2018年人教A版高中数学必修1全册同步练习检测含解析
- 格式:docx
- 大小:1.16 MB
- 文档页数:99
(本文档资料包括高一必修一数学各章节的课后同步练习与答案解析)第一章1.1 1.1.1集合的含义与表示课后练习[A组课后达标]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.12.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.25.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________。
7.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________。
8.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________。
9.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A。
10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值。
[B组课后提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集。
其中正确说法是()A.①④B.②C.②③D.以上说法都不对2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P3.已知集合M={a|a∈N,且65-a∈N},则M=________。
人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。
1.2 集合间的基本关系一、单选题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,答案:A解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.满足{}{}1,21,2,3,4,5A ⊆⊆的集合A 的个数为( ) A .8 B .7C .4D .16答案:A解析:根据已知条件可知集合A 中必有1,2,集合A 还可以有元素3,4,5,写出集合A 的所有情况即可求解. 详解:因为集合A 满足{}{}1,21,2,3,4,5A ⊆⊆,所以集合A 中必有1,2,集合A 还可以有元素3,4,5,满足条件的集合A 有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共有8个,故选:A.3.设集合A =x|x =2k +1,k ∈Z},若a =5,则有( ) A .a ∈A B .-a ∉A C .a}∈A D .a}∉A答案:A解析:由题意,集合A 为奇数集,易得a ∈A ,-a ∈A ,所以选项A 正确,选项B 不正确,而选项C 、D 两个集合之间的符号使用有误,所以选项C 、D 不正确. 详解:解:对选项A :当k =2时,x =5,所以a ∈A ,故选项A 正确; 对选项B :当k =-3时,x =-5,所以-a ∈A ,故选项B 不正确;对选项C 、D :因为集合a}与集合A 之间的符号使用有误,所以选项C 、D 不正确; 故选:A.4.下列集合与集合{}1,3A =相等的是( ) A .()1,3B .(){}1,3C .{}2430x x x -+=D .(){},1,3x y x y ==答案:C解析:本题可根据集合相等的相关性质解题. 详解:A 项不是集合,B 项与D 项中的集合是由点坐标组成,C 项:2430x x -+=,即()()310x x --=,解得3x =或1x =,集合{}2430x x x -+=即集合{}1,3,因为若两个集合相等,则这两个集合中的元素相同,所以与集合{}1,3A =相等的是集合{}2430x x x -+=,故选:C.5.若集合A =-1,2},B =x|x 2+ax +b =0},且A =B ,则有( ) A .a =1,b =-2 B .a =2,b =2 C .a =-1,b =-2 D .a =-1,b =2答案:C解析:解析 由A =B 知-1与2是方程x 2+ax +b =0的两根,则有()1212a b -+=-⎧⎨-⨯=⎩,解得12.a b =-⎧⎨=-⎩故选C.6.已知集合{}1M =,{}1,2,3N =,则 A .M <N B .M N ∈ C .M N ⊆ D .N M ⊆答案:C解析:根据元素关系确定集合关系. 详解:因为1,2,N M ∈所以M N ⊆,选C. 点睛:本题考查集合包含关系,考查基本分析判断能力,属基础题.7.设集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,则P 与Q 的关系是()A .P QB .Q PC .P Q =D .P Q φ⋂=答案:C解析:先分别求出集合P ,Q ,由此能求出P 与Q 的关系. 详解:集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,当m=0时,-1<0,满足题意, 当0m ≠时,结合二次函数的性质得到210440m m m m <⎧⇒-<<⎨∆=+<⎩Q {m |1m 0}∴=-<≤. P ∴与Q 的关系是P Q =.故选C . 点睛:本题考查集合的关系的判断,考查不等式性质等基础知识,考查运算求解能力,是基础题. 8.若集合{}0A x x =<,且B A ⊆,则集合B 可能是 A .{}1x x >- B .RC .{}2,3--D .{}3,1,0,1--答案:C解析:通过集合{}0A x x =<,且B A ⊆,说明集合B 是集合A 的子集,对照选项即可求出结果. 详解:解:因为集合集合{}0A x x =<,且B A ⊆,所以集合B 是集合A 的子集, 当集合{}1B x x =>-时,1A ∉,不满足题意, 当集合B R =时,1A ∉,不满足题意, 当集合{}2,3B =--,满足题意,当集合{}3,1,0,1B -=-时,1A ∉,不满足题意, 故选:C . 点睛:本题考查集合的基本运算,集合的包含关系判断及应用,属于基础题.9.已知全集为实数集R ,集合{}22A x x =-<<,{}220B x x x =+≤ ,则()AB =R( )A .()0,2B .(]0,2C .[)0,2D .[]0,2答案:A解析:分别求出两个集合,再根据集合运算求解即可. 详解:因为()2220x x x x +=+≤,所以{}{}22020B x x x x x =+≤=-≤≤,所以{2R B x x =<-或}0x >, 又因为{}22A x x =-<<, 所以(){}()020,2R A B x x ⋂=<<= 故选:A. 点睛:本题考查集合的补集运算与交集运算,是基础题..10.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥ B .23m ≤≤ C .3m ≤ D .2m ≥答案:C解析:讨论,B B =∅≠∅两种情况,分别计算得到答案. 详解:当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 点睛:本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 二、填空题1.已知集合()(){}250A x x x =+->,{}1B x m x m =≤<+,且()R B C A ⊆,则实数m 的取值范围是_________.答案:[]2,4-解析:首先求得R C A ,然后利用集合之间的包含关系得到关于m 的不等式,求解不等式即可确定m 的取值范围. 详解:由题意可得:()(){}{}250|25R x x x x C A x =+-≤=-≤≤,据此结合题意可得:215m m ≥-⎧⎨+≤⎩,即24m m ≥-⎧⎨≤⎩,即实数m 的取值范围是[]2,4-. 点睛:本题主要考查集合的表示方法,由集合间的关系求解参数的取值范围等知识,意在考查学生的转化能力和计算求解能力.2.设m 为实数,若22250{()|30}{()|25}0x y x y x x y R x y x y mx y -+≥⎧⎪-≥∈⊆+≤⎨⎪+≥⎩,,、,,则m 的最大值是____. 答案:43解析:设()250{,|30,,}0x y M x y x x y R mx y -+≥⎧⎪=-≥∈⎨⎪+≥⎩,()22{,|25}N x y x y =+≤,将两个点集用平面区域表示,因为M N ⊆,故M 表示的平面区域在N的内部,根据这一条件得出m 的最大值. 详解:解:设()250{,|30,,}0x y M x y x x y R mx y -+≥⎧⎪=-≥∈⎨⎪+≥⎩,()22{,|25}N x y x y =+≤,显然点集N 表示以原点为圆心,5为半径的圆及圆的内部,点集M 是二元一次不等式组25030,,0x y x x y R mx y -+≥⎧⎪-≥∈⎨⎪+≥⎩表示的平面区域,如图所示,作图可知,边界250x y -+=交圆2225x y +=于点()()3,4,5,0A C -, 边界y mx =-恒过原点,要求m 的最大值,故直线y mx =-必须单调递减, 因为M N ⊆,所以当y mx =-过图中B 点时,m 取得最大, 联立方程组22325x x y =⎧⎨+=⎩,解得()3,4B -, 故4030m ---=-,即max 43m =. 点睛:本题表面上考查了集合的运算问题,实质是考查了二元一次不等组表示的平面区域和二元二次不等式对应平面区域的画法,还考查了动态分析问题的能力,属于中等偏难题. 3.若{|2132}A x a x a =+≤<-,2{|11100}B x x x =-+<,且A B ⊆,则实数a 的取值范围是_________.答案:(,4]-∞解析:先求出集合B 中不等式的解集,再由A B ⊆列不等式组求解即可. 详解:解:由已知{|110}B x x =<<,A B ⊆,当A =∅时,2132a a +≥-,解得3a ≤当A ≠∅时,21132102132a a a a +>⎧⎪-≤⎨⎪+<-⎩,解得34a <≤,综合得4a ≤. 故答案为:(,4]-∞点睛:本题考查集合的包含关系,考查分类讨论的思想,是基础题.4.已知集合{},,2A a b =,{}22,,2=B b a 且A B =,则a =_______________.答案:0或14解析:根据集合相等可得出关于实数a 、b 的方程组,利用集合元素满足互异性可求得实数a 的值. 详解:集合{},,2A a b =,{}22,,2=B b a 且A B =,分以下两种情况讨论:①当22a a b b =⎧⎨=⎩时,解得00a b =⎧⎨=⎩或01a b =⎧⎨=⎩. 当0a b 时,集合A 、B 中的元素均不满足互异性; 当0a =,1b =时,{}0,1,2A B ==,合乎题意;②当22a b b a ⎧=⎨=⎩时,解得00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩.当0a b 时,集合A 、B 中的元素均不满足互异性;当14a =,12b =时,11,,242A B ⎧⎫==⎨⎬⎩⎭,合乎题意.综上所述,0a =或14a =. 故答案为:0或14. 点睛:本题考查利用集合相等求参数值,考查分类讨论思想的应用,解题时要注意集合中的元素要满足互异性,考查计算能力,属于中等题.5.已知集合{}1,,A a b a =+,集合0,,b B b a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b -=_______.答案:2-解析:由题意可得,0,1a b b +==,从而可求出,a b 的值,进而可得答案 详解:解:因为集合{}1,,A a b a =+,集合0,,b B b a ⎧⎫=⎨⎬⎩⎭,且A B =, 所以1,0B A ∈∈,且0a ≠,所以0,1a b b +==,得1,1a b =-=, 所以2a b -=-, 故答案为:2- 三、解答题 1.已知集合.(1)求;(2)若,求实数的取值范围.答案:(1),或;(2). 解析:(1)由补集的定义和集合,即可求出和;(2)由,可知集合是的子集,分两种情况:和,分别讨论即可.详解: (1)因为,所以,或 ;(2)因为,,所以,因为,所以时,,得;时,, 综上的取值范围是.故答案为:.点睛:本题考查了集合的并集和补集,考查了集合间的包含关系,考查了不等式的解法,属于基础题.2.集合2{|320}A x x x =-+<,11{|28}2x B x -=<<,()(){|20}C x x x m =+-<,其中m ∈R .(Ⅰ)求A B ⋂;(Ⅱ)若()A B C ⋃⊆,求实数m 的取值范围.答案:(1)()1,2A B ⋂=; (2)[) 4,m ∞∈+. 解析:试题分析:(1)简化集合得:()1,2A =;()0,4B =;所以()1,2A B ⋂=;(2)()0,4A B ⋃=,即()0,4?C ⊆,对m 分类讨论确定C 的集合,利用子集关系求实数m 的取值范围. 试题解析:(Ⅰ)()2{|320}1,2A x x x =-+<=;()11{|28}0,42x B x -=<<=;所以()1,2A B ⋂=; (Ⅱ)()0,4A B ⋃=,若m 2>-,则()2,C m =-,若()0,4A B C ⋃=⊆,则4m ≥; 若m 2=-,则C =∅,不满足()0,4A B C ⋃=⊆,舍; 若2m <-,则(),2C m =-,不满足()0,4A B C ⋃=⊆,舍; 综上[)4,m ∞∈+.3.已知集合{}{}2320,10A x x x B x mx =-+==-=,且A B B =,求实数m 的值.答案:m =0,1,12}解析:先求出集合A ,将条件A B B =,转化为B A ⊆,利用集合关系确定m 的取值即可. 详解:解:2{|320}{|2A x x x x x =-+===或{}1}1,2x ==,{|10}{|1}B x mx x mx =-===,AB B =,B A ∴⊆,若B =∅,即0m =,此时满足条件.若B ≠∅,即0m ≠.此时11|B x x m m ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 要使B A ⊆成立,则12m =或11m =,解得1m =或12m = 综上:0m =或12m =或1m =, 即m 的取值集合为10,1,2⎧⎫⎨⎬⎩⎭.点睛:本题主要考查集合关系的应用,将条件A B B =,转化为B A ⊆是解决本题的关系,注意要对集合B 进行分类讨论. 4.记关于x 的不等式01x ax -≤+的解集为P ,不等式|1|1x -≤的解集为Q . (1)若3a =,求P ;(2)若Q P ⊆,求a 的取值范围.答案:(1){}13P x x =-<≤;(2)[2,)+∞. 解析:(1)结合分式不等式的求解求出P ,(2)结合绝对值不等式的求解求出Q ,然后结合集合之间的包含关系即可求解. 详解:解:(1)当3a =时,原不等式可转化为(3)(1)010x x x -+⎧⎨+≠⎩,解得13x -<≤,{}13P x x ∴=-<≤.(2)由11x -≤可得02x ≤≤,即解集为{}02Q x x =≤≤, 当1a =-时,P =∅,不满足题意;当1a >-时,{}1P x x a =-<≤,Q P ⊆,2a ∴≥; 当1a <-时,{}1P x a x =≤<-,此时不满足题意, 综上,a 的范围[2,)+∞. 点睛:本题考查分式不等式和含绝对值不等式的求解,考查根据集合的包含关系求参数,属于基础题.5.已知集合{|26}A x x =-≤≤,{|21}B x m x m =≤≤-,若B A ⊆,求实数m 的取值范围.答案:(﹣∞,72]解析:分B=∅和B≠∅两种情况分类讨论,即可求出实数m 的范围. 详解:(i )当B=∅时,由题意:m >2m ﹣1,解得:m<1,此时B⊆A成立;(ii)当B≠∅时,由题意:m≤2m﹣1,解得:m≥1,若使B⊆A成立,应有:m≥﹣2,且2m﹣1≤6,解得:﹣2≤m≤72,此时1≤m≤72,综上,实数m的范围为(﹣∞,72 ].点睛:在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∪∁I B 等于( )A .{1}B .{1,2}C .{2}D .{0,1,2}解析:∵x ∈Z ,∴I ={-2,-1,0,1,2}∴∁I B ={0,1}∴A ∪∁I B ={0,1,2}.答案:D2.函数y =1x +log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞)解析:函数定义域⎩⎪⎨⎪⎧ x ≠0x +3>0∴-3<x <0或x >0.答案:D3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x 2+1D .y =lg |x |解析:偶函数的有C 、D 两项,当x >0时,y =lg |x |单调递增,故选C.答案:C4.设x 0是方程ln x +x =4的解,则x 0属于区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:设f (x )=ln x +x -4,则有f (1)=ln 1+1-4=-3<0.f (2)=ln 2+2-4=ln 2-2<1-2=-1<0,f (3)=ln 3+3-4=ln 3-1>1-1=0.∴x 0∈(2,3).答案:C5.3log 34-2723-lg 0.01+ln e 3=( )A .14B .0C .1D .6 解析:原式=4-3272-lg 0.01+3=7-3(32)3-lg 10-2=9-9=0.答案:B6.若y =log 3x 的反函数是y =g (x ),则g (-1)=( )A .3B .-3 C.13 D .-13解析:由题设可知g (x )=3x ,∴g (-1)=3-1=13.答案:C7.若实数x ,y 满足|x |-ln 1y =0,则y 关于x 的函数的图象大致是( )解析:由|x |=ln 1y ,则y =⎩⎨⎧ ⎝ ⎛⎭⎪⎫1e x ,x ≥0e x ,x <0.答案:B8.已知f (x )=log 12x ,g (x )=2x -1,则函数y =f (x )-g (x )的零点个数为( )A .0B .1C .2D .不确定解析:在同一坐标系中作函数f (x ),g (x )的图象(图略),从而判断两函数交点个数. 答案:B9.函数f(x)=-1(x-1)3的零点的个数为()A.0B.1C.2 D.3解析:函数的定义域为{x|x≠1},当x>1时f(x)<0,当x<1时f(x)>0,所以函数没有零点,故选A.答案:A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y 与投放市场月数x之间的关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析:代入验证即可.答案:B11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为()A.1 B.2C.3 D.4解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0.因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A.答案:A12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x -0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为()A.45.666万元B.45.6万元C.45.56万元D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(0≤x≤15)∴当x=10时,S有最大值45.6万元.