明:(Ⅰ);(Ⅱ).【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)构造函数,通过导函数可知函数在上是增函数,而,,故在上有唯一实根,即,然后利用函数的单调性,用反证法证明;(Ⅱ)先证,再由,可得.注意放缩法的技巧.试题解析:(Ⅰ)设,则显然,在上是增函数在上有唯一实根,即4分假设,则,矛盾,故8分(Ⅱ)(),13分方法二:由(Ⅰ)=考点:1.函数的零点;2.函数的单调性的应用;3.放缩法证明不等式22.已知函数(为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)当时,若对任意的恒成立,求实数的值;(Ⅲ)求证:.【答案】(Ⅰ)时,单调递增区间为;时,单调递减区间为,单调递增区间为;(Ⅱ);(Ⅲ)证明见解析【解析】试题分析:(Ⅰ)利用导数分析函数的单调性,根据和分类讨论得出函数的单调区间;(Ⅱ)先由(Ⅰ)中时的单调性可知,即,构造函数,由导函数分析可得在上增,在上递减,则,由对任意的恒成立,故,得;(Ⅲ)先由(Ⅱ),即,从而问题等价转化为证.试题解析:(Ⅰ)1分时,,在上单调递增。
2014-2015学年湖北省黄冈中学高三(上)期中数学试卷(理科)一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)2.(5分)已知a是第二象限角,,则cosα=()A.B.﹣ C.D.﹣3.(5分)函数f(x)=log3(2x+1)的值域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)4.(5分)已知向量,若A、B、D三点共线,则实数m、n应该满足的条件是()A.m+n=1 B.m+n=﹣1 C.mn=1 D.mn=﹣15.(5分)函数的零点所在的区间是()A.(3,4) B.(2,3) C.(1,2) D.(0,1)6.(5分)若数列{a n}满足=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2 B.4 C.6 D.87.(5分)已知函数f(x)=,则()A.B.C.D.8.(5分)下列四种说法中,①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;②命题“p且q为真”是“p或q为真”的必要不充分条件;③已知幂函数f(x)=xα的图象经过点,则f(4)的值等于;④已知向量,,则向量在向量方向上的投影是.说法正确的个数是()A.1 B.2 C.3 D.49.(5分)定义在R上的函数f(x)满足:f'(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(1,+∞)D.(3,+∞)10.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C. D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应的横线上.)11.(5分)在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列,则通项公式a n=.12.(5分)已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=.13.(5分)函数f(x)=(1+x)2﹣2ln(1+x)的单调增区间是.14.(5分)已知△ABC中的内角为A,B,C,重心为G,若2sinA=,则cosB=.15.(5分)定义函数f(x)={x•{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{﹣2.5}=﹣2.当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则=.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.(12分)若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.(1)求f(x)的解析式;(2)若在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,求实数m的取值范围.17.(12分)已知递增等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n﹣1+a n(n∈N*),且{b n}的前n项和T n.求证:T n≥2.18.(12分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求f(x)+4cos(2A+)(x∈[0,])的取值范围.19.(12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.20.(13分)已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列+a n=nf′()+3(n∈N*).{a n}满足a n+1(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥4成立,求a1的取值范围.21.(14分)已知f(x)=aln(x﹣1),g(x)=x2+bx,F(x)=f(x+1)﹣g(x),其中a,b∈R.(Ⅰ)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;(Ⅱ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1)n∈N,求n;(Ⅲ)当b=a﹣2时,若x1,x2是F(x)的两个极值点,当|x1﹣x2|>1时,求证:|F(x1)﹣F(x)|>3﹣4ln2.2014-2015学年湖北省黄冈中学高三(上)期中数学试卷(理科)参考答案与试题解析一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C.2.(5分)已知a是第二象限角,,则cosα=()A.B.﹣ C.D.﹣【解答】解:∵α为第二象限角,tanα=﹣,∴cosα=﹣=﹣.故选:B.3.(5分)函数f(x)=log3(2x+1)的值域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)【解答】解:∵2x+1>1恒成立,∴函数的定义域是R,∵函数y=log3x在定义域上是增函数,∴y>log31=0,则原函数的值域是(0,+∞).故选:A.4.(5分)已知向量,若A、B、D三点共线,则实数m、n应该满足的条件是()A.m+n=1 B.m+n=﹣1 C.mn=1 D.mn=﹣1【解答】解:由题意可得,∴,故有,∴mn=1,故选:C.5.(5分)函数的零点所在的区间是()A.(3,4) B.(2,3) C.(1,2) D.(0,1)【解答】解:∵函数,∴f(2)==<0,f(3)==>0,∴f(2)f(3)<0由零点的存在性定理可知:零点所在的区间为(2,3)故选:B.6.(5分)若数列{a n}满足=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2 B.4 C.6 D.8【解答】解:依题意可得b n=qb n,则数列{b n}为等比数列.+1又,则b50=2.∴,当且仅当b8=b92,即该数列为常数列时取等号.故选:B.7.(5分)已知函数f(x)=,则()A.B.C.D.【解答】解:(x+1)2dx+dx,∵(x+1)2dx=(x+1)3|=,dx表示以原点为圆心以1为为半径的圆的面积的四分之一,故dx=π,∴(x+1)2dx+dx==,故选:B.8.(5分)下列四种说法中,①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;②命题“p且q为真”是“p或q为真”的必要不充分条件;③已知幂函数f(x)=xα的图象经过点,则f(4)的值等于;④已知向量,,则向量在向量方向上的投影是.说法正确的个数是()A.1 B.2 C.3 D.4【解答】解:①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x≤0”,故命题①不正确;②命题“p且q为真”,则命题p、q均为真,∴“p或q为真”.反之“p或q为真”,则p、q不一定都真,∴不一定有“p且q为真”,∴命题“p且q为真”是“p或q为真”的充分不必要条件,故命题②不正确;③由幂函数f(x)=xα的图象经过点(2,),∴2α=,∴α=,∴幂函数为,∴,∴命题③正确;④向量在向量方向上的投影是,其中θ是和的夹角,故④错误.∴正确的命题有一个.故选:A.9.(5分)定义在R上的函数f(x)满足:f'(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(1,+∞)D.(3,+∞)【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f'(x)>1﹣f(x),∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+5,∴g(x)>5,又∵g(0)=e0f(0)﹣e0=6﹣1=5,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞)故选:A.10.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C. D.【解答】解:依题意f(x)在(﹣∞,﹣2)和(0,2)上递增,在(﹣2,0)和(2,+∞)上递减,当x=±2时,函数取得极大值;当x=0时,取得极小值0.