答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________.解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1.答案:114.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A有为∅和A中只有一个元素两种情况,a=0时,A={23}满足题意,a≠0时,则由Δ=9-8a≤0得a≥9 8.答案:a≥98或a=015.用二分法求方程ln x=1x在[1,2]上的近似解时,取中点c=1.5,则下一个有根区间为________.解析:令f (x )=ln x -1x ,则f (1)=-1<0,f (2)=ln 2-12=ln 2-ln e 12>0,f (1.5)=f (32)=ln 32-23=ln 32-ln e 23e 23=3e 2>32,∴ln e 23>ln 32,即f (1.5)<0.∴下一个有根区间为(1.5,2).答案:(1.5,2)16. 给出下列四个命题:①a >0且a ≠1时函数y =log a a x 与函数y =a log a x 表示同一个函数.②奇函数的图象一定通过直角坐标系的原点.③函数y =3(x -1)2的图象可由y =3x 2的图象向右平移1个单位得到.④若函数f (x )的定义域为[0,2],则函数f (2x )定义域为[0,4].其中正确命题的序号是________(填上所有正确命题的序号)解析:①两函数定义域不同,y =log a a x 定义域为R ,y =a log a x 定义域(0,+∞).②如果函数在x =0处没有定义,图象就不过原点,如y =1x .③正确.④f (x )定义域[0,2]∴f (2x )定义域0≤2x ≤2即0≤x ≤1,∴f (2x )定义域为[0,1].答案:③三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知A ={x |x 2+2x -8=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2-ax +a 2-19=0}.若A ∩C =∅,B ∩C ≠∅,求a 的值.解析:A ={2,-4},B ={2,3},由A ∩C =∅知2∉C ,-4∉C ,又由B ∩C ≠∅知3∈C ,∴32-3a +a 2-19=0解得a =-2或a =5,当a =-2时,C ={3,-5},满足A ∩C =∅,当a =5时,C ={3,2},A ∩C ={2}≠∅,(舍去),∴a =-2.18.(本小题满分12分)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R)(1)当函数f (x )的图象过点(-1,0),且方程f (x )=0有且只有一个根,求f (x )的表达式.(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解析:(1)因为f (-1)=0,所以a -b +1=0因为方程f (x )=0有且只有一个根,∴Δ=b 2-4a =0,∴b 2-4(b -1)=0,即b =2,a =1,∴f (x )=(x +1)2.(2)∵g (x )=f (x )-kx =x 2+2x +1-kx=x 2-(k -2)x +1=(x -k -22)2+1-(k -2)24∴当k -22≥2或k -22≤-2时即k ≥6或k ≤-2时,g (x )是单调函数.19.(本小题满分12分)已知f (x )是定义在(0,+∞)上的增函数,且对任意x ,y ∈(0,+∞),都有f (x y )=f (x )-f (y ).(1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2. 解析:(1)∵f (x )是(0,+∞)上的增函数,且对任意x ,y ∈(0,+∞),都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),∴f (1)=f (11)=f (1)-f (1)=0.(2)若f (6)=1,则f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2=1+1=f (6)+f (6), ∴f (x +3)-f (6)≤f (6)-f ⎝ ⎛⎭⎪⎫1x , 即f ⎝ ⎛⎭⎪⎫x +36≤f (6x ), ∴0<x +36≤6x ,解得x ≥335.∴原不等式的解集为{x |x ≥335}.20.(本小题满分12分)已知函数f (x )=mx +n 1+x 2是定义在(-1,1)上的奇函数,且f (12)=25.(1)求实数m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)解关于t 的不等式f (t -1)+f (t )<0.解析:(1)∵f (x )为奇函数,∴f (-x )=-f (x ),即m (-x )+n 1+(-x )2=-mx+n1+x 2.∴n =0.又∵f ⎝ ⎛⎭⎪⎫12=12m 1+⎝ ⎛⎭⎪⎫122=25,∴m =1.(2)由(1)得,f (x )=x1+x 2.设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,1+x 21>0,1+x 22>0,∴f (x 1)-f (x 2)<0.∴f (x )在(-1,1)上为增函数.(3)∵f (x )是定义在(-1,1)上的奇函数,由f (t -1)+f (t )<0,得f (t )<-f (t -1)=f (1-t ).又∵f (x )在(-1,1)上为增函数,∴⎩⎪⎨⎪⎧ -1<t <1,-1<1-t <1,t <1-t ,解得0<t <12.21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4μg 时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳?解析:(1)依题意,得y =⎩⎨⎧ 6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药在第一次服药后t 1小时,则-23t 1+203=4.解得t 1=4,因而第二次服药应在11:00. 设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t 2+203-23(t 2-4)+203=4.解得t 2=9小时,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t 3-4)+203-23(t 3-9)+203=4.解得t 3=13.5小时,故第四次服药应在20:30.22.(本小题满分13分)已知函数f (x )定义域为[-1,1],若对于任意的x ,y ∈[-1,1],都有f (x +y )=f (x )+f (y ),且x >0时,有f (x )>0,(1)证明: f (x )为奇函数;(2)证明:f (x )在[-1,1]上是增加的.(3)设f (1)=1,若f (x )<m -2am +2,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解析:(1)令x =y =0,∴f (0)=0令y =-x ,f (x )+f (-x )=0∴f (-x )=-f (x ),∴f (x )为奇函数.(2)∵f (x )是定义在[-1,1]上的奇函数,令-1≤x 1<x 2≤1,则f (x 2)-f (x 1)=f (x 2-x 1)>0,∴f (x )在[-1,1]上是增加的.(3)f (x )在[-1,1]上是增加的,f (x )max =f (1)=1,使f (x )<m -2am +2对所有x ∈[-1,1]恒成立,只要m -2am +2>1,即m -2am +1>0,令g (a )=m -2am +1=-2am +m +1,要使g (a )>0时,a ∈[-1,1]恒成立,则⎩⎪⎨⎪⎧ g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧1+3m >0,1-m >0,∴-13<m <1.∴实数m 的取值范围是(-13,1).。
2017-2018学年高一数学必修1 全册同步课时作业目录1.1.1-1集合与函数概念1.1.1-2集合的含义与表示1.1.1-3集合的含义与表示1.1.2集合间的包含关系1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课1.2.1函数及其表示1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课1.3.1-1单调性与最大(小)值(第1课时)1.3.1-2单调性与最大(小)值(第2课时)1.3.1-3单调性与最大(小)值(第3课时)1.3.1-4单调性与最大(小)值(第4课时)1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究第一章单元检测试卷A第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ)2.1.1-2指数与指数幂的运算(第2课时)2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时)2.2.2-3对数函数的图像与性质2.3 幂函数图像变换专题研究第二章单元检测试卷A第二章单元检测试卷B3.1.1函数的应用3.1.2用二分法求方程的近似解3.2.1函数模型及其应用3.2.2函数模型的应用实例第三章单元检测试卷A第三章单元检测试卷B全册综合检测试题模块A全册综合检测试题模块B1.1.1-1集合与函数概念课时作业1.下列说法中正确的是()A.联合国所有常任理事国组成一个集合B.衡水中学年龄较小的学生组成一个集合C.{1,2,3}与{2,1,3}是不同的集合D.由1,0,5,1,2,5组成的集合有六个元素答案 A解析根据集合中元素的性质判断.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A.3.14 B.-2 C.78 D.7答案 D解析 由题意知a 应为无理数,故a 可以为7. 3.设集合M ={(1,2)},则下列关系式成立的是( ) A.1∈M B.2∈M C.(1,2)∈M D.(2,1)∈M 答案 C4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A.1B.2C.3D.4 答案 C解析 M ={-1,2,3}.5.若2∈{1,x 2+x},则x 的值为( ) A.-2 B.1 C.1或-2 D.-1或2 答案 C解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.6.已知集合M ={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 因集合中的元素全不相同,故三角形的三边各不相同.所以△ABC 不可能是等腰三角形.7.设a ,b ∈R ,集合{1,a}={0,a +b},则b -a =( ) A.1 B.-1 C.2 D.-2 答案 A解析 ∵{1,a}={0,a +b},∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1,故选A. 8.下列关系中①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________. 答案 ①②⑥ 9.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.10.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”) 答案 是,不是11.若{a ,0,1}={c ,1b ,-1},则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1. 又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b=1,∴b =1.12.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________. 答案 a ∈R 且a ≠±1解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1. 13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或414.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值. 答案 -4解析 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,a +3≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2.∴a =-4. ►重点班·选做题15.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.解析 (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a ,即a=±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.下面有五个命题:①集合N (自然数集)中最小的数是1;②{1,2,3}是不大于3的自然数组成的集合;③a ∈N ,b ∈N ,则a +b ≥2;④a ∈N ,b ∈N ,则a·b ∈N ;⑤集合{0}中没有元素. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3答案 B解析 因为0是自然数,所以0∈N .由此可知①②③是错误的,⑤亦错,只有④正确.故选B.1.1.1-2集合的含义与表示含解析课时作业1.用列举法表示集合{x|x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}答案 B2.集合{1,3,5,7,9}用描述法表示应是( ) A.{x|x 是不大于9的非负奇数} B.{x|x ≤9,x ∈N } C.{x|1≤x ≤9,x ∈N } D.{x|0≤x ≤9,x ∈Z }答案 A3.由大于-3且小于11的偶数组成的集合是( ) A.{x|-3<x<11,x ∈Q } B.{x|-3<x<11}C.{x|-3<x<11,x =2k ,x ∈Q }D.{x|-3<x<11,x =2k ,x ∈Z }答案 D4.集合{x ∈N *|x<5}的另一种表示法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B5.设集合M ={x|x ∈R 且x ≤23},a =26,则( ) A.a ∉M B.a ∈MC.a =MD.{a|a =26}=M答案 A解析 首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a =24>23,a 不是集合M 的元素,故a ∉M.另外{a|a =26}中只有一个元素26与集合M 中元素不相同.故D 错误.6.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1表示成列举法,正确的是( ) A.{2,3} B.{(2,3)} C.{x =2,y =3} D.(2,3)答案 B7.下列集合中,不同于另外三个集合的是( ) A.{x|x =1} B.{x =1} C.{1}D.{y|(y -1)2=0}答案 B解析A,C,D都是数集.8.下列集合表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6答案 B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M中共有4个元素.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}答案 C解析坐标轴上的点的横、纵坐标至少有一个为0,故选C.11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z};④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.答案②③⑤12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.答案(1)(2)13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.答案{0,1,3}解析 ∵y =|x|,x ∈A ,∴y =1,0,3,∴B ={0,1,3}. 14.用∈或∉填空:(1)若A ={x|x 2=x},则-1________A ; (2)若B ={x|x 2+x -6=0},则3________B ; (3)若C ={x ∈N |1≤x ≤10},则8________C ; (4)若D ={x ∈Z |-2<x<3},则1.5________D. 答案 (1)∉ (2)∉ (3)∈ (4)∉ ►重点班·选做题15.用另一种方法表示下列集合. (1){x||x|≤2,x ∈Z };(2){能被3整除,且小于10的正数}; (3)坐标平面内在第四象限的点组成的集合. (4){(x ,y)|x +y =6,x ,y 均为正整数}; (5){-3,-1,1,3,5}. (6)被3除余2的正整数集合.答案 (1){-2,-1,0,1,2} (2){3,6,9}(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x>0,y<0 (4){(1,5),(2,4),(3,3),(4,2),(5,1)} (5){x|x =2k -1,-1≤k ≤3,k ∈Z } (6){x|x =3n +2,n ∈N }16.已知集合{x|x 2+ax +b =0}={2,3},求a ,b 的值. 答案 -5 6解析 ∵{x|x 2+ax +b =0}={2,3}, ∴方程x 2+ax +b =0有两实根x 1=2,x 2=3. 由根与系数的关系得a =-(2+3)=-5,b =2×3=6.1.下列集合是有限集的是( ) A.{x|x 是被3整除的数}B.{x ∈R |0<x <2}C.{(x ,y)|2x +y =5,x ∈N ,y ∈N }D.{x|x 是面积为1的菱形}答案 C解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.2.已知集合A ={x|x 2-2x +a>0},且1∉A ,则实数a 的取值范围是( ) A.{a|a ≤1}B.{a|a ≥1}C.{a|a≥0}D.{a|a≤-1}答案 A解析因为1∉A,所以当x=1时,1-2+a≤0,所以a≤1,即a的取值范围是{a|a≤1}.1.1.1-3集合的含义与表示课时作业(三)1.设x ∈N ,且1x ∈N ,则x 的值可能是( )A.0B.1C.-1D.0或1答案 B解析 首先x ≠0,排除A ,D ;又x ∈N ,排除C ,故选B.2.下面四个关系式:π∈{x|x 是正实数},0.3∈Q ,0∈{0},0∈N ,其中正确的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确. 3.集合{x ∈N |-1<x<112}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 C解析 ∵x ∈N ,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C.4.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 答案 D解析 ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A. 5.集合M ={(x ,y)|xy<0,x ∈R ,y ∈R }是( ) A.第一象限内的点集 B.第三象限内的点集 C.第四象限内的点集 D.第二、四象限内的点集 答案 D解析 根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.6.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A.矩形 B.平行四边形 C.菱形D.梯形答案 D解析 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.7.集合A ={x|x ∈N ,且42-x ∈Z },用列举法可表示为A =________.答案 {0,1,3,4,6}解析 注意到42-x ∈Z ,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x ∈N ,∴x =0,1,3,4,6.8.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素. 答案 1解析 这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 9.点P(1,3)和集合A ={(x ,y)|y =x +2}之间的关系是________. 答案 P ∈A解析 在y =x +2中,当x =1时,y =3,因此点P 是集合A 的元素,故P ∈A. 10.用列举法表示集合A ={(x ,y)|x +y =3,x ∈N ,y ∈N *}为________. 答案 {(0,3),(1,2),(2,1)}解析 集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}.11.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B =________. 答案 {4,9,16}解析 由题意可知集合B 是由集合A 中元素的平方构成,故B ={4,9,16}.12.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)|⎩⎪⎨⎪⎧x +y =3,x -y =1},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个. 答案 2解析 因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合.13.设A 是满足x<6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值. 解析 ∵a ∈A 且3a ∈A ,∴a<6且3a<6,∴a<2. 又∵a 是自然数,∴a =0或1.14.已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解析 本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a =-1. ►重点班·选做题15.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B.解析 当⎩⎪⎨⎪⎧a =0,b ≠0或⎩⎪⎨⎪⎧a ≠0,b =0时,x =0; 当⎩⎪⎨⎪⎧a =2,b =5或⎩⎪⎨⎪⎧a =5,b =2时,x =10; 当⎩⎪⎨⎪⎧a =2,b =10或⎩⎪⎨⎪⎧a =10,b =2时,x =20; 当⎩⎪⎨⎪⎧a =5,b =10或⎩⎪⎨⎪⎧a =10,b =5时,x =50. 所以B ={0,10,20,50}.1.已知A ={x|3-3x>0},则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A答案 C解析 因为A ={x|3-3x>0}={x|x<1},所以0∈A.2.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.解析 三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.3.数集M 满足条件:若a ∈M ,则1+a 1-a ∈M(a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析 ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M.∴1-131+13=12∈M ,∴1+121-12=3∈M.即M =⎩⎨⎧⎭⎬⎫3,-2,-13,12.4.设集合A ={x ,y},B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.5.集合A ={x|⎩⎪⎨⎪⎧y =x ,y =x 2}可化简为________. 以下是两位同学的答案,你认为哪一个正确?试说明理由.学生甲:由⎩⎪⎨⎪⎧y =x ,y =x 2,得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}. 解析 同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =1,y =1.故同学甲正确.1.1.2集合间的包含关系课时作业(四)1.数0与集合∅的关系是()A.0∈∅B.0=∅C.{0}=∅D.0∉∅答案 D2.集合{1,2,3}的子集的个数是()A.7B.4C.6D.8答案 D3.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}答案 D解析∵A,B,C中分别表示的集合为{0},{x|x>0},{0},∴不是空集;又∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.4.已知集合P={1,2,3,4},Q={y|y=x+1,x∈P},那么集合M={3,4,5}与Q的关系是()A.M QB.M QC.Q MD.Q=M答案 A5.下列六个关系式中正确的个数为()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.A.6B.5C.4D.3个及3个以下答案 C解析其中①②⑤⑥是正确的,对于③应为∅ {∅}或∅∈{∅};对于④应为{0} ∅.6.若集合A={-1,2},B={x|x2+ax+b=0},且A=B,则有()A.a=1,b=-2B.a=2,b=2C.a=-1,b=-2D.a=-1,b=2答案 C解析由A=B知-1与2是方程x2+ax+b=0的两根,∴⎩⎪⎨⎪⎧-1+2=-a ,(-1)×2=b ,∴⎩⎪⎨⎪⎧a =-1,b =-2. 7.集合P ={x|y =x 2},Q ={y|y =x 2},则下列关系中正确的是( ) A.P Q B.P =Q C.P ⊆Q D.P Q答案 D解析 P ,Q 均为数集,P ={x|y =x 2}=R ,Q ={y|y =x 2}={y|y ≥0},∴Q P ,故选D. 8.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 的个数为( ) A.6 B.5 C.4 D.3答案 B解析 A ={1},{3},{1,2},{1,3},{2,3}共5个.9.若A ={(x ,y)|y =x},B ={(x ,y)|yx =1},则A ,B 关系为( )A.A BB.B AC.A =BD.A B答案 B10.已知集合A ={-1,3,m},集合B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,A ={-1,3,m},∴m =4.11.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A.符合上述要求的集合A 的个数是________. 答案 3解析 由“若x ∈A ,则5-x ∈A ”可知,1和4,2和3成对地出现在A 中,且A ≠∅.故集合A 的个数等于集合{1,2}的非空子集的个数,即3个.12.设集合A ={x ∈R |x 2+x -1=0},B ={x ∈R |x 2-x +1=0},则集合A ,B 之间的关系是________. 答案 B A解析 ∵A ={-1-52,-1+52},B =∅,∴B A.13.已知M ={y|y =x 2-2x -1,x ∈R },N ={x|-2≤x ≤4},则集合M 与N 之间的关系是________. 答案 N M14.设A ={x ∈R |-1<x<3},B ={x ∈R |x>a},若A B ,求a 的取值范围. 答案 a ≤-1解析 数形结合,端点处单独验证.15.设集合A ={1,3,a},B ={1,a 2-a +1},B ⊆A ,求a 的值.解析 因为B ⊆A ,所以B 中元素1,a 2-a +1都是A 中的元素,故分两种情况. (1)a 2-a +1=3,解得a =-1或2,经检验满足条件. (2)a 2-a +1=a ,解得a =1,此时A 中元素重复,舍去. 综上所述,a =-1或a =2. ►重点班·选做题16.a ,b 是实数,集合A ={a ,ba ,1},B ={a 2,a +b ,0},若A =B ,求a 2 015+b 2 016.答案 -1解析 ∵A =B ,∴b =0,A ={a ,0,1},B ={a 2,a ,0}.∴a 2=1,得a =±1.a =1时,A ={1,0,1}不满足互异性,舍去;a =-1时,满足题意.∴a 2015+b 2 016=-1.1.设a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 ∵a ≠0,∴a +b =0,∴ba =-1.∴b =1,a =-1,∴b -a =2,故选C.2.设集合A ={x|-3≤x ≤2},B ={x|2k -1≤x ≤k +1}且B ⊆A ,求实数k 的取值范围. 解析 ∵B ⊆A ,∴B =∅或B ≠∅.①B =∅时,有2k -1>k +1,解得k>2. ②B ≠∅时,有⎩⎪⎨⎪⎧2k -1≤k +1,2k -1≥-3,k +1≤2,解得-1≤k ≤1.综上,-1≤k ≤1或k>2.1.1.3-1集合的基本运算(第1课时)课时作业(五)1.(2014·广东)已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( ) A.{0,1} B.{-1,0,2} C.{-1,0,1,2} D.{-1,0,1}答案 C解析 M ∪N ={-1,0,1,2}.2.若集合A ={x|-2<x<1},B ={x|0<x<2},则集合A ∩B =( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 答案 D3.设A ={x|1≤x ≤3},B ={x|x<0或x ≥2},则A ∪B 等于( ) A.{x|x<0或x ≥1} B.{x|x<0或x ≥3} C.{x|x<0或x ≥2} D.{x|2≤x ≤3} 答案 A4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A.1 B.3 C.4 D.8答案 C解析 ∵A ={1,2},A ∪B ={1,2,3},∴B ={3}或{1,3}或{2,3}或{1,2,3},故选C.5.设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 答案 B解析 集合M ={-2,-1,0,1},集合N ={-1,0,1,2,3},M ∩N ={-1,0,1}. 6.若A ={x|x2∈Z },B ={y|y +12∈Z },则A ∪B 等于( )A.BB.AC.∅D.Z答案 D解析 A ={x|x =2n ,n ∈Z }为偶数集,B ={y|y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 7.已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B解析集合B含有整数-1,0,故A∩B={-1,0}.8.如果A={x|x=2n+1,n∈Z},B={x|x=k+3,k∈Z},那么A∩B=()A.∅B.AC.BD.Z答案 B9.满足条件M∪{1}={1,2,3}的集合M的个数是________.答案 2解析M={1,2,3}或M={2,3}.10.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的为________.答案②③④解析①是错误的,a∈(A∪B)时可推出a∈A或a∈B,不一定能推出a∈A.11.已知集合P,Q与全集U,下列命题:①P∩Q=P,②P∪Q=Q,③P∪Q=U,其中与命题P⊆Q等价的命题有______个.答案 2解析①②都等价.12.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是________.答案a≤-113.若集合P满足P∩{4,6}={4},P∩{8,10}={10},且P⊆{4,6,8,10},求集合P. 解析由条件知4∈P,6∉P,10∈P,8∉P,∴P={4,10}.14.已知集合A={x|x+3≤0},B={x|x-a<0}.(1)若A∪B=B,求a的取值范围;(2)若A∩B=B,求a的取值范围.解析(1)∵A∪B=B,∴A⊆B,∴a>-3.(2)∵A∩B=B,∴B⊆A,∴a≤-3.►重点班·选做题15.已知A={x|2a<x≤a+8},B={x|x<-1或x>5},若A∪B=R,求a的取值范围.解析∵B={x|x<-1或x>5},A∪B=R,∴⎩⎪⎨⎪⎧2a<-1,a +8≥5,解得-3≤a<-12.1.若A ={x|x 2-5x +6=0},B ={x|x 2-6x +8=0},则A ∪B =________,A ∩B =________. 答案 A ={2,3},B ={2,4}, ∴A ∪B ={2,3,4},A ∩B ={2}.2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A.∅ B.{x|x<-12}C.{x|x>53}D.{x|-12<x<53}答案 D解析 S ={x|x>-12},T ={x|x<53},在数轴上表示出S 和T ,可知选D.3.设集合A ={x|-5≤x<1},B ={x|x ≤2},则A ∩B 等于( ) A.{x|-5≤x<1} B.{x|-5≤x ≤2} C.{x|x<1} D.{x|x ≤2} 答案 A4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 15.已知A ={|a +1|,3,5},B ={2a +1,a 2+2a ,a 2+2a -1},若A ∩B ={2,3},则A ∪B =________.答案 {2,3,5,-5}解析 由|a +1|=2,得a =1或-3,代入求出B ,注意B 中不能有5.6.已知M ={x|x ≤-1},N ={x|x>a -2},若M ∩N ≠∅,则a 的范围是________. 答案 a<1课时作业(六)1.1.3-2集合的基本运算(第2课时)1.已知U={1,3},A={1,3},则∁U A=()A.{1,3}B.{1}C.{3}D.∅答案 D2.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}答案 C3.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(∁U A)∪(∁U B)=()A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}答案 C解析∵∁U A={4,5},∁U B={1,2},故选C.4.若集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}答案 D5.设P={x︱x<4},Q={x︱x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P答案 B6.已知全集U=Z,集合A={x|x=k3,k∈Z},B={x|x=k6,k∈Z},则()A.∁U A ∁U BB.A BC.A=BD.A与B中无公共元素答案 A解析∵A={x|x=26k,k∈Z},∴∁U A ∁U B,A B.7.设全集U={2,3,5},A={2,|a-5|},∁U A={5},则a的值为()A.2B.8C.2或8D.-2或8答案 C解析∁U A={5}包含两层意义,①5∉A;②U中除5以外的元素都在A中.∴|a-5|=3,解得a=2或8.8.设全集U=Z,A={x∈Z|x<5},B={x∈Z|x≤2},则∁U A与∁U B的关系是()A.∁U A ∁U BB.∁U A ∁U BC.∁U A=∁U BD.∁U A ∁U B答案 A解析∵∁U A={x∈Z|x≥5},∁U B={x∈Z|x>2}.故选A.9.设A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁R B,则有()A.a=0B.a≤2C.a≥2D.a<2答案 C解析A={x|-2<x<2},∁R B={x|x≤a},在数轴上把A,B表示出来.10.已知全集U={1,2,3,4,5},S U,T U,若S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5},则有()A.3∈S∩TB.3∉S但3∈TC.3∈S∩(∁U T)D.3∈(∁U S)∩(∁U T)答案 C11.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.答案③④12.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________. 答案∁U A ∁U B解析∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A ∁U B.13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解析 借助韦恩图,如右图所示, ∴U ={1,2,3,4,5,6,7,8,9}. ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.14.设集合U ={1,2,3,4},且A ={x ∈U|x 2-5x +m =0},若∁U A ={2,3},求m 的值. 解析 ∵∁U A ={2,3},U ={1,2,3,4}, ∴A ={1,4},即1,4是方程x 2-5x +m =0的两根. ∴m =1×4=4.15.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a. 解析 ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(∁S A)∩(∁S B)等于( ) A.∅ B.{1,3} C.{4} D.{2,5}答案 A解析 ∵∁S A ={2,5},∁S B ={1,3}, ∴(∁S A)∩(∁S B)=∅.2.设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∩(∁U Q)等于()A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案 A解析 ∵∁U Q ={1,2},∴P ∩(∁U Q)={1,2}.3.