要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R 有且只有6个不同实数根,设t=f(x),则则有两种情况符合题意:(1),且,此时﹣a=t1+t2,则;(2)t1∈(0,1],,此时同理可得,综上可得a的范围是.故选:C.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应的横线上.)11.(5分)在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列,则通项公式a n=,n∈N*.【解答】解:设,代入4a2=4a1+a3,解得q=2,∴,n∈N*.故答案为:,n∈N*.12.(5分)已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=﹣.【解答】解:根据函数f(x)=sin(ωx+φ)的图象可得•T=•=3﹣1,ω=.再根据五点法作图可得×1+φ=,∴φ=﹣,∴f(x)=sin(x﹣),∴f(2)=sin(﹣)=sin=﹣sin=﹣,故答案为:﹣.13.(5分)函数f(x)=(1+x)2﹣2ln(1+x)的单调增区间是(0,+∞).【解答】解:由x+1>0,得:f(x)定义域为(﹣1,+∞),又,∵x>﹣1,∴x+1>0且x+2>0,由f′(x)=0得x=0,令f′(x)>0得x>0∴增区间为(0,+∞).故答案为:(0,+∞).14.(5分)已知△ABC中的内角为A,B,C,重心为G,若2sinA=,则cosB=.【解答】解:设a,b,c为角A,B,C所对的边,由正弦定理2sinA=,可得2a++3c=,则2a+=﹣3c=﹣3c(﹣),即(2a﹣3c)=,又因∵不共线,则2a﹣3c=0,,即2a==3c∴,,∴.故答案为:.15.(5分)定义函数f(x)={x•{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{﹣2.5}=﹣2.当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则=.【解答】解:由题意易知:当n=1时,因为x∈(0,1],所以{x}=1,所以{x{x}}=1,所以A1={1},a1=1;当n=2时,因为x∈(1,2],所以{x}=2,所以{x{x}}∈(2,4],所以A2={1,3,4},a2=3;当n=3时,因为x∈(2,3],所以{x}=3,所以{x{x}}={3x}∈(6,9],所以A3={1,3,4,7,8,9},a3=6;当n=4时,因为x∈(3,4],所以{x}=4,所以{x{x}}={4x}∈(12,16],所以A4={1,3,4,7,8,9,13,14,15,16},a4=10;当n=5时,因为x∈(4,5],所以{x}=5,所以{x{x}}={5x}∈(20,25],所以A 5={1,3,4,7,8,9,13,14,15,16,21,22,23,24,25},a5=15,由此类推:a n=a n﹣1+n,所以a n﹣a n﹣1=n,即a2﹣a1=2,a3﹣a2=3,a4﹣a3=4,…,a n﹣a n﹣1=n,以上n﹣1个式子相加得,a n﹣a1=,解得,所以,则,故答案为:.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.(12分)若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.(1)求f(x)的解析式;(2)若在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,求实数m的取值范围.【解答】解:(1)由f(0)=3得,c=3.∴f(x)=ax2+bx+3.又f(x+1)﹣f(x)=4x+1,∴a(x+1)2+b(x+1)+3﹣(ax2+bx+3)=4x+1,即2ax+a+b=4x+1,∴,∴.∴f(x)=2x2﹣x+3.(2)f(x)>6x+m等价于2x2﹣x+3>6x+m,即2x2﹣7x+3>m在[﹣1,1]上恒成立,令g(x)=2x2﹣7x+3,则g(x)min=g(1)=﹣2,∴m<﹣2.17.(12分)已知递增等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n﹣1+a n(n∈N*),且{b n}的前n项和T n.求证:T n≥2.【解答】(1)解:设公比为q,由题意:q>1,a1=1,则a 2=q,,∵S3=2S2+1,∴a1+a2+a3=2(a1+a2)+1,…(2分)则1+q+q2=2(1+q)+1,解得:q=2或q=﹣1(舍去),∴.…(4分)(2)证明:b n=2n﹣1+a n=2n﹣1+2n﹣1,…(6分)=+=n2+2n﹣1.…(8分)又∵在[1,+∞)上是单调递增的,∴T n≥T1=2,∴T n≥2.…(10分)18.(12分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求f(x)+4cos(2A+)(x∈[0,])的取值范围.【解答】解:(1)∵∴∴(2分)(6分)(2)由正弦定理得,(a<b,即A<B),所以A=(9分)∵∴所以(12分)19.(12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.【解答】解:(1)设每件定价为t元,依题意得(8﹣)x≥25×8,整理得t2﹣65t+1 000≤0,解得25≤t≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意知当x>25时,不等式ax≥25×8+50+(x2﹣600)+x有解,等价于x>25时,a≥+x+有解.由于+x≥2 =10,当且仅当=,即x=30时等号成立,所以a≥10.2.当该商品改革后的销售量a至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.20.(13分)已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥4成立,求a1的取值范围.【解答】解:函数f(x)=lnx+cosx﹣(﹣)x,∴,则,故a n+1+a n=4n+3(1)若数列{a n}是等差数列,由a n+1+a n=4n+3得(a1+nd)+[a1+(n﹣1)d]=4n+3,解得:(2)由.得a n+2+a n+1=4n+7两式相减,得a n+2﹣a n=4故数列{a2n﹣1}是首项为a1,公差为4的等差数列.数列{a2n}是首项为a2,公差为4的等差数列,由a2+a1=7,a1=2,得a2=5,所以①当n为奇数是,a n=2n,an+1=2n+3.=;②当n为偶数时,S n=a1+a2+a3+…+a n=;(3)由(2)知,,①当n为奇数时,a n=2n﹣2+a1,a n+1=2n+5﹣a1.由.令,∴f(n)max=f(1)=﹣21,∴.解得.②当n为偶数时,a n=2n+3﹣a1,a n +1=2n+a1.由.令,∴g(n)max=g(2)=﹣21,∴解得a1∈R综上,a1的取值范围是.21.(14分)已知f(x)=aln(x﹣1),g(x)=x2+bx,F(x)=f(x+1)﹣g(x),其中a,b∈R.(Ⅰ)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;(Ⅱ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1)n∈N,求n;(Ⅲ)当b=a﹣2时,若x1,x2是F(x)的两个极值点,当|x1﹣x2|>1时,求证:|F(x1)﹣F(x)|>3﹣4ln2.【解答】解:(I),g'(x)=2x+b…(1分)由题知,即…(2分)解得(II)F(x)=f(x+1)﹣g(x)=alnx﹣(x2+bx),由题知,即解得a=6,b=﹣1…(6分)∴F(x)=6lnx﹣(x2﹣x),=∵x>0,由F'(x)>0,解得0<x<2;由F'(x)<0,解得x>2∴F(x)在(0,2)上单调递增,在(2,+∞)单调递减,故F(x)至多有两个零点,其中x1∈(0,2),x2∈(2,+∞)…(7分)又F(2)>F(1)=0,F(3)=6(ln3﹣1)>0,F(4)=6(ln4﹣2)<0∴x0∈(3,4),故n=3 …(9分)(III)当b=a﹣2时,F(x)=alnx﹣[x2+(a﹣2)x],=,由题知F'(x)=0在(0,+∞)上有两个不同根x1,x2,则a<0且a≠﹣2,此时F'(x)=0的两根为﹣,1,…(10分)由题知|﹣﹣1|>1,则+a+1>1,a2+4a>0又∵a<0,∴a<﹣4,此时﹣>1则F(x)与F'(x)随x的变化情况如下表:(﹣∴|F(x1)﹣F(x2)|=F(x)极大值﹣F(x)极小值=F(﹣)﹣F(1)=aln(﹣)+a2﹣1,…(11分)设,则,,∵a<﹣4,∴>﹣,∴>0,∴Φ'(a)在(﹣∞,﹣4)上是增函数,Φ'(a)<Φ'(﹣4)=ln2﹣1<0从而Φ(a)在(﹣∞,﹣4)上是减函数,∴Φ(a)>Φ(﹣4)=3﹣4ln2∴|F (x 1)﹣F (x )|>3﹣4ln2.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f(p)f (q)()2bf a-0x x>O-=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2A =,{}10B x mx =-=,若B B A = ,则符合条件的实数m 的值组成的集合为( )A .11,2⎧⎫⎨⎬⎩⎭B . 11,2⎧⎫-⎨⎬⎩⎭C .11,0,2⎧⎫⎨⎬⎩⎭D .11,2⎧⎫-⎨⎬⎩⎭6.已知函数21, 0()1,0x f x x x <⎧=⎨+≥⎩,则方程2(1)(2)f x f x -=的解集是( )A .{|1}x x ≤-B .{1-C .{|1x x ≤-或1x =-+D .{|1x x <-或1x =- 7.已知函数()sin()(0)3f x x πωω=+>,若()()63f f ππ=且()f x 在区间(,)63ππ上有最小值,无最大值,则ω的值为( ) A .23 B .53C .143 D . 3838.数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a a n a a a a -+-+⋅⋅=≥--,则数列{}n a 的第100项为( ) A .10012 B .5012 C .1100 D .1509.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三点,动点P 满足()sin sin AB AC OP OA AB BAC Cλ=++,(0,)λ∈+∞,则动点P 的轨迹一定通过ABC ∆的( )A .重心B .垂心C .外心D .内心10.已知函数)(x f y =的图像为R 上的一条连续不断的曲线,当0x ≠时,()'()0f x f x x+>,则关于x的函数xx f x g 1)()(+=的零点的个数为( )14.已知函数)0()(23≠+++=a d cx bx ax x f 的对称中心为),(00y x M ,记函数)(x f 的导函数为)(x f ',)(x f '的导函数为)(x f '',则有0)(0=''x f .若函数233)(x x x f -=,则可求得)20134025()20134024()20132()20131(f f f f ++⋅⋅⋅++_________. 15.已知ABC ∆中,AB AC ⊥,||2AB AC -=,点M 是线段BC (含端点)上的一点,且()1AM AB AC ⋅+=,则||AM 的取值范围是 .三、解答题 (本大题共6小题,满分75分.解答须写出文字说明证明过程或演算步骤.)16.(本题满分12分)已知函数229)2lg()(xx x x f --=的定义域为A ,(1)求A ;(2)若{}01222≥-+-=k x x x B ,且A B ⋂≠∅,求实数k 的取值范围. 17.(本小题满分12分)已知(sin cos ,3cos ),(cos sin ,2sin )m x x x n x x x ωωωωωω=+=-,且0ω>, 设()f x m n =⋅,()f x 的图象相邻两对称轴之间的距离等于2π. (1)求函数()f x 的解析式;(2)在△ABC 中,a b c 、、分别为角A B C 、、的对边,4b c +=,1f A =(),求△ABC 面积的最大值.(2)求证:当411≠b 时,数列{}n n a b -为等比数列; (3)在(2)的条件下,设数列{}n b 的前n 项和为n T ,若数列{}n T 中只有3T 最小,求1b 的取值范围.21.(本题满分14分)已知函数32()f x x x bx =-++,()ln g x a x x =+(0a ≠) (1)若函数()f x 存在极值点,求实数b 的取值范围;(2)求函数()g x 的单调区间;(3)当0b =且0a >时,令(),1()(),1f x x F xg x x x <⎧=⎨-≥⎩,P (11,()x F x ),Q (22,()x F x )为曲线y=()F x 上的两动点,O 为坐标原点,能否使得POQ ∆是以O 为直角顶点的直角三角形, 且斜边中点在y 轴上?请说明理由.。
湖北省黄冈市重点中学2013年—2014年上学期期末考试高三年级数学试题(文)时间120分钟满分150分第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若z的共轭复数为z,()2f z i z i+=+(i为虚数单位),则)23(if+等于()A.3i-B.3i+C.33i+D.32i-2.已知等比数列{na}的前n项和为nS,且317S a=,则数列{}na的公比q的值为()A.2 B.3 C.2或-3 D.2或33.函数()f x=2|log|12||x xx--的图像为 ( )4.阅读如图所示的程序框图,若输入919a=,则输出的kA.9B.10C.11D.125. 函数axxxf+=ln)(存在与直线02=-yx则实数a的取值范围是()A. ]2,(-∞ B. )2,(-∞ C. ),2(+∞ D. ),0(+∞6.已知||2||0a b=≠,且关于x的函3211()||32f x x a x a bx=++⋅在R上有极值,则向量,a b的夹角范围是()A.[0,)6πB.(,]6ππ C.(,]3ππ D.A B侧视图俯视图7.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数.给出下列函数:①()sin cos f x x x =+;②())sin cos f x x x =+;③()sin f x x =;④()f x x =其中“互为生成”函数的是( )A .①②B .②③C .③④D .①④8.能够使圆014222=++-+y x y x 恰有两个点到直线02=++c y x 距离等于1的c 的一个值为( )A .5 B .53C .2D .39.在三棱锥A —BCD 中,侧棱AB 、AC 、AD 两两垂直,△ABC 、△ACD 、△ADB的面积分别为2、A —BCD 的外接球的体积为 ( )AB.C.D.10.如下图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{}*()n a n N ∈的前12项,如下表所示:按如此规律下去,则=2013a ( ) A .501 B.502 C .503 D .50411. 某几何体的三视图如图所示,则 这个几何体的体积为( )A .4B .203C .263D .8 12.记实数n x x x ,,21中的最大数为{}n x x x 21,max ,最小值为{}n x x x 21,m in 。
湖北黄冈中学2009届高三年级期末考试数学试题(理科)一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数sin 2y x =的一个增区间是 ( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .,44ππ⎡⎤-⎢⎥⎣⎦ C .0,2π⎡⎤⎢⎥⎣⎦ D .,02π⎡⎤-⎢⎥⎣⎦2.已知向量(2,3)=a ,(1,2)=-b ,若m n +a b 与2-a b 共线,则n m等于 ( )A .2-;B .2C .21- D .213.已知(3,1),(2,1)AB =-=u u u r n ,且7AC ⋅=u u u r n ,则BC ⋅=u u u r n ( )A .2-B .0C .2-或2D . 24.设1tan10,1tan10a b +==-oo ,则有 () A .222a b a b +<< B .222a b b a +<<C .222a b a b +<<D .222a b b a +<<5.已知120a a >>,则使得2(1)1i a x -<(1,2)i =都成立的x 取值范围是 ( )A .11(0,)aB .12(0,)aC .21(0,)aD .22(0,)a 6.由下列条件解△ABC ,其中有两解的是 ( )A .20,45,80b A C ===o oB .30,28,60a c B ===oC .14,16,45a c A ===oD .12,15,120a c A ===o7.若向量,,a b c 两两的夹角相等,且满足1,2,4===a b c ,则=a +b+c ( )A .7B .7CD .78.已知两不共线向量(cos ,sin )αα=a ,(cos ,sin )ββ=b ,则下列说法不正确...的是( ) A .()()+⊥-a b a b B .a 与b 的夹角等于αβ-C .2++->a b a bD .a 与b 在+a b 方向上的投影相等9.已知()g x 是定义在R 上的二次函数,2,1(),1x x f x x x ⎧≥⎪=⎨<⎪⎩,若[]()f g x 的值域是[)0,+∞,则()g x 的值域是( ) A .(][),11,-∞-+∞UB .(][),10,-∞-+∞UC .[)0,+∞D .[)1,+∞ 10.关于x 的不等式22cos lg(9)cos lg(9)x x x x +-<+-的解集为 ( )A.(3,--U B.()(22ππ--UPCBA C.(- D .(3,3)-二、填空题:本大题共5小题,每小题5分,共25分.11x >的解集为____________.12.函数11()sin()cos 633f x x x π=-+图象的相邻的两个对称中心的距离是__________. 13.等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于___________. 14.如图,半圆的直径6AB =,O 为圆心,C 为半圆 上不同于A B 、的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅u u u r u u u r u u u r 的最小值是__________.15.若对任意的[]0,1x ∈1kx ≤-总成立,则实数k 的取值范围是______. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知R A B ∈,,且22sin 2cos 22cos 22y A B A B =+-+.(1)若A B C ,,为ABC ∆的三内角,当y 取得最小值时,求C ;(2)当2A B π+=时,将函数22sin 2cos 22cos 22y A B A B =+-+的图象按向量p平移后得到函数2cos2y A =的图象,求出所有满足条件的向量p .数列{}n a 的前n 项和为1,1n S a =且*121()N n n a S n +=+∈.