设全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,7},B ={3,5},则正确的是( ) A.U =A ∪B B.U =(∁U A)∪B C.U =A ∪(∁U B) D.U =(∁U A)∪(∁U B)答案 C解析 ∵∁U B ={1,2,4,6,7}, ∴A ∪(∁U B)={1,2,3,4,5,6,7}=U.4.已知A ={x|x<3},B ={x|x<a}.若A ⊆B ,问∁R B ⊆∁R A 是否成立? 答案 成立5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案126.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.答案{0,1,3,4,5}解析∵S={x∈N|x<6}={0,1,2,3,4,5},∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.课时作业(七)1.1习题课含解析(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A , ∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.课时作业(八) 1.2.1函数及其表示含解析1.下列集合A 到集合B 的对应f 是函数的是( ) A.A ={-1,0,1},B ={0,1},f :A 中的数平方 B.A ={0,1},B ={-1,0,1},f :A 中的数开方 C.A =Z ,B =Q ,f :A 中的数取倒数D.A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},下图所示4个图形中能表示集合M 到集合N 的函数关系的个数是( )A.0B.1C.2D.3答案 B3.函数f(x)=1+x +x1-x的定义域( ) A.[-1,+∞) B.(-∞,-1] C.R D.[-1,1)∪(1,+∞)答案 D解析 由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1.故定义域为[-1,1)∪(1,+∞),故选D. 4.设函数f(x)=3x 2-1,则f(a)-f(-a)的值是( ) A.0 B.3a 2-1 C.6a 2-2 D.6a 2答案 A解析 f(a)-f(-a)=3a 2-1-[3(-a)2-1]=0.5.四个函数:①y=x+1;②y=x3;③y=x2-1;④y=1x.其中定义域相同的函数有()A.①②和③B.①和②C.②和③D.②③和④答案 A6.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1) 答案 C7.已知f(x)=π(x∈R),则f(π2)等于()A.π2B.πC.πD.不确定答案 B解析因为π2∈R,所以f(π2)=π.8.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)答案 B9.将下列集合用区间表示出来.(1){x|x≥1}=________;(2){x|2≤x≤8}=________;(3){y|y=1x}=________.答案(1)[1,+∞)(2)[2,8] (3)(-∞,0)∪(0,+∞)10.若f(x)=5xx2+1,且f(a)=2,则a=________.答案12或211.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.答案{-1,1,5,11}12.设函数f(n)=k(n∈N*),k是π的小数点后的第n位数字,π=3.141 592 653 5…,则f(3)=________.答案 113.若函数y =1x -2的定义域为A ,函数y =2x +6的值域是B ,则A ∩B =________. 答案 [0,2)∪(2,+∞)解析 由题意知A ={x|x ≠2},B ={y|y ≥0},则A ∩B =[0,2)∪(2,+∞). 14.已知函数f(x)=x +3+1x +2.(1)求函数的定义域; (2)求f(-3),f(23)的值;(3)当a>0时,求f(a),f(a -1)的值.解析 (1)使根式x +3有意义的实数x 的集合是{x|x ≥-3},使分式1x +2有意义的实数x 的集合是{x|x ≠-2},所以这个函数的定义域是{x|x ≥-3}∩{x|x ≠-2}={x|x ≥-3,且x ≠-2}. (2)f(-3)=-3+3+1-3+2=-1; f(23)=23+3+123+2=113+38=38+333. (3)因为a>0,故f(a),f(a -1)有意义. f(a)=a +3+1a +2;f(a -1)=a -1+3+1(a -1)+2=a +2+1a +1.15.已知f(x)=13-x 的定义域为A ,g(x)=1a -x的定义域是B. (1)若B A ,求a 的取值范围; (2)若A B ,求a 的取值范围. 解析 A ={x|x<3},B ={x|x<a}.(1)若B A ,则a<3,∴a 的取值范围是{a|a<3}; (2)若A B ,则a>3,∴a 的取值范围是{a|a>3}.1.下列函数f(x)和g(x)中,表示同一函数的是( ) A.y =f(x)与y =f(x +1) B.y =f(x),x ∈R 与y =f(t),t ∈R C.f(x)=x 2,g(x)=x 3xD.f(x)=2x +1与g(x)=4x 2+4x +1答案 B2.下列式子中不能表示函数y =f(x)的是( ) A.x =2yB.3x +2y =1C.x =2y 2+1D.x =y答案 C3.已知函数f(x)=2x -1,则f(x +1)等于( ) A.2x -1 B.x +1 C.2x +1 D.1答案 C4.若f(x)=x 2-1x ,则f(x)的定义域为________.答案 {x|x ≤-1或x ≥1}5.下列每对函数是否表示相同函数? (1)f(x)=(x -1)0,g(x)=1; (2)f(x)=x ,g(x)=x 2; (3)f(t)=t 2t ,g(x)=|x|x .答案 (1)不是 (2)不是 (3)是6.已知A =B =R ,x ∈A ,y ∈B 对任意x ∈A ,x →y =ax +b 是从A 到B 的函数,若输出值1和8分别对应的输入值为3和10,求输入值5对应的输出值.解析 由题意可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1,b =-2,所以对应关系f :x →y =x -2,故输入值5对应的输出值为3.7.已知f(x)=11+x ,求[f(2)+f(3)+…+f(2 016)]+[f(12)+f(13)+…+f(12 016)].答案 2 015解析 f(x)+f(1x )=11+x+11+1x=11+x +x1+x =1,则原式=⎣⎡⎦⎤f (2)+f (12)+⎣⎡⎦⎤f (3)+f (13)+…+⎣⎡⎦⎤f (2 016)+f (12 016)=2 015.8.已知函数g(x)=x +2x -6,(1)点(3,14)在函数的图像上吗? (2)当x =4时,求g(x)的值; (3)当g(x)=2时,求x 的值.答案(1)不在(2)-3(3)14课时作业(九)1.2.2-1函数的表示法(第1课时)1.下列结论正确的是( )A.任意一个函数都可以用解析式表示B.函数y =x ,x ∈{1,2,3,4}的图像是一条直线C.表格可以表示y 是x 的函数D.图像可表示函数y =f(x)的图像答案 C2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y 不是考试次数x 的函数B.成绩y 是考试次数x 的函数C.考试次数x 是成绩y 的函数D.成绩y 不一定是考试次数x 的函数答案 B3.函数f(x)=x +|x|x的图像是下图中的( )答案 C4.从甲城市到乙城市t min 的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]为t 的整数部分,则从甲城市到乙城市5.5 min 的电话费为( ) A.5.04元 B.5.56元 C.5.84元 D.5.38元答案 A解析 g(5.5)=1.06(0.75×5+1)=5.035≈5.04.。
第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。
试题考查必修一所学内容,考查集合的运算,考查初等函数的性质与图像,考查函数的定义域值域等,考查新定义新运算,考查学生的创新能力。
能够体现必修一的重难点。
是一套比较新颖的试题。
必修一综合测试题(2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分为150分,考试时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项是符合题目要求的)1、设}0|{=-=a x x A ,}01|{=-=ax x B ,且B B A = ,则实数a 的值为( ) A 、1 B 、-1 C 、1或-1 D 、1,-1或0 1、 D【命题立意】考查集合的运算,注意分类讨论不要漏掉a =0时的情况。
2、已知y x y x lg lg )2lg(2+=-,则yx的值为( ) A 、1 B 、4 C 、1或4 D 、41或4 2、B【分析和解】原命题等价于⎩⎨⎧>>=-02)2(2y x xy y x 解得x =4y ,所以y x=4【命题立意】本题考查对数函数及对数函数的定义域。
3、已知f (x )是定义在[-5,5]上的偶函数,且f (3)>f (1),则下列各式中一定成立的是( ) A 、 f (-1)<f (3) B 、f (0)<f (5) C 、f (3)>f (2) D 、f (2)>f (0) 3、A【分析和解】f (3)>f (1)=f (-1),即f (-1)<f (3) 【命题立意】考查用偶函数性质比较大小。
4、方程x -1=lgx 必有一根的区间是( )A 、)2.0,1.0(B 、)3.0,2.0(C 、)4.0,3.0(D 、)5.0,4.0( 4、A【命题立意】考查函数零点性质。
5、f 是集合},,{c b a A =到集合},{e d B =的一个映射,则满足映射条件的“f ”共有( ) A 、5个 B 、6个 C 、7个 D 、8个 5、D【分析和解】在集合A 中每一个元素在集合B 中的象有2种情况可选择, 故有2×2×2=8.【命题立意】考查映射的概念。
(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。
2018年高一数学人教A版必修1 习题汇编目录第一章集合与函数概念1.1.1.1 Word版含答案第一章集合与函数概念1.1.1.2 Word版含答案第一章集合与函数概念1.1.2 Word版含答案第一章集合与函数概念1.1.3.1 Word版含答案第一章集合与函数概念1.1.3.2 Word版含答案第一章集合与函数概念1.2.1 Word版含答案第一章集合与函数概念1.2.2.1 Word版含答案第一章集合与函数概念1.2.2.2 Word版含答案第一章集合与函数概念1 章末高效整合Word版含答案-第二章基本初等函数(Ⅰ)2.1.1 Word版含答案-第二章基本初等函数(Ⅰ)2.1.2.1 Word版含答案-第二章基本初等函数(Ⅰ)2.1.2.2 Word版含答案-第二章基本初等函数(Ⅰ)2.2.1.1 Word版含答案-第二章基本初等函数(Ⅰ)2.2.1.2 Word版含答案-第二章基本初等函数(Ⅰ)2.2.2.1 Word版含答案-第二章基本初等函数(Ⅰ)2.2.2.2 Word版含答案-第二章基本初等函数(Ⅰ)2.3 Word版含答案-第二章基本初等函数(Ⅰ)2 章末高效整合Word版含答案第三章函数的应用3.1.1 Word版含答案第三章函数的应用3.1.2 Word版含答案第三章函数的应用3.2.1 Word版含答案第三章函数的应用3.2.2 Word版含答案第三章函数的应用3 章末高效整合Word版含答案2018年高一数学人教A版必修一模块质量评估试题模块质量评估A Word版含答案2018年高一数学人教A版必修一模块质量评估试题模块质量评估B Word版含答案一、选择题(每小题5分,共20分) 1.下列各组对象不能构成集合的是( ) A .中国农业银行滨州支行的所有员工 B .2016年里约热内卢奥运会所有的田径项目 C .好心的人D .所有小于18的既是奇数又是质数的正实数解析: A ,B ,D 中涉及的元素都是确定的,如D 中满足条件的正实数只有3,5,7,11,13,17,故它们都能构成集合,而C 中没有一个确定的标准来判断某个人是否是“好心的人”,所以不能组成集合.故选C. 答案: C2.已知集合A 中元素x 满足-5≤x ≤5,且x ∈N *,则必有( ) A .-1∈A B .0∈A C.3∈AD .1∈A解析: x ∈N *,且-5≤x ≤5,所以x =1,2,所以1∈A . 答案: D3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C. 答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz 的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共15分) 5.下列说法中:①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合 Z中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的有________.解析: 因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确. 答案: ②④6.不等式x -a ≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析: 因为3∉A ,所以3是不等式x -a <0的解,所以3-a <0,解得a >3. 答案: a >37.(2016·浙江镇海检测)已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________. 解析: 由题意知,m =2或m 2-3m +2=2,解得m =2或m =0或m =3,经验证, 当m =0或m =2时,不满足集合中元素的互异性,当m =3时,满足题意,故m =3. 答案: 3三、解答题(每小题10分,共20分)8.设x ∈R ,集合A 中含有三个元素3,x ,x 2-2x , (1)求元素x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得x ≠3,且x 2-2x ≠x , x 2-2x ≠3,解得x ≠-1,且x ≠0,且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2.由于方程x 2-2x +2=0无解,所以x =-2. 经检验,知x =-2符合互异性.故x =-2.9.数集M 满足条件,若a ∈M ,则1+a 1-a ∈M (a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析: ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M ,∴1-131+13=12∈M ,∴1+121-12=3∈M .再把3代入将重复上面的运算过程,由集合中元素的互异性可知M 中含有元素3,-2,-13,12.一、选择题(每小题5分,共20分)1.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x ∈Z ,且32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析: ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C. 答案: C2.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合解析: 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D. 答案: D3.将集合⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x +y =52x -y =1用列举法表示,正确的是( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)解析: 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1,得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}. 答案: B4.已知集合A ={x |x =2m -1,m ∈Z },B ={x |x =2n ,n ∈Z },且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( ) A .x 1·x 2∈A B .x 2·x 3∈B C .x 1+x 2∈BD .x 1+x 2+x 3∈A解析: 集合A 表示奇数集,B 表示偶数集,∴x 1,x 2是奇数,x 3是偶数, ∴x 1+x 2+x 3应为偶数,即D 是错误的.答案: D 二、填空题(每小题5分,共15分)5.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A ,B 相等,则实数a =________.解析: 由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解得a =1.答案: 16.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析: ∵1∉{x |2x +a >0},∴2×1+a ≤0,即a ≤-2. 答案: a ≤-27.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析: 由-5∈{x |x 2-ax -5=0}得(-5)2-a ×(-5)-5=0,所以a =-4, 所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2. 答案: 2三、解答题(每小题10分,共20分)8.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .解析: 当3x 2+3x -4=2时,即x 2+x -2=0,则x =-2或x =1.经检验,x =-2,x =1均不合题意. 当x 2+x -4=2时,即x 2+x -6=0,则x =-3或2.经检验,x =-3或x =2均合题意. ∴x =-3或x =2.9.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z,求M ; (2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x ∈Z x ∈N ,求C .解析: (1)∵x ∈N ,61+x∈Z .∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5.∴M ={0,1,2,5}. (2)∵61+x∈Z ,且x ∈N ,∴1+x 应为6的正约数, ∴1+x =1,2,3,6,此时61+x分别为6,3,2,1,∴C ={6,3,2,1}.一、选择题(每小题5分,共20分)1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( ) A .A ⊆B B .A ⊇B C .ABD .AB解析: 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.答案: D2.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1} B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z} D.S={x||x|≤3,x∈N}解析:先用列举法表示集合,再观察元素与集合的关系.集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M,且S M.故选D.答案: D3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是()A.1 B.-1C.1或-1 D.0,1或-1解析:由题意,当Q为空集时,a=0;当Q不是空集时,由Q⊆P,a=1或a=-1.答案: D4.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为()A.6 B.5C.4 D.3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.答案: A二、填空题(每小题5分,共15分)5.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.解析:∵y=(x-1)2-2≥-2,∴M={y|y≥-2}.∴N M.答案:N M6.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.解析:由Venn图可得A B,C D B,A与D之间无包含关系,A与C之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A为小说,B为文学作品,C为叙事散文,D为散文.答案:小说文学作品叙事散文散文7.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值构成的集合为________. 解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根. 当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意. 当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1. 此时A ={-1},或A ={1},符合题意.∴a =0或a =±1. 答案: {0,1,-1}三、解答题(每小题10分,共20分)8.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且B ⊆A ,求实数a 组成的集合C . 解析: 由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}. ∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.则B ={1}时,有a -2=0,即a =2; 当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.9.已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围. 解析: 集合A ={0,-4},由于B ⊆A ,则(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1. (2)当BA 时,①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件. 综上可知a =0或a ≤-1.一、选择题(每小题5分,共20分)1.下列各组函数中,表示同一函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析: A 项中两函数的定义域不同;B 项,D 项中两函数的对应关系不同.故选C. 答案: C2.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析: 按照函数定义,选项B 中,集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中,集合A 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应着唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义.只有选项A 符合函数定义. 答案: A3.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=( )A .1B .-1 C.35D .-35解析: f (2)f ⎝⎛⎭⎫12=22-122+1⎝⎛⎭⎫122-1⎝⎛⎭⎫122+1=35-3454=35×⎝⎛⎭⎫-53=-1. 答案: B4.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()解析: A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}. 答案: B二、填空题(每小题5分,共15分) 5.已知f (x )由下表表示则函数f (x )的定义域是________解析: 观察表格可知函数f (x )的定义域是{1,2,3},值域是{1,2}. 答案: {1,2,3} {1,2}6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析: 由题意知3a -1>a ,则a >12.答案: ⎝⎛⎭⎫12,+∞ 7.设f (x )=11-x,则f (f (a ))=________.解析: f (f (a ))=11-11-a =11-a -11-a =a -1a .答案: a -1a (a ≠0,且a ≠1)三、解答题(每小题10分,共20分) 8.求下列函数的定义域. (1)y =2x +1+3-4x ; (2)y =1|x +2|-1.解析: (1)由已知得⎩⎨⎧2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为⎣⎡⎦⎤-12,34. (2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1,得x ≠-3,x ≠-1. ∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞). 9.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0,∴x ≥-4且x ≠1, 即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D. 答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5D .-1解析: 由f (2x +1)=3x +2,令2x +1=t ,∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )A.1 C .3D .4解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A 4.已知f (x -1)=1x +1,则f (x )的解析式为( ) A .f (x )=11+xB .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x解析: 令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t ,∴f (x )=1x +2.答案: C二、填空题(每小题5分,共15分)5.已知函数f (x )=x -mx ,且此函数图象过点(5,4),则实数m 的值为________.解析: 将点(5,4)代入f (x )=x -mx ,得m =5.答案: 56.如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2)))=________.解析: ∵f (2)=0,∴f (f (2))=f (0)=4,∴f (f (f (2)))=f (4)=2. 答案: 27.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________.解析: 由f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,得(ax +b )2+4(ax +b )+3=x 2+10x +24,即a 2x 2+(2ab +4a )x +b 2+4b +3=x 2+10x +24,由系数相等得⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24.解得a =-1,b =-7或a =1,b =3.则5a -b =2.答案: 2三、解答题(每小题10分,共20分)8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数. 解析: (1)列表法:(2)图象法:如图所示.(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ); (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3.(2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2. ∴所求函数为f (x )=x 2+2x -2.一、选择题(每小题5分,共20分)1.函数f (x )=⎩⎪⎨⎪⎧x -2,x <2,f (x -1),x ≥2,则f (2)=( )A .-1B .0C .1D .2解析: f (2)=f (2-1)=f (1)=1-2=-1. 答案: A2.函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2-x -3,x >1,则f ⎝⎛⎭⎫1f (3)的值为( )A.1516 B .-2716C.89D .18解析: ∵x >1,∴f (3)=32-3-3=3,∵13<1,∴f ⎝⎛⎭⎫1f (3)=f ⎝⎛⎭⎫13=1-⎝⎛⎭⎫132=89. 答案: C3.函数y =x +|x |x的图象是( )解析: y =x +|x |x =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0.答案: D4.a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →2x 表示把集合M 中的元素x 映射到集合N 中为2x ,则a +b =( ) A .-2 B .0 C .2D .±2解析: 由题意知M 中元素b a 只能对应0,1只能对应a ,所以2ba =0,a =2,所以b =0,a =2,因此a +b =2,故选C. 答案: C二、填空题(每小题5分,共15分)5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为________,值域为________________.解析: 函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案: [0,2] [0,1]6.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b,5→5且7→11.若x →20,则x =________.解析: 由题意知,⎩⎪⎨⎪⎧ 5=5a +b ,11=7a +b ⇒⎩⎪⎨⎪⎧a =3,b =-10.∴y =3x -10.由3x -10=20,得x =10.答案: 107.已知函数f (x )的图象如图,则f (x )的解析式为________.解析: ∵f (x )的图象由两条线段组成,由一次函数解析式求法可得f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1.答案: f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1.三、解答题(每小题10分,共20分)8.已知函数f (x )=⎩⎪⎨⎪⎧x +2(x <0),x 2(0≤x <2),12x (x ≥2).(1)求f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12的值; (2)若f (x )=2,求x 的值.解析: (1)f ⎝⎛⎭⎫-12=⎝⎛⎭⎫-12+2=32,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫32=⎝⎛⎭⎫322=94,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫94=12×94=98. (2)当f (x )=x +2=2时,x =0,不符合x <0.当f (x )=x 2=2时,x =±2,其中x =2符合0≤x <2.当f (x )=12x =2时,x =4,符合x ≥2.综上,x 的值是2或4.9.已知A =B =R ,从集合A 到集合B 的映射f :x →2x -1. (1)求与A 中元素3相对应的B 中的元素; (2)求与B 中元素3相对应的A 中的元素.解析: (1)将x =3代入对应关系f 可得2x -1=2×3-1=5,即与A 中元素3相对应的B 中的元素为5. (2)由题意可得2x -1=3,解得x =2,所以与B 中元素3相对应的A 中的元素为2.一、选择题(每小题5分,共20分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0}D .{-3,-2,-1}解析: 运用集合的运算求解.M ∩N ={-2,-1,0},故选C. 答案: C2.设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ) A .{-2} B .{2} C .{-2,2}D .∅解析: 解出集合A ,B 后依据交集的概念求解.∵A ={x |x +2=0},∴A ={-2}.∵B ={x |x 2-4=0},∴B ={-2,2}. ∴A ∩B ={-2}.故选A. 答案: A3.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( )A .10B .11C .15D .16解析: A ={-10,-9,-8,-7,-6,…,-1},B ={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5}, A ∪B 中共16个元素. 答案: D4.已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B解析: 先求解集合A ,再进行集合之间的运算.∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B. 答案: B二、填空题(每小题5分,共15分)5.设M ={0,1,2,4,5,7},N ={1,4,6,8,9},P ={4,7,9},则(M ∩N )∪(M ∩P )=________. 解析: M ∩N ={1,4},M ∩P ={4,7},所以(M ∩N )∪(M ∩P )={1,4,7}. 答案: {1,4,7}6.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R7.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)8.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5}.若A ∪B =R ,求a 的取值范围. 解析: 在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧a +8≥5,a <-1,解得-3≤a <-1.综上可知,a 的取值范围为-3≤a <-1. 9.集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇒B ⊆C ,∴-a2<2,∴a >-4.即a 的取值范围为a >-4.一、选择题(每小题5分,共20分)1.设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( ) A .{1,2} B .{3,4,5} C .{1,2,3,4,5}D .∅解析: 依据补集的定义计算.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5}. 答案: B2.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( ) A .{3} B .{4} C .{3,4}D .∅解析: 利用所给条件计算出A 和∁U B ,进而求交集. ∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩∁U B ={3}. 答案: A3.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-2或x >4},那么集合(∁U A )∩(∁U B )等于( ) A .{x |3<x ≤4} B .{x |x ≤3或x ≥4} C .{x |3≤x <4}D .{x |-1≤x ≤3}解析: ∵∁U A ={x |x <-2或x >3},∁U B ={x |-2≤x ≤4},如图.∴(∁U A )∩(∁U B )={x |3<x ≤4},故选A.答案: A4.设全集U 是实数R ,M ={x |x <-2,或x >2},N ={x |1≤x ≤3}.如图所示,则阴影部分所表示的集合为( )A .{x |-2≤x <1}B .{x |-2≤x ≤3}C .{x |x ≤2,或x >3}D .{x |-2≤x ≤2}解析:阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.故选A.答案: A二、填空题(每小题5分,共15分)5.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析:∵∁U A={1,2},∴A={0,3},∴0,3是方程x2+mx=0的两个根,∴m=-3.答案:-36.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.解析:先求出∁U A={x|x<0},∁U B={y|y<1}={x|x<1}.∴∁U A ∁U B.答案:∁U A ∁U B7.已知全集U=R,A={x|1≤x<b},∁U A={x|x<1,或x≥2},则实数b=________.解析:∵∁U A={x|x<1,或x≥2},∴A={x|1≤x<2}.∴b=2.答案: 2三、解答题(每小题10分,共20分)8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.解析:(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.9.已知全集U={不大于20的素数},M,N为U的两个子集,且满足M∩(∁U N)={3,5},(∁U M)∩N={7,19},(∁U M)∩(∁U N)={2,17},求M,N.解析:法一:U={2,3,5,7,11,13,17,19},如图,∴M={3,5,11,13},N={7,11,13,19}.