(1)求数列{}n a 的通项公式;(2)等差数列{}n b 的各项均为正数,其前n 项和为n T ,315T =,又112233,,a b a b a b +++成等比数列,求n T .18.(本小题满分12分)(1)设x 是正实数,求证:233(1)(1)(1)8x x x x +++≥;(2)若R x ∈,不等式233(1)(1)(1)8x x x x +++≥是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.19.(本小题满分12分)定义n x x x ,,,21Λ的“倒平均数”为)(*21N ∈++n x x x n nΛ,已知数列n a n 前}{项的“倒平均数”为.421+n (1)记)(1*N ∈+=n n a c n n ,试比较n c 与1n c +的大小; (2)是否存在实数λ,使得当x λ≤时,*2014)(N ∈≤+-+-=n n a x x x f n 对任意恒成立?若存在,求出最大的实数λ;若不存在,说明理由.甲、乙两公司同时开发同一种新产品,经测算,对于函数(),()f x g x ,当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于()f x 万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于()g x 万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)若(0)10f =,(0)20g =,试解释它们的实际意义;(2)设()104x f x =+,()20g x =,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?21.(本小题满分14分)已知定义在[]0,1的函数()f x 同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立.(1)函数()21x g x =-在区间[]0,1上是否同时适合①②③?并说明理由;(2)假设存在[]0,1a ∈,使得[]()0,1f a ∈且[]()f f a a =,求证:()f a a =.参考答案1—5 BCDAB 6—10 CDBCB11.(,0)-∞ 12.3π 13.13 14.92- 15.2,2⎛-∞ ⎝⎦16.(1)221(sin 2(cos 2)12y A B =+-+由题,sin 22,1cos 22A B ⎧=⎪⎪⎨⎪=⎪⎩6A π=或3π,6B π=或56π, 又A B π+<, 故2C π=或23π. (2)当2A B π+=时,22,cos2cos2A B B A π+==-,按向量p 平移后得到函数2cos2y A =的图象,故(,3)()6Z k k ππ=+-∈p . 17.(1)当2n ≥时,11(21)(21)n n n n a a S S +--=+-+,即有13n n a a += 又21121213a S a =+=+=,{}n a ∴是公比为3的等比数列,且11a =,故13n n a -=.(2)由(1),1231,3,9a a a ===,又312313215,210T b b b b b b =++=∴+==, 依题112233,,a b a b a b +++成等比数列,有131164(1)(9)(1)(19)b b b b =++=+-,解得13b =或15,因{}n b 的各项均为正数,13,2b d ∴==,故23(1)2n T n n n n n =+-=+.18.(1)证明:x是正数,由重要不等式知,2312,1x x x x +≥+≥+≥故233(1)(1)(1)28x x x x x +++≥⋅=(当1x =时等号成立).(2)若R x ∈,不等式233(1)(1)(1)8x x x x +++≥仍然成立.证明:由(1)知,当0x >时,不等式成立;当0x ≤时,380x ≤, 而2322222213(1)(1)(1)(1)(1)(1)(1)(1)()024x x x x x x x x x x ⎡⎤+++=++-+=++-+≥⎢⎥⎣⎦ 此时不等式仍然成立.19.(1)记数列{}n a 的前n 项和为n S ,则依题有124n n S n =+ 2(24)24n S n n n n ∴=+=+,故116(1)42(2)n n n S n a S S n n -==⎧=⎨-=+≥⎩ 故数列的通项为42n a n =+.故422411n n c n n +==-++,易知,1n n c c +<. (2)假设存在实数λ,使得当x λ≤时,2()401n a f x x x n =-+-≤+对任意N n *∈恒成立, 则*214N ∈+≤+-n n a x x n 对任意都成立, 20.(1)(0)10f =表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;(0)20g =表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,若双方均无失败的风险,依题意,当且仅当1()104()20y f x x x g y ⎧≥=+⎪⎨⎪≥=⎩成立.故120)104y ≥+,则4600,15)0y ≥∴≥4≥故16,2024y x ≥≥≥即在双方均无失败风险的情况下尽可能少地投入宣传费用,甲公司应投入24万元宣传费,乙公司应投入16万元的宣传费用.21.(1)显然()21x g x =-,在[0,1]满足①()0g x ≥;满足②(1)1g =;对于③,若12120,0,1x x x x ≥≥+≤,则[]121212121212()()()2121212221x x x x x x x x g x x g x g x ++⎡⎤+-+=----+=--+⎣⎦ 21(21)(21)0x x =--≥ .故()g x 适合①②③.(2)由③知,任给[]0,1m n ∈、时,当m n >时,()()()f m f n f m n -=-由于(]01,0,1n m m n ≤<≤∴-∈,()()()0f m f n f m n -=-≥所以()()f m f n ≥若()a f a <,则()[()]f a f f a a ≤= 前后矛盾若()a f a >,则()[()]f a f f a a ≥= 前后矛盾 故()a f a =得证.。
湖北省黄冈市2014届高三数学上学期期末考试试题 理(含解析)新人教A 版一、选择题:本大题共有10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请把它选出后在答题卡上规定的位置上用铅笔涂黑.1.已知集合}1|||lg ||R {<∈=x x A ,}082|Z {2<--∈=x x x B ,则=B A ( )A. )4,101()101,2( -- B.)4,0()0,2( - C. }3,2,1,1{- D. }3,2,1,0,1{-2.复数1z 、2z 在复平面内分别对应点A 、B ,i z 431+=,将点A 绕原点O 逆时针旋转90得到点B ,则=2z ( )A. i 43-B.i 34--C. i 34+-D. i 43--3.将右图算法语句(其中常数e 是自然对数的底数)当输入x 为3时,输出y 的值为( )A. 1B.5.1C. 125.0D. 859141.04.已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线与抛物线x y 42=的准线分别交于A 、B 两点,O 为坐标原点, AOB ∆的面积为3,则双曲线的离心率=e ( )A.21B.27C. 2D. 35.福彩3D 是由3个0~9的自然数组成投注号码的彩票,耀摇奖时使用3台摇奖器,各自独立、等可能的随机摇出一个彩球,组成一个3位数,构成中奖号码,下图是近期的中奖号码(如197,244,460等),那么在下期摇奖时个位上出现3的可能性为( )6.命题R ,:∈∃βαp ,使βαβαsin cos )cos(+=+;命题:q 直线01=++y x 与圆2)1(22=-+y x 相切.则下列命题中真命题为( )A. q p ∧B.)(q p ⌝∧C. )()(q p ⌝∧⌝D. q p ∧⌝)(7.设函数⎪⎩⎪⎨⎧≥-<-=0,0,)1()(62x x x x x x f ,则当0>x 时,)]([x f 的展开式中常数项为( )A. 20-B.20C. 15-D. 15 【答案】D 【解析】8.函数)0)(sin(2)(>+=ωϕωx x f 的部分图象如图所示,若10=•BC AB ,则=ω( )A.3π B.8π C. 6π D. 12π9.“0≤a ”是“函数|)1213(|)(3--+=x a x a x x f 在区间),0(+∞上单调递增”的( ) A. 充分必要条件 B.必要不充分条件 C. 充分不必要条件 D. 既不充分也不必要条件10.已知C 为线段AB 上一点,P 为直线AB 外一点,I 为PC 上一点,满足4||||=-PB PA ,10||=-PB PA ,||||PB PC PB PA PC PA •=•,且)0)(||||(>++=λλAP APAC ACBA BI ,则||BA BA BI •的值为( )A. 2B.4C. 3D. 5考点:本题考查三角形的内心性质,平面向量的数量积,向量的投影.二、填空题:本大题共5小题,每小题5分,满分25分. (一)必做题(11-14) 11.若⎰=3211dx x S ,⎰=π022cos dx xS ,则1S 、2S 的大小关系为 .12.在电视节目《爸爸去哪儿》中,五位爸爸个带一名子(女)体验乡村生活.一天,村长安排1名爸爸带3名小朋友去完成某项任务,至少要选1个女孩(5个小朋友中3男2女),Kimi(男)说我爸爸去我就去,我爸爸不去我就不去;石头(男)生爸爸的气,说我爸爸去我就不去,我爸爸不去,我就去;其他人没意见,那么可选的方案有 种.13.等差数列}{n a 的前n 项和记为n S ,若44≥S ,287≤S ,则10a 的最大值为 .d a d 64215210+≤≤+∴,∴d d642152+≤+,解得2≤d , 1626410=⨯+≤∴a .考点:本题考查等差数列的通项公式.14.定义在R 上的偶函数,)(x f 满足R ∈∀x ,都有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上有三个零点,则a 的取值范围是 .(二)选做题(请在夏明两题中任选一题作答,若两题都做,则按第15题计分). 15.如图,在半径为7的圆O 中,弦AB 、CD 相交于P ,2==PB PA ,4=CP ,则圆心O 到弦CD 的距离为 .16.在直角坐标系xoy 中,椭圆C 的参数方程为⎩⎨⎧==θθsin cos b y a x (θ为参数,0,0>>b a ).在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的极坐标方程为23)3cos(=+πθρ,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则=a .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分12分)等比数列}{n a 的前n 项和n S ,已知73=S ,31+a ,23a ,43+a 成等差数列.(1)求数列}{n a 的公比q 和通项n a ;(2)若}{n a 是递增数列,令128log 12+=n n a b ,求||||||21n b b b +⋅⋅⋅++.18.(本题满分12分)设向量)cos 2),42sin(2(x x a π+-=,)cos sin 3,1(x x b -=,R ∈x ,函数b a x f •=)(.(1)求函数)(x f 的最小正周期;(2)在锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,62=b ,A B 2=,35)8(=+πA f ,求a 的值.19.(本题满分12分)某英语学习小组共12名同学进行英语听力测试,随机抽取6名同学的测试成绩(单位:分),用茎叶图记录如下,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2) 成绩高于样本均值的同学为优秀,根据茎叶图估计该小组12名同学中有几名优秀同学;(3)从该小组12名同学中任取2人,求仅有1人是来自随机抽取6人中优秀同学的概率.20.(本题满分12分)设关于x 不等式)R (|2|∈<-a a x 的解集为A ,且A ∈23,A ∉-21. (1)R ∈∀x ,a a x x +≥-+-2|3||1|恒成立,且N ∈a ,求a 的值;(2)若1=+b a ,求ab b ||||31+的最小值并指出取得最小值时a 的值.21.(本题满分13分)如图,在平面直角坐标系xoy 中,已知抛物线)0(2:2>=p px y C ,设点)0,(n D ,)0,(m E ,M 为抛物线C 上的动点(异于顶点),连结ME 并延长交抛物线C 于点N ,连结MD 、ND 并分别延长交抛物线C 于点P 、Q ,连结PQ ,设MN 、PQ 的斜率存在且分别为1k 、2k .(1)若11=k ,2=m ,64||=MN ,求p ;(2)是否存在与p 无关的常数λ,是的12k k λ=恒成立,若存在,请将λ用m 、n 表示出来;若不存在请说明理由.同理,点222222,pn pnQy y⎛⎫-⎪⎝⎭……………………8分,,M E N三点共线22.(本题满分14分)已知函数)1ln(||)(+--=x a x x x f .(1)当0=a 时,求函数)(x f 的单调区间;(2)当1-=a 时,若),0[+∞∈∀x ,2)1()(x k x f +≤恒成立,求实数k 的最小值;(3)证明)N (2)12ln(1221∑=*∈<+--ni n n i .当0k >时,12112()2111kx x k g x kx x x ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦'=-+=++。
2014-2015学年湖北省黄冈中学高三(上)期末数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若直线l1:2x+(m+1)y+4=0与直线l2:mx+3y﹣2=0平行,则m的值为()A.﹣2B.﹣3C.2或﹣3D.﹣2或﹣3 2.(5分)设全集U=R,A={x||x+1|<1},B={x|()x﹣2≥0},则图中阴影部分所表示的集合()A.(﹣2,0)B.(﹣2,﹣1]C.(﹣1,0]D.(﹣1,0)3.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是“∀x∈R均有x2+x+1<0”4.(5分)设向量,是夹角为的单位向量,若=3,=﹣,则向量在方向的投影为()A.B.C.D.15.(5分)已知等比数列{a n}的首项a1=2014,公比为q=,记b n=a1a2a3…a n,则b n达到最大值时,n的值为()A.10B.11C.12D.不存在6.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(2,1,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的侧视图和俯视图分别为()A.①和②B.①和③C.③和②D.④和②7.(5分)已知在△ABC中,边a、b、c的对角为A、B、C,A=30°,b=6,C∈[60°,120°],则此三角形中边a的取值使得函数f(x)=lg(ax2﹣ax+1)的值域为R 的概率为()A.B.C.D.8.(5分)近期由于雨雪天气,路况不好,某人驾车遇到紧急情况而刹车,以速度v(t)=7﹣3t+(t为时间单位s)行驶至停止.在此期间汽车继续行驶的距离(单位;m)是()A.1+25ln5B.4+25ln5C.8+25ln D.4+50ln2 9.(5分)已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为()A.1<e<B.e>C.e>D.1<e<10.(5分)已知函数f(x)=+,若x,y满足f(x+1)﹣f(y)>0,则x2+y2﹣2x+1的取值范围()A.(1,10)B.[2,10]C.(,)D.[,+∞]二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)11.(5分)复平面内与复数z=所对应的点关于实轴对称的点为A,则A对应的复数为.12.(5分)设(1﹣x)8=a0+a1x+…+a7x7+a8x8,则|a1|+…+|a7|+|a8|=.13.(5分)已知实数x,y,z满足2x+y+3z=32,则的最小值为.14.(5分)定义在(0,+∞)上的函数f(x)满足:①当x∈[1,3)时,f(x)=1﹣|x﹣2|;②f(3x)=3f(x).设关于x的函数F(x)=f(x)﹣a的零点从小到大依次为x1,x2,…,x n,….若a=1,则x1+x2+x3=;若a∈(1,3),则x1+x2+…+x2n=.三、【选修4-1:几何证明选讲】(共1小题,满分5分)15.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.四、【选修4-4:坐标系与参数方程】(共1小题,满分0分)16.已知直线l的参数方程是,圆C的极坐标方程为.由直线l上的点向圆C引切线,则切线长的最小值为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知向量=(2cosωx,2),=(2cos(ωx+),0)(ω>0),函数f(x)=•的图象与直线y=﹣2+的相邻两个交点之间的距离为π.(Ⅰ)求函数f(x)在[0,2π]上的单调递增区间;(Ⅱ)将函数f(x)的图象向右平移个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有6个零点,求b的最小值.18.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.19.(12分)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20.(12分)如图1所示,直角梯形ABCD,AD∥BC,AD⊥AB,AB=BC=2AD=4,E、F为线段AB、CD上的点,且EF∥BC,设AE=x,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图2所示).(Ⅰ)若以B、C、D、F为顶点的三棱锥体积记为f(x),求f(x)的最大值及取最大值时E的位置;(Ⅱ)在(1)的条件下,试在线段EF上的确定一点G使得CG⊥BD,并求直线GD与平面BCD所成的角θ的正弦值.21.(13分)已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是直线x=﹣4与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.22.(14分)已知函数f(x)=a(x+1)ln(x+1)图象上的点(e2﹣1,f(e2﹣1))处的切线与直线x+3y+1=0垂直(e=2.71828).(Ⅰ)求f(x)的单调区间;(Ⅱ)求函数y=2f(x﹣1)与y=x3﹣mx(m>1)的图象在区间[,e]上交点的个数;(Ⅲ)证明:当m>n>0时,(1+e m)en<(1+e n)em.2014-2015学年湖北省黄冈中学高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若直线l1:2x+(m+1)y+4=0与直线l2:mx+3y﹣2=0平行,则m的值为()A.﹣2B.﹣3C.2或﹣3D.