法二:∵M∪(∁U N)={3,5},∴3∈M,5∈M且3∉N,5∉N.又∵(∁U M)∩N={7,19},∴7∈N,19∈N且7∉M,19∉M.又∵(∁U M)∩(∁U N)={2,17},∴∁U(M∪N)={2,17},∴M={3,5,11,13},N={7,11,13,19}.能力测评10.设全集U={x||x|<4,且x∈Z},S={-2,1,3}.若∁U P⊆S,则这样的集合P共有()A .5个B .6个C .7个D .8个解析:U ={-3,-2,-1,0,1,2,3},∵∁U (∁U P )=P ,∴存在一个∁U P ,即有一个相应的P (如当∁U P ={-2,1,3}时,P ={-3,-1,0,2},当∁U P ={-2,1}时,P ={-3,-1,0,2,3}等),由于S 的子集共有8个, ∴P 也有8个,选D. 答案: D11.已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪∁R B =R ,则实数a 的取值范围是________. 解析: ∵∁R B ={x |x <1或x >2}且A ∪∁R B =R ,∴{x |1≤x ≤2}⊆A ,∴a ≥2. 答案: a ≥212.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解析:(1)m =1时,B ={x |1≤x <4},A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅,即m ≥1+3m 时,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解之得m >3.综上可知,实数m 的取值范围是m >3或m ≤-12.(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下五个对象,其中能构成集合的个数为( )①你所在班中身高超过1.75 m 的同学;②所有平行四边形;③人教A 版数学必修1教材中的所有习题;④所有有理数;⑤2012年高考试卷中的所有难题. A .1 B .2 C .3D .4解析: 由于①②③④项中的对象具备确定性,故①②③④能构成集合.⑤项不符合集合中元素的确定性,故不能构成集合. 答案: D2.设全集U =Z ,集合A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( ) A .{1,3,5} B .{1,2,3,4,5} C .{7,9}D .{2,4}解析: 题图中所示阴影表示的集合是(∁U A )∩B ={2,4}. 答案: D3.如果全集U ={x |x 是小于9的正整数},集合A ={1,2,3,4},B ={3,4,5,6},则(∁U A )∩(∁U B )为( ) A .{1,2} B .{3,4} C .{5,6}D .{7,8}解析: U ={1,2,3,4,5,6,7,8},∁U A ={5,6,7,8},∁U B ={1,2,7,8},故(∁U A )∩(∁U B )={5,6,7,8}∩{1,2,7,8}={7,8}. 答案: D4.下列各组函数相等的是( )A .f (x )=x 2,g (x )=(x )2B .f (x )=1,g (x )=x 0C .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,g (t )=|t | D .f (x )=x +1,g (x )=x 2-1x -1解析: 选项A ,B ,D 中两函数定义域不同,只有C 项符合. 答案: C5.已知函数f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=( ) A .8 B .9 C .11D .10解析: ∵f ⎝⎛⎭⎫x -1x =⎝⎛⎭⎫x -1x 2+2,∴f (3)=9+2=11. 答案: C6.下列函数中,值域是(0,+∞)的是( )A .y =x 2-2x +1B .y =x +2x +1(x ∈(0,+∞))C .y =1x 2+2x +1(x ∈N )D .y =1|x +1|解析: 在选项A 中y 可等于零,选项B 中y 显然大于1,选项C 中x ∈N ,值域不是(0,+∞),选项D 中|x +1|>0,即y >0.答案: D7.函数f (x )=1-x 2+91+|x |是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 解析: ∵函数f (x )的定义域是[-1,1],且f (-x )=f (x ),∴该函数为偶函数. 答案: B8.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=( ) A .-3 B .3 C .-6D .6解析: 由题意得g (-2)=f (-2)+9=-f (2)+9=3,∴f (2)=6. 答案: D9.已知函数f (x )=x 2+mx +1在区间(-∞,-1]上是减函数,在区间[1,+∞)上是增函数,则实数m 的取值范围是( ) A .[-2,2] B .(-∞,-2] C .[2,+∞)D .R解析: 二次函数的对称轴是直线x =-m 2,则由题意可得-1≤m2≤1,所以-2≤m ≤2.答案: A10.若函数f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在区间(0,+∞)上有最大值5,则F (x )在区间(-∞,0)上( ) A .有最小值-5 B .有最大值-5 C .有最小值-1D .有最大值-3解析: ∵当x >0时,F (x )≤5,即af (x )+bg (x )+2≤5,∴af (x )+bg (x )≤3.设x <0,则-x >0,∴af (-x )+bg (-x )≤3,即af (x )+bg (x )≥-3.∴F (x )=af (x )+bg (x )+2≥-1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.用列举法表示集合:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪10m +1∈Z ,m ∈Z=________. 解析: 由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.答案: {-11,-6,-3,-2,0,1,4,9}12.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析: 若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案: -313.已知f (x )=ax 3+bx -4,其中a ,b 为常数,若f (-2)=2,则f (2)的值等于________.解析: 设g (x )=ax 3+bx ,显然g (x )为奇函数,则f (x )=ax 2+bx -4=g (x )-4,于是f (-2)=g (-2)-4=-g (2)-4=2,所以g (2)=-6,所以f (2)=g (2)-4=-6-4=-10. 答案: -1014.若函数f (x )同时满足:①对于定义域上的任意x ,恒有f (x )+f (-x )=0;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有f (x 1)-f (x 2)x 1-x 2<0.则称函数f (x )为“理想函数”.给出下列三个函数中:(1)f (x )=1x ;(2)f (x )=x 2;(3)f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0.能被称为“理想函数”的有________.(填相应的序号)解析: ①要求函数f (x )为奇函数,②要求函数f (x )为减函数.函数(1)是奇函数但在整个定义域上不是减函数,函数(2)是偶函数而且也不是减函数,只有函数(3)既是奇函数又是减函数. 答案: (3)三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ).解析:(1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}.(2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.16.(本小题满分12分)已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,(x >0)0,(x =0)x 2+mx .(x <0)(1)求实数m 的值; (2)画出函数图象;(3)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围. 解析: (1)当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数,所以f (-x )=-f (x )=-x 2-2x ,所以f (x )=x 2+2x ,则m =2. (2)由(1)知f (x )=⎩⎪⎨⎪⎧-x 2+2x , (x >0)0, (x =0)x 2+2x , (x <0)函数f (x )的图象如图所示.(3)由图象可知f (x )在[-1,1]上单调递增,要使f (x )在[-1,|a |-2]上单调递增,只需-1<|a |-2≤1,即1<|a |≤3, 解得-3≤a <-1或1<a ≤3.17.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围. 解析: (1)由题意设f (x )=a (x -1)2+1,代入(2,3)得a =2,所以f (x )=2(x -1)2+1=2x 2-4x +3. (2)对称轴为x =1,所以2a <1<a +1,所以0<a <12.(3)f (x )-2x -2m -1=2x 2-6x -2m +2,由题意得2x 2-6x -2m +2>0对于任意x ∈[-1,1]恒成立, 所以x 2-3x +1>m 对于任意x ∈[-1,1]恒成立,令g (x )=x 2-3x +1,x ∈[-1,1], 则g (x )min =-1,所以m <-1.18.(本小题满分14分)已知函数f (x )=ax +b x 2+1是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.解析: (1)由题意可知f (-x )=-f (x ),∴-ax +b 1+x 2=-ax +b1+x 2,∴b =0,∴f (x )=ax 1+x 2.又∵f ⎝⎛⎭⎫12=25,∴a =1,∴f (x )=x 1+x 2. (2)当x ∈(-1,1)时,函数f (x )是单调递增的.证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1+x 1x 22-x 2-x 2x 21(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0.又1+x 21>0,1+x 22>0,∴(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0,即f (x 1)-f (x 2)<0,∴函数f (x )为增函数. (3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ).又f (x )是定义在(-1,1)上的奇函数,∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13,∴不等式f (2x -1)+f (x )<0的解集为⎝⎛⎭⎫0,13.一、选择题(每小题5分,共20分) 1.下列运算结果中正确的为( )A .a 2·a 3=a 6B .(-a 2)3=(-a 3)2C .(a-1)0=1D .(-a 2)3=-a 6解析: a 2·a 3=a 5,(-a 2)3=(-1)3·(a 2)3=-a 6,而(-a 3)2=a 6,∴在a ≠0时(-a 2)3≠(-a 3)2;若a=1,则(a-1)0无意义,所以只有D 正确. 答案: D2.⎝⎛⎭⎫1120-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( ) A .-13 B.13 C.43 D.73解析: 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73. 答案: D 3.将⎝⎛⎭⎪⎫x 13·3x-2-85化成分数指数幂为( )A .x-13B .x 415C .x-415D .x 25解析: 原式=⎝⎛⎭⎫x 16·x -23×12-85=⎝⎛⎭⎫x 16-13-85=x-16×⎝⎛⎭⎫-85=x 415. 答案: B4.下列说法中,正确说法的个数为( )①na n =a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2.A .0B .1C .2D .3解析: ①中,若n 为偶数,则不一定成立,故①是错误的;②中,因为a 2-a +1=⎝⎛⎭⎫a -122+34≠0,所以(a 2-a +1)0=1是正确的;③是错误的;④左边为负数,而右边为正数,是错误的,故选B. 答案: B二、填空题(每小题5分,共15分) 5.[(-5)4]14-150的值是________.解析: [(-5)4]14-150=(54)14-150=5-1=4.答案: 46.设α、β为方程2x 2+3x +1=0的两个根,则⎝⎛⎭⎫14α+β=_______________________. 解析: 由根与系数关系得α+β=-32,所以⎝⎛⎭⎫14α+β=⎝⎛⎭⎫14-32=(2-2)-32=23=8. 答案: 87.已知x 2-4x +4+y 2+6y +9=0,则y x 的值为________.解析: 因为x 2-4x +4+y 2+6y +9=0,所以(x -2)2+(y +3)2=0, 即|x-2|+|y +3|=0,所以x=2,y=-3.即y x =(-3)2=9. 答案: 9三、解答题(每小题10分,共20分) 8.计算下列各式(式中字母都是正数):(1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56; (2)⎝⎛⎭⎫m 14n -388. 解析:(1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a ; (2)⎝⎛⎭⎫m 14n -388=⎝⎛⎭⎫m 148⎝⎛⎭⎫n -388=m 2n -3=m 2n 3.(1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23; (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34. 解析:(1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23=⎣⎡⎦⎤⎝⎛⎭⎫32212-⎝⎛⎭⎫342+136×⎣⎡⎦⎤⎝⎛⎭⎫233-23=32-⎝⎛⎭⎫342+136×⎝⎛⎭⎫23-2=32-916+136×94=1. (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34=()2323-(2-1)-3+⎝⎛⎭⎫3-12-6×⎣⎡⎦⎤⎝⎛⎭⎫324-34=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4.一、选择题(每小题5分,共20分) 1.下列函数中,指数函数的个数为( )①y=⎝⎛⎭⎫12x-1;②y=a x (a>0,且a ≠1);③y=1x ;④y=⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个解析: 由指数函数的定义可判定,只有②正确. 答案: B2.当a>0,且a ≠1时,函数f(x)=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)解析: 当x=-1时,显然f(x)=0,因此图象必过点(-1,0). 答案: C3.函数y=16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4)D .(0,4)解析: 要使函数有意义,则16-4x ≥0.又因为4x >0,∴0≤16-4x <16,即函数y=16-4x 的值域为[0,4). 答案: C4.函数f(x)=πx 与g(x)=⎝⎛⎭⎫1πx的图象关于( ) A .原点对称 B .x 轴对称 C .y 轴对称D .直线y=-x 对称解析:设点(x ,y)为函数f(x)=πx 的图象上任意一点,则点(-x ,y)为g(x)=π-x =⎝⎛⎭⎫1πx 的图象上的点.因为点(x ,y)与点(-x ,y)关于y 轴对称,所以函数f(x)=πx 与g(x)=⎝⎛⎭⎫1πx 的图象关于y 轴对称,选C.二、填空题(每小题5分,共15分) 5.已知函数f(x)=2a x-1+3(a>0且a ≠1),若f(1)=4,则f(-1)=________. 解析: 由f(1)=4得a=3,把x=-1代入f(x)=23x -1+3得到f(-1)=0,故答案为0.答案: 06.函数y=2a x-2+1(a>0,且a ≠1)的图象过定点________. 解析: 令x-2=0,解得x=2,则y=3.所以过定点(2,3). 答案: (2,3)7.已知f(x)=a x +b 的图象如图,则f(3)=________. 解析: 由题意知,f(x)的图象过点(0,-2)和(2,0),∴⎩⎪⎨⎪⎧ a 0+b =-2,a 2+b =0,∴⎩⎨⎧a =3(a>0),b =-3.∴f(x)=(3)x -3.∴f(3)=(3)3-3=33-3. 答案: 33-3三、解答题(每小题10分,共20分) 8.设f(x)=3x ,g(x)=⎝⎛⎭⎫13x .(1)在同一坐标系中作出f(x)、g(x)的图象;(2)计算f(1)与g(-1),f(π)与g(-π),f(m)与g(-m)的值,从中你能得到什么结论? 解析: (1)函数f(x)与g(x)的图象如图所示:(2)f(1)=31=3,g(-1)=⎝⎛⎭⎫13-1=3;f(π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π;f(m)=3m ,g(-m)=⎝⎛⎭⎫13-m =3m . 从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.9.求下列函数的定义域和值域:(1)y=21x-1;(2)y=⎝⎛⎭⎫132x 2-2. 解析: (1)要使y=21x -1有意义,需x ≠0,则21x ≠1;故21x -1>-1且21x -1≠0,故函数y=21x -1的定义域为{x|x ≠0},函数的值域为(-1,0)∪(0,+∞).(2)函数y=⎝⎛⎭⎫132x 2-2的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2. 故0<⎝⎛⎭⎫132x 2-2≤9,所以函数y=⎝⎛⎭⎫132x 2-2的值域为(0,9].一、选择题(每小题5分,共20分)1.若a=⎝⎛⎭⎫34-13,b=⎝⎛⎭⎫34-14,c=⎝⎛⎭⎫32-14,则a 、b 、c 的大小关系是( ) A .c<a<b B .c<b<a C .a<b<cD .b<c<a解析: 由y=⎝⎛⎭⎫34x 在R 上单调递减,知⎝⎛⎭⎫34-14<⎝⎛⎭⎫34-13,而⎝⎛⎭⎫32-14<1<⎝⎛⎭⎫34-14,所以⎝⎛⎭⎫32-14<⎝⎛⎭⎫34-14<⎝⎛⎭⎫34-13.即c<b<a. 答案: B2.函数y=⎝⎛⎭⎫121-x的单调递增区间为( ) A .(-∞,+∞) B .(0,+∞) C .