﹣2或﹣3【解答】解:∵直线l1:2x+(m+1)y+4=0与直线l2:mx+3y﹣2=0平行,∴=,解得m=2或﹣3,故选:C.2.(5分)设全集U=R,A={x||x+1|<1},B={x|()x﹣2≥0},则图中阴影部分所表示的集合()A.(﹣2,0)B.(﹣2,﹣1]C.(﹣1,0]D.(﹣1,0)【解答】解:由Venn图可知阴影部分对应的集合为A∩(∁U B),∵A={x||x+1|<1}={x|﹣2<x<0},B={x|()x﹣2≥0}={x|x≤﹣1},∴∁U B={x|x>﹣1},即A∩(∁U B)={x|﹣1<x<0},故选:D.3.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是“∀x∈R均有x2+x+1<0”【解答】解:A.命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,因此不正确;B.由x2﹣5x﹣6=0解得x=﹣1或6,因此“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件,不正确;C.命题“若x=y,则sinx=siny”为真命题,其逆否命题为真命题,正确;D.命题“∃x∈R使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,因此不正确.综上可得:只有C正确.故选:C.4.(5分)设向量,是夹角为的单位向量,若=3,=﹣,则向量在方向的投影为()A.B.C.D.1【解答】解:∵向量,是夹角为的单位向量,∴=1,==﹣.==3,∴====.∴向量在方向的投影为===.故选:A.5.(5分)已知等比数列{a n}的首项a1=2014,公比为q=,记b n=a1a2a3…a n,则b n达到最大值时,n的值为()A.10B.11C.12D.不存在【解答】解:由等比数列的通项公式,得a n=a1•q n﹣1<212﹣n∴b n=a1•a2•a3…a n<211•210•29•28•…•212﹣n=∵2>1∴达到最大值时,b n达到最大值结合二次函数图象的对称轴,可得当n=11时,b n达到最大值.故选:B.6.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(2,1,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的侧视图和俯视图分别为()A.①和②B.①和③C.③和②D.④和②【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得四面体的侧视图和俯视图分别为③②故选:C.7.(5分)已知在△ABC中,边a、b、c的对角为A、B、C,A=30°,b=6,C∈[60°,120°],则此三角形中边a的取值使得函数f(x)=lg(ax2﹣ax+1)的值域为R 的概率为()A.B.C.D.【解答】解:由已知在△ABC中,边a、b、c的对角为A、B、C,A=30°,b=6,C∈[60°,120°],则B∈[30°,90°],由正弦定理,得到a==∈[3,6],使得函数f(x)=lg(ax2﹣ax+1)的值域为R的a的范围为,解得a≥4,所以由几何概型,此三角形中边a的取值使得函数f(x)=lg(ax2﹣ax+1)的值域为R的概率为;故选:D.8.(5分)近期由于雨雪天气,路况不好,某人驾车遇到紧急情况而刹车,以速度v(t)=7﹣3t+(t为时间单位s)行驶至停止.在此期间汽车继续行驶的距离(单位;m)是()A.1+25ln5B.4+25ln5C.8+25ln D.4+50ln2【解答】解:令,则t=4.汽车刹车的距离,故选:B.9.(5分)已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为()A.1<e<B.e>C.e>D.1<e<【解答】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MF1F2=60°,∠PF1F2=30°,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.10.(5分)已知函数f(x)=+,若x,y满足f(x+1)﹣f(y)>0,则x2+y2﹣2x+1的取值范围()A.(1,10)B.[2,10]C.(,)D.[,+∞]【解答】解:由,得,即﹣1≤x≤1,故函数的定义域为[﹣1,1],f(﹣x)=+=f(x),则函数f(x)是偶函数,当0≤x≤1时,函数的导数f′(x)=×()=•<0,即此时函数单调递减,则f(x+1)﹣f(y)>0等价为f(x+1)>f(y),即f(|x+1|)>f(|y|),即,即,作出不等式组对应的平面区域如图:x2+y2﹣2x+1=(x﹣1)2+y2的几何意义是区域内的点到点Q(1,0)的距离的平方,由图象可知,OQ的距离最小为1,AQ或BQ的距离最大,此时最大值为(﹣2﹣1)2+12=10,故x2+y2﹣2x+1的取值范围是(1,10),故选:A.二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)11.(5分)复平面内与复数z=所对应的点关于实轴对称的点为A,则A对应的复数为1﹣i.【解答】解:复平面内与复数z====1+i所对应的点(1,1)关于实轴对称的点为A(1,﹣1),则A对应的复数为1﹣i.故答案为:1﹣i.12.(5分)设(1﹣x)8=a0+a1x+…+a7x7+a8x8,则|a1|+…+|a7|+|a8|=255.【解答】解:由题意可得(1+x)8=|a0|+|a1|x+…+|a7|x7+|a8|x8,在此等式中,令x=1,可得|a0|+|a1|+…+|a7|+|a8|=28=256,又x=0时,|a0|=1,所以|a1|+…+|a7|+|a8|=255,故答案为:255.13.(5分)已知实数x,y,z满足2x+y+3z=32,则的最小值为.【解答】解:12+22+32=14,∴由柯西不等式可得(22+12+32)[(x﹣1)2+(y+2)2+z2]≥(2x﹣2+y+2+3z)2=322,∴≥,即的最小值是,故答案为:.14.(5分)定义在(0,+∞)上的函数f(x)满足:①当x∈[1,3)时,f(x)=1﹣|x﹣2|;②f(3x)=3f(x).设关于x的函数F(x)=f(x)﹣a的零点从小到大依次为x1,x2,…,x n,….若a=1,则x1+x2+x3=14;若a∈(1,3),则x1+x2+…+x2n=6(3n﹣1).【解答】解:∵①当x∈[1,3)时,f(x)=1﹣|x﹣2|∈[0,1];②f(3x)=3f(x).∴当≤x<1时,则1≤3x<3,由f(x)=f(3x)可知:f(x)∈[0,].同理,当x∈(0,)时,0≤f(x)<1,当x∈[3,6]时,由∈[1,2],可得f(x)=3f(),f(x)∈[0,3];同理,当x∈(6,9)时,由∈(2,3),可得f(x)=3f(),f(x)∈[0,3];此时f(x)∈[0,3].当a=1时,x1=2,x2+x3=12,∴x1+x2+x3=14当a∈(1,3)时.则F(x)=f(x)﹣a在区间(3,6)和(6,9)上各有一个零点,分别为x1,x2,且满足x1+x2=2×6,依此类推:x3+x4=2×18,…,x2n﹣1+x2n=2×2×3n.+x2n=4×(3+32+...+3n)=4×=6×(3n ∴当a∈(1,3)时,x1+x2+ (x2)﹣1﹣1).故答案为:14,6×(3n﹣1)三、【选修4-1:几何证明选讲】(共1小题,满分5分)15.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.【解答】解:连接OC,BE,如下图所示,∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l,∴AD∥OC,故在Rt△ABE中∠A=∠COB=60°,∴AE=AB=4.故答案为:4.四、【选修4-4:坐标系与参数方程】(共1小题,满分0分)16.已知直线l的参数方程是,圆C的极坐标方程为.由直线l上的点向圆C引切线,则切线长的最小值为2.【解答】解:圆c的极坐标方程为ρ=2cos(θ+),转化成普通方程为:整理成标准方程为:所以:圆心坐标为:,半径为1.直线l的参数方程是(t为参数),转化成直角坐标方程为:y=x+要使切线长最小,只有圆心C到直线l上的点P的距离最小.而CP的最小值为点C到直线l的距离,即d=,故切线长的最小值为:故答案为:三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知向量=(2cosωx,2),=(2cos(ωx+),0)(ω>0),函数f(x)=•的图象与直线y=﹣2+的相邻两个交点之间的距离为π.(Ⅰ)求函数f(x)在[0,2π]上的单调递增区间;(Ⅱ)将函数f(x)的图象向右平移个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有6个零点,求b的最小值.【解答】解:(I)由于向量=(2cosωx,2),=(2cos(ωx+),0)(ω>0),f(x)==4cosωxcos(ωx+)=4cosωx(cosωx﹣sinωx)=2•﹣sin2ωx,即有,由题意得T=π,所以ω=1,所以,由,解得,又x∈[0,2π],则所求单调增区间为[,]和[,];(II)由题意得,令g(x)=0得或,k∈Z,每个周期恰有2个零点,要恰有6个零点,则b不小于6个零点的横坐标即可,即.18.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c 的最小值.【解答】解:(Ⅰ)设d、q分别为数列{a n}、数列{b n}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{b n}的前三项,∴(2+d)2=2(4+2d)⇒d=±2.>a n,∵a n+1∴d>0.∴d=2,∴a n=2n﹣1(n∈N*).由此可得b1=2,b2=4,q=2,∴b n=2n(n∈N*).(Ⅱ),①∴.②①﹣②,得=+2(++…+)﹣,∴T n=3﹣.∴T n+﹣=3﹣≤2,∴满足条件恒成立的最小整数值为c=3.19.(12分)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.【解答】解:(Ⅰ)由已知得各组的频率分别是:0.1,0.2,0.3,0.2,0.1,0.1,∴图中各组的纵坐标分别是:0.01,0.02,0.03,0.02,0.01,0.01,由此能作出被调查人员的频率分布直方图,如右图:(Ⅱ)由表知年龄在[15,25)内的有5人,不赞成的有1人,年龄在[25,35)内的有10人,不赞成的有4人,∴恰有2人不赞成的概率为:P(ξ=2)=+=.…(7分)(Ⅲ)ξ的所有可能取值为:0,1,2,3,…(6分)P(ξ=0)==,P(ξ=1)==,P(ξ=3)==,所以ξ的分布列是:…(10分)ξ0123P所以ξ的数学期望Eξ=.…(12分)20.(12分)如图1所示,直角梯形ABCD,AD∥BC,AD⊥AB,AB=BC=2AD=4,E、F为线段AB、CD上的点,且EF∥BC,设AE=x,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图2所示).(Ⅰ)若以B、C、D、F为顶点的三棱锥体积记为f(x),求f(x)的最大值及取最大值时E的位置;(Ⅱ)在(1)的条件下,试在线段EF上的确定一点G使得CG⊥BD,并求直线GD与平面BCD所成的角θ的正弦值.【解答】解:(Ⅰ)由题意知,平面AEFD⊥平面EBCF,AE⊥EF,所以AE⊥面BCF,…(2分)以B、C、D、F为顶点的三棱锥底面为△BCF,高为AE,所以,…(4分)当x=2时,,此时对应的点E为AB的中点.…(6分)(Ⅱ)由(Ⅰ)中知EA、EF、EB两两互相垂直,以E为原点,以EB为x轴、EF 为y轴、EA为z轴建立空间直角坐标系,则E(0,0,0),B(2,0,0),C(2,4,0),D(0,2,2),设G(0,y o,0)由CG⊥BD得,解得y o=2.…(8分)所以,设平面BCD的法向量为,由,可取=(1,0,1),所以sinθ=|cos<,>=即为所求.…(12分)21.(13分)已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是直线x=﹣4与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.【解答】解:(Ⅰ)依题意,设椭圆C的方程为,焦距为2c,由题设条件知,a2=8,b=c所以=4,故椭圆的方程为;(II)椭圆C的左准线方程为x=﹣4,所以点P的坐标为(﹣4,0)显然直线l的斜率存在,所以设直线l的方程为y=k(x+4)设点M,N的坐标分别为(x1,y1),(x2,y2),线段MN的中点为G(x0,y0)由直线代入椭圆方程得(1+2k2)x2+16k2x+32k2﹣8=0.①由△=(16k2)2﹣4(1+2k2)(32k2﹣8)>0解得﹣<k<.②因为x1,x2是方程①的两根,所以x1+x2=﹣,于是x0==﹣,y0=.因为x0==﹣≤0,所以点G不可能在y轴的右边,又直线F1B2,F1B1方程分别为y=x+2,y=﹣x﹣2所以点G在正方形Q内(包括边界)的充要条件为,即解得,此时②也成立.故直线l斜率的取值范围是.22.(14分)已知函数f(x)=a(x+1)ln(x+1)图象上的点(e2﹣1,f(e2﹣1))处的切线与直线x+3y+1=0垂直(e=2.71828).(Ⅰ)求f(x)的单调区间;(Ⅱ)求函数y=2f(x﹣1)与y=x3﹣mx(m>1)的图象在区间[,e]上交点的个数;(Ⅲ)证明:当m>n>0时,(1+e m)en<(1+e n)em.【解答】解:(1)f′(x)=aln(x+1)+a(x+1)=a[1+ln(x+1)],﹣﹣﹣﹣﹣(1分)由于f(x)在点(e2﹣1,f(e2﹣1))处的切线与直线x+3y+1=0垂直,所以f′(e2﹣1)=a(lne2+1)=3,解得a=1,∴f(x)=(x+1)ln(x+1),f′(x)=ln(x+1)+1.…(2分)令f′(x)=0,解得x=,由f′(x)>0得x>,由f′(x)<0得x<,故f(x)的单调递减区间为[﹣1,],单调递增区间为(,+∞)…(4分)(Ⅱ)函数y=2f(x﹣1)与y=x3﹣mx(m>1)的图象在区间[,e]上交点的个数,⇔方程2xlnx=x3﹣mx在区间[,e]上有两个不同的实数解⇔方程m=x2﹣2lnx在区间[,e]上有两个不同的实数解.⇔函数y=m与g(x)=x2﹣2lnx图象在区间[,e]上有两个不同的交点.﹣…(6分)g′(x)=2x﹣=,(x>0),由g′(x)=0得,x=1;当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,故g(x)在[,1]上是减函数,在[1,e]是增函数;在区间[,e]上g(x)的最小值为g(1)=1,∵g()=,∴g(x)的最大值为g(e)=e2﹣2,其大致图象如右图:…(8分)由图象可知,当m的取值范围是(1,2+]时,函数y=2f(x﹣1)与y=x3﹣mx的图象在区间[,e]上有两个不同的交点;当m >2+时,函数y=2f (x ﹣1)与y=x 3﹣mx 的图象在区间[,e ]上有1个交点 …(9分) (Ⅲ)令u=e m ,v=e n , ∵m >n >0,∴u >v >0,要证(1+e m )en <(1+e n )em .,只需证vln (1+u )<uln (1+v ), 这等价于, 令h (x )=,h′(x )==,令k (x )=x ﹣(1+x )ln (1+x ),(x >0), ∵x >0,x +1>1,∴k′(x )=1﹣ln (x +1)﹣1=﹣ln (x +1)<0, 故k (x )在(0,+∞)单调递减, ∴k (x )<k (0)=0, 故h′(x )<0,故h (x )=,是减函数,∵u >v >0, ∴h (u )<h (v ), 即,就是成立.…(14分)赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =定义域R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=。
湖北省黄冈中学2013年秋季高三数学(理)期末考试命题:钱程审稿: 张智校对:张淑春考试时间:2014年1月20日下午14:30—16:30本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分150分,考试时间120分钟.★★★祝考试顺利★★★第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数20132(12a i i i i+⋅-是虚数单位)为纯虚数,则实数a 的值为() A .1 B .1- C .14 D .14-2.已知,b c 是平面α内的两条直线,则“直线a α⊥”是“直线a b ⊥且直线a c ⊥”的() A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.某空间组合体的三视图如图所示,则该组合体的体积为() A .48 B .56 C .64 D .724.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=,则ABC ∆的形状为()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 5.如果若干个函数的图像经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数: ①()sin cos f x x x =;②()2sin()4f x x π=+;③()sin f x xx =;④()21f x x +.其中“同簇函数”的是() A .①② B .①④ C .②③ D .③④6.已知()f x 是定义在R 上以2为周期的偶函数,且当01x ≤≤时,12()log (1)f x x =-,则2011()4f -=() A .2- B .12C .1D .2 第3题图7.双曲线221x y a-=的一条渐近线与圆()2222x y -+=相交于,M N 两点,且2MN =,则此双曲线的离心率为()A B C D .3 8.已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤ 且02OP OB ≤⋅≤ ,则点P 到点C 的距离大于14的概率为() A .5164π- B .564π C .116π- D .16π 9.已知数列{}n a 的通项222cossin 33n n n a n ππ⎛⎫=- ⎪⎝⎭,其前n 项和为n S ,则60S =() A .1840 B .1880 C .1960 D .198010.已知函数()()()212ln f x a x x =---,1()x g x xe -=(a R ∈,e 为自然对数的底数),若对任意给定的(]00,x e ∈,在(]0,e 上总存在两个不同的i x (1,2i =),使得()()0i f x g x =成立,则a 的取值范围是() A .25-1e e -⎛⎤∞ ⎥-⎝⎦,B .22,e e -⎛⎫-∞ ⎪⎝⎭C .222e e -⎛⎫⎪⎝⎭, D .2522,1e e e e --⎡⎫⎪⎢-⎣⎭ 第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.(一)必考题(11—14题)11.已知集合{}2|560A x x x =--<,{}|2B x x =<,则()R A C B ⋂=___________.12.由直线12x =,2x =,曲线1y x =及x 轴所围图形的面积为___________. 