(1,+∞)D .(0,1)解析: 定义域为R .设u=1-x ,则y=⎝⎛⎭⎫12u .∵u=1-x 在R 上为减函数,又∵y=⎝⎛⎭⎫12u 在(-∞,+∞)上为减函数,∴y=⎝⎛⎭⎫121-x 在(-∞,+∞)上是增函数. 答案: A3.已知0<a<1,b<-1,则函数y=a x +b 的图象必定不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 解析: ∵0<a<1,∴y=a x 的图象不经过三、四象限. ∵b<-1,∴y=a x +b 的图象不经过第一象限. 答案: A4.已知f(x)=a -x (a>0且a ≠1),且f(-2)>f(-3),则a 的取值范围是( ) A .a>0B .a>1C .a<1D .0<a<1解析: ∵f(-2)=a 2,f(-3)=a 3,f(-2)>f(-3),即a 2>a 3,故0<a<1.选D. 答案: D二、填空题(每小题5分,共15分)5.已知函数y=f(x)的定义域为(1,2),则函数y=f(2x )的定义域为________. 解析: 由函数的定义,得1<2x <2⇒0<x<1,所以应填(0,1). 答案: (0,1)6.满足方程4x +2x -2=0的x 值为________.解析: 设t=2x (t>0),则原方程化为t 2+t-2=0,∴t=1或t=-2. ∵t>0,∴t=-2舍去.∴t=1,即2x =1,∴x=0. 答案: 07.定义运算a ⊗b=⎩⎪⎨⎪⎧b (a ≥b ),a (a<b ),则函数f(x)=3-x ⊗3x 的值域为________.解析:由题设可得f(x)=3-x ⊗3x=⎩⎪⎨⎪⎧3-x(x>0),3x (x ≤0),其图象如图实线所示,由图知函数f(x)的值域为(0,1].答案: (0,1]三、解答题(每小题10分,共20分) 8.比较下列各组值的大小:(1)1.8-0.1,1.8-0.2;(2)1.90.3,0.73.1; (3)a 1.3,a 2.5(a>0,且a ≠1).解析:(1)由于1.8>1,所以指数函数y=1.8x ,在R 上为增函数.所以1.8-0.1>1.8-0.2. (2)因为1.90.3>1,0.73.1<1,所以1.90.3>0.73.1. (3)当a>1时,函数y=a x 是增函数,此时a 1.3<a 2.5, 当0<a<1时,函数y=a x 是减函数,此时a 1.3>a 2.5, 故当0<a<1时,a 1.3>a 2.5,当a>1时,a 1.3<a 2.5.9.已知函数f(x)=a x 在x ∈[-2,2]上恒有f(x)<2,求a 的取值范围. 解析:当a>1时,函数f(x)=a x 在[-2,2]上单调递增,此时f(x)≤f(2)=a 2, 由题意可知a 2<2,即a<2,所以1<a< 2.当0<a<1时,函数f(x)=a x 在[-2,2]上单调递减,此时f(x)≤f(-2)=a -2, 由题意可知a -2<2,即a>22,所以22<a<1.综上所述,所求a 的取值范围是⎝⎛⎭⎫22,1∪(1,2). 能力测评10.函数y=a x 在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( ) A .6 B .1 C .3D.32解析:函数y=a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a=2.因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max =3. 答案: C11.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.解析:假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半. 答案:1912.已知函数f(x)=ax 2-1(a>0且a ≠1).(1)若函数f(x)的图象经过点P(3,4),求a 的值; (2)判断并证明函数f(x)的奇偶性;(3)比较f(-2)与f(-2.1)的大小,并说明理由.解析: (1)∵函数f(x)的图象经过点P(3,4),∴f(3)=a 2=4,∴a=2.(2)函数f(x)为偶函数.∵函数f(x)的定义域为R ,且f(-x)=a(-x)2-1=ax 2-1=f(x),∴函数f(x)为偶函数. (3)∵y=x 2-1在(-∞,0)上单调递减,∴当a>1时,f(x)在(-∞,0)上单调递减,∴f(-2)<f(-2.1); 当0<a<1时,f(x)在(-∞,0)上单调递增,∴f(-2)>f(-2.1). 13.已知函数f(x)=1+22x -1.(1)求函数f(x)的定义域;(2)证明函数f(x)在(-∞,0)上为减函数.解析:(1)由f(x)=1+22x -1可得,2x -1≠0,所以x ≠0.所以函数f(x)的定义域为{x|x ∈R 且x ≠0}.(2)设x 1,x 2∈(-∞,0)且x 1<x 2.f(x 1)-f(x 2)=22x 1-1-22x 2-1=2(2x 2-2x 1)(2x 1-1)(2x 2-1)因为x 1,x 2∈(-∞,0)且x 1<x 2,所以2x 2>2x 1且2x 1<1,2x 2<1.所以f(x 1)-f(x 2)>0, 即f(x 1)>f(x 2).以函数f(x)在(-∞,0)上为减函数.。
1.1.1一、选择题1.方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27的解集是( ) A.⎩⎪⎨⎪⎧x =3y =-7 B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7}[答案] D[解析] 解方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7 用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D.2.集合A ={x ∈Z |y =12x +3,y ∈Z }的元素个数为( ) A .4B .5C .10D .12 [答案] D[解析] 12能被x +3整除.∴y =±1,±2,±3,±4,±6,±12,相应的x 的值有十二个:9,-15,3,-9,1,-7,0,-6,-1,-5,-2,-4.故选D.3.集合A ={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A .2B .3C .4D .无数个 [答案] C[解析] 两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素,因此选C.4.已知a 、b 、c 为非零实数,代数式a |a |+b |b |+c |c |+abc |abc |的值所组成的集合为M ,则下列判断中正确的是( )A .0∉MB .-4∉MC .2∈MD .4∈M [答案] D[解析] a 、b 、c 皆为负数时代数式值为-4,a 、b 、c 二负一正时代数式值为0,a 、b 、c 一负二正时代数式值为0,a 、b 、c 皆为正数时代数式值为4,∴M ={-4,0,4}.5.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}[答案] C[解析] 在x 轴上的点(x ,y ),必有y =0;在y 轴上的点(x ,y ),必有x =0,∴xy =0.6.集合M ={(x ,y )|xy ≤0,x ,y ∈R }的意义是( )A .第二象限内的点集B .第四象限内的点集C .第二、四象限内的点集D .不在第一、三象限内的点的集合[答案] D[解析] ∵xy ≤0,∴xy <0或xy =0当xy <0时,则有⎩⎪⎨⎪⎧ x <0y >0或⎩⎪⎨⎪⎧ x >0y<0,点(x ,y )在二、四象限, 当xy =0时,则有x =0或y =0,点(x ,y )在坐标轴上,故选D.7.方程组⎩⎪⎨⎪⎧ x +y =1x 2-y 2=9的解(x ,y )构成的集合是( )A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 首先A ,B 都不对,将x =5,y =-4代入检验知是方程组的解.∴选D.*8.集合S ={a ,b ,c }中的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是() A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合元素的互异性知,a 、b 、c 两两不等.9.设a 、b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a 等于( )A .1B .-1C .2D .-2[答案] C[解析] ∵{1,a +b ,a }={0,b a,b }, ∴a ≠0,∴a +b =0,∴a =-b ,∴b a=-1, ∴a =-1,b =1,∴b -a =2.故选C.10.设集合A ={0,1,2},B ={-1,1,3},若集合P ={(x ,y )|x ∈A ,y ∈B ,且x ≠y },则集合P 中元素个数为( )A .3个B .6个C .9个D .8个[答案] D[解析] x ∈A ,对于x 的每一个值,y 都有3个值与之对应,但由于x ≠y ,∴x =1,y =1,不合题意,故共有3×3-1=8个.[点评] 可用列举法一一列出:P ={(0,-1),(0,1),(0,3),(1,-1),(1,3),(2,-1),(2,1),(2,3)}.二、填空题11.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________.[答案] {(2,4),(5,2),(8,0)}[解析] ∵3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∴y 为偶数且y ≤5,∴当x =2时,y =4,当x =5时y =2,当x =8时,y =0.12.已知A ={1,0,-1,2},B ={y |y =|x |,x ∈A },则B =________.[答案] {1,0,2}[解析] 当x =1时,y =1;x =0时,y =0;x =-1时,y =1;x =2时,y =2,∴B ={1,0,2}.13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________.[答案] 2或4[解析] ∵a ∈A ,∴a =2或a =4或a =6,而当a =2和a =4时,6-a ∈A ,∴a =2或a =4.三、解答题14.用列举法表示集合.(1)平方等于16的实数全体;(2)比2大3的实数全体;(3)方程x 2=4的解集;(4)大于0小于5的整数的全体.[解析] (1){-4,4} (2){5} (3){-2,2} (4){1,2,3,4}.15.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.[解析] (1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N +}.(3){x |x =2n -12n,n ∈N +}. (4){x |x =5n +2,n ∈Z }.*16.设A 表示集合{2,3,a 2+2a -3},B 表示集合{|a +3|,2},若已知5∈A ,且5∉B ,求实数a 的值.[解析] ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,|a +3|≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8,∴a =-4. 17.已知集合A ={x |ax 2-3x -4=0,x ∈R }:(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.[分析] 集合A 是方程ax 2-3x -4=0的解集.A 中有两个元素,即方程有两个相异实根,必有a ≠0;A 中至多有一个元素,则a ≠0时,应有Δ≤0;a =0时,恰有一个元素.[解析] (1)∵A 中有两个元素,∴关于x 的方程ax 2-3x -4=0有两个不等的实数根,∴⎩⎪⎨⎪⎧Δ=9+16a >0a ≠0,即a >-916且a ≠0. (2)当a =0时,A ={-43};当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,∴Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a ≤-916或a =0. *18.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2008+b 2007.[解析] 解法1:∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0,或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2008+b 2007=1.解法2:由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab ,即⎩⎪⎨⎪⎧ab (a 3-1)=0 ①(a -1)(a +b +1)=0 ②因为集合中的元素互异,所以a≠0,a≠1.解方程组得,a=-1,b=0.故a2008+b2007=1.。
2018-2019学年人教A版高中数学必修1同步练习目录1.1.1 第1课时集合的含义练习1.1.1 第2课时集合的表示练习1.1.2集合间的基本关系练习1.1.3 第1课时并集、交集练习1.1.3 第2课时练习1.2.1 第1课时函数的概念练习1.2.1 第2课时函数概念的综合应用练习1.3.1 第1课时函数的单调性练习1.3.1 第2课时函数的最大(小)值练习1.3.2 第1课时函数奇偶性的概念练习1.3.2 第2课时函数奇偶性的应用练习2.1.1 第1课时根式练习2.1.1 第2课时指数幂及运算练习2.1.2 第1课时指数函数的图象及性质练习2.1.2 第2课时指数函数及其性质的应用练习2.2.1 第1课时对数练习2.2.1 第2课时对数的运算练习2.2.2 第1课时对数函数的图象及性质练习2.2.2 第2课时对数函数及其性质的应用练习2.3幂函数练习3.1.1方程的根与函数的零点练习3.1.2用二分法求方程的近似解练习3.2.1几类不同增长的函数模型练习3.2.2函数模型的应用实例练习习题课1集合练习习题课2函数及其表示练习习题课3函数的基本性质练习习题课4指数函数练习习题课5对数函数与幂函数练习习题课6函数的应用练习章末质量评估1练习章末质量评估2练习章末质量评估3练习模块质量评估练习第一章 1.1 1.1.1 第1课时1.下列判断正确的个数为( ) (1)所有的等腰三角形构成一个集合. (2)倒数等于它自身的实数构成一个集合. (3)质数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合. A .1 B .2 C .3D .4解析:(1)正确,(2)若1a =a ,则a 2=1,∴a =±1,构成的集合为{1,-1},∴(2)正确,(3)也正确,任何一个质数都在此集合中,不是质数的都不在.(3)正确,(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.答案:C2.若a ∈R ,但a ∉Q ,则a 可以是( ) A .3.14 B .-5 C .37D .7解析:由题意知a 是实数但不是有理数,故a 应为无理数. 答案:D3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6D .2解析:验证,看每个选项是否符合元素的互异性. 答案:C4.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.答案:B5.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中,共有________个元素.解析:方程x 2-5x +6=0的解是2,3;方程x 2-x -2=0的解是-1,2.由集合元素的互异性知,以这两个方程的解为元素的集合中共有3个元素.答案:36.设A是满足x<6的所有自然数组成的集合,若a∈A,且3a∈A,求a的值.解:∵a∈A且3a∈A,∴a<6且3a<6.∴a<2.又a是自然数,∴a=0或1.第一章 1.1 1.1.1第2课时1.下列集合表示法正确的是()A.{1,2,2}B.{全体实数}C.{有理数} D.{2x-5>0}答案:C2.集合{x∈N|x<5}的另一种表示法是()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:∵x∈N,又x<5,∴x=0,1,2,3,4.答案:A3.集合A={1,3,5,7,…}用描述法可表示为()A.{x|x=n,n∈N} B.{x|x=2n-1,n∈N}C.{x|x=2n+1,n∈N} D.{x|x=n+2,n∈N}解析:集合A表示所有的正奇数组成的集合,故C正确.答案:C4.用列举法表示由大于2小于15的偶数组成的集合为______________________ .答案:{4,6,8,10,12,14}5.能被3整除的正整数的集合,用描述法可表示为__________________________.答案:{x|x=3k,k∈N*}6.用适当的方法表示下列集合:(1)A={(x,y)|x+y=4,x∈N*,y∈N*};(2)平面直角坐标系中所有第二象限的点.解:(1)∵x∈N*,y∈N*,∴x=1,y=3或x=2,y=2或x=3,y=1.∴A={(1,3),(2,2),(3,1)}.(2){(x,y)|x<0,y>0}.第一章 1.1 1.1.21.集合{0}与∅的关系是()A.{0} ∅B.{0}∈∅C.{0}=∅D.{0}⊆∅解析:空集是任何非空集合的真子集,故选项A正确.集合与集合之间无属于关系,故选项B错误;空集不含任何元素,{0}含有一个元素0,故选项C、选项D均错误.答案:A2.设A={x|-1<x<0},B={x|x<2,或x>3},则()A.A∈B B.B∈AC.A B D.B A解析:∵-1<x<0<2,∴对任意x∈A,则x∈B,又1∈B,但1∉A,∴A B.答案:C3.集合{a,b}的子集个数为()A.1B.2C.3D.4解析:当子集不含元素时,即为∅;当子集中含有一个元素时,其子集为{a},{b};当子集中有两个元素时,其子集为{a,b}.答案:D4.集合U,S,T,F的关系如图所示,下列关系错误的有________.(填序号)①S U;②F T;③S T;④S F;⑤S F;⑥F U.解析:根据子集、真子集的Venn图,可知S U,S T,F U正确,其余错误.答案:②④⑤5.用适当的符号填空(“∈、∉、 、=”).(1)a________{a,b,c};(2)∅________{x∈R|x2+1=0};(3){0}________{x|x2=x};(4){2,1}________{x|x2-3x+2=0}.解析:(1)为元素与集合的关系,(2)(3)(4)为集合与集合的关系.易知a∈{a,b,c};∵x+1=0在实数范围内的解集为空集,故∅={x∈R|x2+1=0};∵{x|x2=x}={0,1},∴{0} {x|x2=x};∵x2-3x+2=0的解为x1=1,x2=2.∴{2,1}={x|x2-3x+2=0}.答案:(1)∈(2)=(3) (4)=6.已知集合A={x,xy,x-y},集合B={0,|x|,y}.若A=B,求x+y的值.解:∵0∈B,A=B,∴0∈A.又由集合中元素的互异性,可以断定|x|≠0,y≠0,∴x≠0,xy≠0.故x-y=0,即x=y.此时A={x,x2,0},B={0,|x|,x},∴x2=|x|.当x=1时,x2=1,与元素互异性矛盾,∴x=-1,即x=y=-1.