13.已知20a b =≠ ,且关于x 的方程20x a x a b ++⋅= 有实根,则a 与b 的夹角的取值范围是___________.14.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推. (1)试问第n 层()2n N n *∈≥且的点数为___________个;(2)如果一个六边形点阵共有169个点,那么它一共有___________层.(二)选考题(请考生在15、16两题中任选一题作答.如果全选,则按第15题作答结果计分)15.(选修4—1:几何证明选讲)如图所示,,EB EC 是圆O 的两条切线,,B C 是切点,,A D 是圆O 上两点,如果46E ︒∠=,32DCF ︒∠=,则A ∠的度数是___________. 16.(选修4—4:坐标系与参数方程) 在极坐标系中,过点18,2P π⎛⎫⎪⎝⎭引圆10sin ρθ=的两条切线,PA PB ,切点分别为,A B ,则线段AB 的长为___________.三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤.17.已知函数()f x m n =⋅,其中()sin cos m x x x ωωω=+,()cos sin ,2sin n x x x ωωω=- ,0ω>,()f x 的相邻两条对称轴间的距离大于等于2π.(1)求ω的取值范围;(2)在ABC ∆中,角,,A B C 所对的边依次为,,a b c,3a b c =+=,当ω的值最大时,()1f A =,求ABC ∆的面积.18.如图所示,为处理含有某种杂质的污水,要制造一底宽为2米的无盖..长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与,a b 的乘积ab 成反比,现有制箱材料60平方米.(制箱材料必须用完)(1)求出,a b 满足的关系式;(2)问当,a b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)?19. 如图所示,四边形PDCE 为矩形,四边形ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ︒∠=∠=,1,2AB AD CD a PD ====.(1) 若M 为PA 中点,求证://AC 平面MDE ; (2) 求平面PAD 与平面PBC 所成锐二面角的大小.20.设数列{}n a 的首项112a =,且11(214n n n a n a a n +⎧⎪⎪=⎨⎪+⎪⎩为偶数)(为奇数),记211()4n n b a n N *-=-∈. (1)求23,a a ;(2)证明:{}n b 是等比数列; (3)求数列31n n b ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 21.如图,椭圆22122:1(0)x y C a b a b+=>>,x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长. (1)求,的方程;(2)设与y 轴的交点为M ,过坐标原点O 的直线l 与相交于点A,B,直线MA,MB 分别与相交与D,E.(i )证明:MA MB ⊥;(ii)记△MAB,△MDE 的面积分别是12,S S .问:是否存在直线l ,使得=?请说明理由. 22.已知函数1ln ()xf x x +=. (1)若函数在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在极值,求实数a 的取值范围;(2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围;(3)求证:()()()221!1n n n en N -*+>+⋅∈⎡⎤⎣⎦.1C 2C 2C 2C 1C 21S S 3217湖北省黄冈中学2013年秋季高三数学(理)期末考试参考答案(附评分细则)二、填空题11.[)2,6 12.2ln 213.,3ππ⎡⎤⎢⎥⎣⎦14.(1)()61n - (2)815.99︒ 16.120138.动点(,)P a b 满足的不等式组为022022a b a b ≤+≤⎧⎨≤-≤⎩,画出可行域可知P 的运动区域为以31,55C ⎛⎫- ⎪⎝⎭P 到点C 的距离小于或等于14的区域是以31,55C ⎛⎫- ⎪⎝⎭为圆心且半径为14的圆以及圆的内部,所以222145164P ππ⎛⎫- ⎪⎝⎭⎝⎭==-⎝⎭9.222cossin 33n n n a n ππ⎛⎫=- ⎪⎝⎭22cos 3n n π=, 所以()()()22232313115323139222k k k a a a k k k k --++=----+=-,其中k N *∈ 所以60S =()5912202018905018402++⋅⋅⋅+-⨯=-=10.易得函数()g x 在(]0,e 上的值域为(]0,1()(]'2222()2,0,a x a f x a x e xx⎛⎫--⎪-⎝⎭=--=∈当22x a =-时,'()0f x =,()f x 在22x a =-处取得最小值222ln 22f a a a ⎛⎫=- ⎪--⎝⎭由题意知,()f x 在(]0,e 上不单调,所以202e a <<-,解得22e a e-< 所以对任意给定的(]00,x e ∈,在(]0,e 上总存在两个不同的i x (1,2i =),使得()()0i f x g x =成立,当且仅当a 满足条件202f a ⎛⎫≤ ⎪-⎝⎭且()1f e ≥因为(1)0f =,所以202f a ⎛⎫≤⎪-⎝⎭恒成立,由()1f e ≥解得251e a e -≤- 综上所述,a 的取值范围是25,1e e -⎛⎤-∞ ⎥-⎝⎦14.观察图形,可以看出,第一层是1个点,其余各层的点数都是6的倍数且倍数比层数少1,所以:(1)第n 层的点数为()61(2)n n -≥;(2)n 层六边形点阵的总点数为()16121n +⨯++⋅⋅⋅+-=()131n n +-令()131169n n +-=解得7n =-(舍去)或8n =所以8n = 三、解答题17.解:(1)22()cos sin sin f x m n x x x x ωωωω=⋅=-+=cos22x x ωω=2sin 26x πω⎛⎫+ ⎪⎝⎭----------------------------3分 因为0ω>,所以函数()f x 的周期22T ππωω== 由题意可知22T π≥,即T π≥,ππω≥----------------------------5分 解得01ω<≤-----------------------------6分(2)由(1)可知ω的最大值为1,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭因为()1f A =,所以1sin 262A π⎛⎫+= ⎪⎝⎭----------------------------7分 而132,666A πππ⎛⎫+∈ ⎪⎝⎭,所以5266A ππ+=,所以3A π=-------------------------9分 而2222cos b c bc A a +-=,所以223b c bc +-=①而()22229b c b c bc +=++=②联立①②解得:2bc =-------------------------11分所以1sin 2ABC S bc A ∆==-------------------------12分 18.解: (1)由题意可得242600,0a b ab a b ++=⎧⎨>>⎩,即2300,0a b ab a b ++=⎧⎨>>⎩------------------------6分注:若没写0,0a b >>,扣两分,少写一个扣1分(2)因为该杂质的质量分数与,a b 的乘积ab 成反比,所以当ab 最大时,该杂质的质量分数最小由均值不等式得2a b +≥2a b =时取等号)所以2a b ab ab ++≥+,即30ab +≤(当且仅当2a b =时取等号)-----------------------8分即0≤,0>≤18ab ≤-----------------------10分所以当且仅当218a b ab =⎧⎨=⎩即()()63a m b m =⎧⎪⎨=⎪⎩时,ab 取得最大值18,此时该杂质的质量分数最小-------------------12分19.20.解: (1)21321313,4428a a a a =+=== ------------------2分(2)证明: 因为2114n n b a -=-,所以121221211111111142424424n n n n n b a a a a ++--⎛⎫⎛⎫=-=-=+-=- ⎪ ⎪⎝⎭⎝⎭------------------5分即112n n b b +=,------------------6分而1111044b a =-=≠,所以{}n b 是以14为首项,公比为12的等比数列-----------7分 注:若没写10b ≠,扣一分(3)1111122n n n b b -+⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,所以31nn b +=()1312n n ++ 所以()()()23131123212312n n T n +=⨯++⨯++⋅⋅⋅++()()()()3412231123212322312n n n T n n ++=⨯++⨯++⋅⋅⋅+-++--------8分两式相减得:()()2341312322216n n n T n ++=+-++⋅⋅⋅+---------10分 即()23228n n T n +=-+ --------12分21.解:(1)由题意知2c e a ==,从而2a b =,又a =,解得2,1a b ==。