∴x+y=-2.第一章 1.1 1.1.3第1课时1.下列关系:Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:只有Z∪N=N是错误的,应是Z∪N=Z.答案:C2.已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2}C.{1,3} D.{1,2,3}解析:∵1∈A,1∈B,3∈A,3∈B,∴A∩B={1,3}.答案:C3.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∪B=()A.{x|-1<x<1} B.{x|-2<x<2}C.{x|-2<x<1} D.{x|0<x<1}解析:因为A={x|-2<x<1},B={x|0<x<2},所以A∪B={x|-2<x<2}.答案:B4.已知集合A={1,2,4},B={2,4,6},则A∪B=________.解析:由条件得A∪B={1,2,4,6}.答案:{1,2,4,6}5.已知集合A ={(x ,y )|y =x +3},B ={(x ,y )|y =3x -1},则A ∩B =________.解析:由⎩⎪⎨⎪⎧y =x +3y =3x -1得⎩⎪⎨⎪⎧x =2y =5, ∴A ∩B =⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =3x -1=⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2y =5={(2,5)}.答案:{(2,5)}6.设A ={x |x <-3,或x >3},B ={x |x <1,或x >4},求A ∪B 和A ∩B . 解:如图,集合A ,B 在数轴上可以表示为:∴A ∪B ={x |x <1,或x >3}, A ∩B ={x |x <-3,或x >4}.第一章 1.1 1.1.3 第2课时1.设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩{∁U B }=( ) A .{1,2,5,6} B .{1} C .{2}D .{1,2,3,4}解析:因为∁U B ={1,5,6},所以A ∩(∁U B )={1},故选B. 答案:B2.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}解析:由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )={x |0<x <1}. 答案:D3.设全集U =R ,集合A ={x |x ≥1},B ={x |0≤x ≤2},则∁U (A ∩B )是( ) A .{x |1≤x ≤2} B .{x |0≤x ≤1} C .{x |x >2或x <1}D .{x |0≤x <1}解析:∵A ∩B ={x |1≤x ≤2}, ∴∁U (A ∩B )={x |x >2或x <1}. 答案:C4.设集合S ={三角形},A ={直角三角形},则∁S A =____________________. 答案:{锐角三角形或钝角三角形}5.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=________. 解析:A ∪B ={2,3,4,5},∁U C ={1,2,5},故(A ∪B )∩(∁U C )={2,5}. 答案:{2,5}6.设U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},求a ,b 的值. 解:∵A ={x |a ≤x ≤b }, ∴∁U A ={x |x <a 或x >b }. 又∁U A ={x |x <3或x >4}, ∴a =3,b =4.第一章 1.2 1.2.1 第1课时1.下列四个方程中,表示y 是x 的函数的是( ) ①x -2y =6;②x 2+y =1;③x +y 2=1;④x =y . A .①② B .①④ C .③④D .①②④解析:判断y 是否为x 的函数,主要是看是否满足函数的定义,即x 与y 的对应关系是否是一对一或多对一.因为函数的一个自变量不能对应多个y 值,所以③错,选①②④.故选D.答案:D 2.函数f (x )=1x的定义域是( ) A .R B .{x |x ≥0} C .{x |x >0}D .{x |x ≠0}解析:要使解析式有意义,需⎩⎨⎧x ≥0,x ≠0,∴x >0,故选C.答案:C3.下列图象中,表示函数图象的是( )解析:作x 轴的垂线,只有图象C 与直线最多有一个交点,即为函数图象. 答案:C4.把下列集合写成区间形式.(1){x |x >2}的区间形式为____________.(2){x |x ≤-5}的区间形式为____________. 解析:写成区间时应注意端点是否包含. 答案:(1)(2,+∞) (2)(-∞,-5] 5.函数y =x +4x +2的定义域为______________. 解析:依题意知⎩⎪⎨⎪⎧x +4≥0x ≠-2,∴x ≥-4,且x ≠-2.答案:{x |x ≥-4,且x ≠-2}6.判断下列对应是否为A 到B 的函数. (1)A =N ,B =R ,f :x →y =±x ;(2)A ={1,2,3},B =R ,f (1)=f (3)=2,f (2)=3.解:(1)取x =4∈N ,则y =±4=±2,即在对应法则f 下,B 中有两个元素±2与之对应,不符合函数的定义,故f 不是函数.(2)满足函数的定义,故f 是函数.第一章 1.2 1.2.1 第2课时1.已知M ={x |y =x 2-1},N ={y |y =x 2-1},M ∩N 等于( ) A .N B .M C .RD .∅解析:∵M =R ,N =[-1,+∞),∴M ∩N =N . 答案:A2.函数y =12+3x 2的值域是( )A .⎝⎛⎦⎤0,12B .⎝⎛⎭⎫0,12 C .(0,+∞)D .⎝⎛⎦⎤-∞,12 解析:∵x 2≥0,∴3x 2≥0,2+3x 2≥2,0<12+3x 2≤12. ∴值域为⎝⎛⎦⎤0,12,选A . 答案:A3.下列函数:(1)y =xx ;(2)y =t +1t +1;(3)y =1(-1≤x <1).其中与函数y =1相等的函数个数是( )A .3B .2C .1D .0解析:(1)要求x ≠0,与函数y =1的定义域不同,两函数不相等;(2)虽然化简后为y =1,但要求t ≠-1,即定义域不同,不是相等函数;(3)显然定义域不同,故不是相等函数.答案:D 4.函数y =x +1x的定义域为________________________________. 解析:要使函数y =x +1x 有意义,需⎩⎪⎨⎪⎧x +1≥0,x ≠0,即⎩⎪⎨⎪⎧x ≥-1,x ≠0, ∴定义域为{x |x ≥-1,且x ≠0}. 答案:{x |x ≥-1,且x ≠0}5.设函数f (x )=2x +3的值域是[-1,5],则其定义域为________________. 解析:由-1≤2x +3≤5, 解得-2≤x ≤1, 即函数定义域为[-2,1]. 答案:[-2,1]6.求下列函数的值域:(1)f (x )=x 2+2x -3,x ∈{-2,-1,0,1,3}; (2)f (x )=3x -1x +2. 解:(1)∵f (-2)=-3,f (-1)=-4,f (0)=-3, f (1)=0,f (3)=12,∴函数值域为{-4,-3,0, 12}.(2)方法一 由y =3x -1x +2得yx +2y =3x -1,即(3-y )x =2y +1, 只要3-y ≠0,即y ≠3,就有x =2y +13-y ,即对应于这一x 值的函数值是y .故该函数的值域是{y |y ∈R 且y ≠3}.方法二 由于y =3x -1x +2=3x +6-7x +2=3+-7x +2,当x ≠-2时,-7x +2≠0,∴3+-7x +2≠3,即y ≠3.∴函数值域是{y |y ∈R 且y ≠3}.第一章 1.3 1.3.1 第1课时1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0)D .(-∞,+∞)解析:画出y =-x 2在R 上的图象,可知函数在[0,+∞)上递减.答案:A2.函数y =f (x )的图象如图所示,其增区间是( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]解析:根据函数单调性定义及函数图象知f (x )在[-3,1]上单调递增. 答案:C3.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b >0,则必有( )A .函数f (x )先增后减B .函数f (x )先减后增C .函数f (x )是R 上的增函数D .函数f (x )是R 上的减函数解析:由f (a )-f (b )a -b >0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数.答案:C4.函数y =(3k +1)x +b 在R 上是减函数,k 的取值范围是__________. 解析:由3k +1<0,解得k <-13.答案:⎝⎛⎭⎫-∞,-13 5.函数f (x )在(-∞,+∞)上为减函数,则f (-3)与f (2)的大小关系是________________. 解析:∵-3<2,且f (x )在(-∞,+∞)上为减函数,∴f (-3)>f (2). 答案:f (-3)>f (2)6.判断并证明函数f (x )=kx +b (k ≠0)在R 上的单调性.证明:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(kx 1+b )-(kx 2+b ) =kx 1+b -kx 2-b =k (x 1-x 2). ∵x 1<x 2,∴x 1-x 2<0. 当k >0时,k (x 1-x 2)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴此时f (x )为R 上的增函数. 当k <0时,k (x 1-x 2)>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴此时f (x )为R 上的减函数.第一章 1.3 1.3.1 第2课时1.函数f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .f (-2),0B .0,2C .f (-2),2D .f (2),2解析:由函数最值的几何意义知,当x =-2时,有最小值f (-2);当x =1时,有最大值2. 答案:C2.函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13D .-12解析:作出图象可知y =1x -1在[2,3]上是减函数,y min =13-1=12. 答案:B3.函数y =ax +1(a <0)在区间[0,2]上的最大值与最小值分别为( ) A .1,2a +1 B .2a +1,1 C .1+a,1D .1,1+a 解析:因为a <0,所以一次函数在区间[0,2]上是减函数,当x =0时,函数取得最大值为1;当x =2时,函数取得最小值为2a +1.答案:A4.函数y =2x 2+1,x ∈N *的最小值为________. 解析:∵x ∈N *,∴y =2x 2+1≥3. 答案:35.若函数y =kx(k >0)在[2,4]上的最小值为5,则k 的值为________.解析:因为k >0,所以函数y =k x 在[2,4]上是减函数,所以当x =4时,y 最小=k 4,由题意知k4=5,k =20.答案:206.如图为某市一天24小时内的气温变化图.(1)上午6时的气温是多少?这天的最高、最低气温分别是多少?(2)在什么时刻,气温为0℃?(3)在什么时间段内,气温在0℃以上?解:(1)上午6时的气温约是-1℃,全天的最高气温是9℃,最低气温是-2℃.(2)在上午7时和晚上23时气温是0℃.(3)从上午7时到晚上23时气温在0℃以上.第一章 1.3 1.3.2 第1课时1.函数f (x )=(x )2是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数D .非奇非偶函数解析:函数f (x )的定义域为{x |x ≥0},不关于原点对称,故此函数既不是奇函数又不是偶函数.故选D.答案:D2.下列函数为奇函数的是( ) A .y =|x | B .y =3-x C .y =1x3D .y =-x 2+14解析:A 、D 两项,函数均为偶函数,B 项中函数为非奇非偶,而C 项中函数为奇函数. 答案:C3.函数f (x )=x 3+1x 的图象关于( )A .原点对称B .y 轴对称C .y =x 对称D .y =-x 对称解析:由于f (x )是奇函数,故其图象关于原点对称. 答案:A4.函数f (x )是定义在实数集上的偶函数,若f (a +1)=f (3),则( ) A .a =2B .a =-4C .a =2或a =-4D .不能确定解析:由偶函数的定义知|a +1|=3,所以a =2或a =-4.故选C. 答案:C5.已知函数y =f (x )为奇函数,若f (3)-f (2)=1,则f (-2)-f (-3)=________. 解析:函数y =f (x )为奇函数,故f (-x )=-f (x ),则f (-2)-f (-3)=-f (2)+f (3)=1. 答案:16.判断下列函数的奇偶性: (1)f (x )=x 2(x 2+2); (2)f (x )=x |x |.解:(1)函数的定义域为R ,又∵f (-x )=(-x )2[(-x )2+2]=x 2(x 2+2)=f (x ), ∴f (x )为偶函数.(2)函数的定义域为R,又∵f(-x)=-x|-x|=-x|x|=-f(x),∴f(x)为奇函数.1.若点(-1,3)在奇函数y =f (x )的图象上,则f (1)等于( ) A .0 B .-1 C .3D .-3解析:由题意知f (-1)=3,因为f (x )为奇函数,所以-f (1)=3,f (1)=-3. 答案:D2.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是( ) A .4 B .2 C .1D .0解析:根据偶函数图象关于y 轴对称知,四个交点的横坐标是两对互为相反数的数,因此它们的和为0.答案:D3.如果奇函数f (x )在区间[2,5]上的最小值是3,那么函数f (x )在区间[-5,-2]上有( ) A .最小值3 B .最小值-3 C .最大值-3D .最大值3解析:∵奇函数f (x )在[2,5]上有最小值3, ∴可设f (a )=3,a ∈[2,5], 由奇函数的性质,f (x )在[-5,-2]上必有最大值, 且其值为f (-a ),又f (-a )=-f (a )=-3. 答案:C4.如果定义在区间[2-a,4]上的函数f (x )为偶函数,那么a =________. 解析:由2-a =-4,得a =6. 答案:65.若函数f (x )=⎩⎪⎨⎪⎧2x -3(x >0),g (x )(x <0)是奇函数,则g (x )=__________.解析:当x <0时,-x >0,f (-x )=2(-x )-3=-2x -3.又函数f (x )是奇函数,∴f (x )=-f (-x )=2x +3.即g (x )=2x +3.答案:2x +31.m 是实数,则下列式子中可能没有意义的是( ) A.4m 2 B.5m C.6mD .5-m解析:当m <0时 ,6m 没有意义. 答案:C2.81的4次方根是( ) A .3 B .-3 C .±3D .以上都不对 解析:由于(±3)4=81,故81的4次方根为±3. 答案:C3.已知x 5=-6,则x 等于( ) A .- 6 B.56 C .±56D .-56解析:负数的奇次方根只有一个且为负数. 答案:D4.计算下列各式的值: (1)3-53=________;(2)设b <0,(-b )2=________. 答案:(1)-5 (2)-b5.已知(4a +1)4=-a -1,则实数a 的取值范围是________.解析:∵(4a +1)4=|a +1|,∴|a +1|=-a -1=-(a +1),∴a +1≤0,即a ≤-1.又∵a +1≥0,即a ≥-1,∴a =-1.答案:a =-1 6.求614- 3338+30.125的值. 解:原式=⎝⎛⎭⎫522-3⎝⎛⎭⎫323+ 3⎝⎛⎭⎫123=52-32+12=32.第二章 2.1 2.1.1 第2课时1.332 可化为( )A.2 B .33 C .327D .27解析:332 =33=27.答案:D2.5a -2(a >0)可化为( ) A .a-25B .a 52C .a 25D .-a 52解析:5a -2=a -25 =a -25 .答案:A 3.式子a 2a ·3a 2(a >0)经过计算可得到( )A .aB .-6a 5C .5a 6D .6a 5解析:原式=a 2a 12 ·a 23 =a 2a 12 +23 =a 2a 76 =a 56=6a 5.答案:D4.计算:412+2-2=________.解析:原式=(22)12 +122=2+14=94.答案:945.计算:(0.25)-0.5+⎝⎛⎭⎫127-13 -6250.25=______. 解析:原式=⎝⎛⎭⎫14-12 +(3-3)-13 -(54)14 =2+3-5=0.答案:0 6.计算: (1)3(-4)3-⎝⎛⎭⎫120+0.2512 ×⎝ ⎛⎭⎪⎫-12-4;(2)⎝⎛⎭⎫-278-23 +(0.002)-12 -10(5-2)-1+(2-3)0. 解:(1)原式=-4-1+12×(2)4=-3.(2)原式=⎝⎛⎭⎫-278-23 +⎝⎛⎭⎫1500-12 -105-2+1=⎝⎛⎭⎫-82723 +50012 -10(5+2)+1 =49+105-105-20+1=-1679.第二章 2.1 2.1.2 第1课时1.下列函数中指数函数的个数是( )①y =3x ;②y =x 3;③y =-3x ;④y =x x ;⑤y =(6a -3)x ⎝⎛⎭⎫a >12,且a ≠23. A .0 B .1 C .2D .3解析:只有①⑤是指数函数;②底数不是常数,故不是指数函数;③是-1与指数函数y =3x 的乘积;④中底数x 不是常数,它们都不符合指数函数的定义.答案:C2.函数y =2-x 的图象是( )解析:y =2-x =⎝⎛⎭⎫12x ,故选B. 答案:B3.已知函数f (x )=⎝⎛⎭⎫12x +2,则f (1)与f (-1)的大小关系是( ) A .f (1)>f (-1) B .f (1)<f (-1) C .f (1)=f (-1)D .不确定解析:∵f (x )=⎝⎛⎭⎫12x +2是减函数, ∴f (1)<f (-1). 答案:B4.函数y =(a -1)x 在R 上为减函数,则a 的取值范围是________. 解析:函数y =(a -1)x 在R 上为减函数, 则0<a -1<1,所以1<a <2. 答案:(1,2)5.指数函数y =f (x )的图象经过点(π,e),则f (-π)=________. 解析:设指数函数为y =a x (a >0,且a ≠1),则e =a π, ∴f (-π)=a -π=(a π)-1=e -1=1e .答案:1e6.已知⎝⎛⎭⎫12x>1,求x 的取值范围. 解:∵⎝⎛⎭⎫12x>1,∴⎝⎛⎭⎫12x >⎝⎛⎭⎫120. ∵y =⎝⎛⎭⎫12x在R 上是减函数,∴x <0. 即x 的取值范围是(-∞,0).第二章 2.1 2.1.2第2课时1.当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是() A.a>2B.1<a<2C.a>1 D.a∈R解析:∵x>0时,(a-1)x<1恒成立,∴0<a-1<1,∴1<a<2.答案:B2.若指数函数f(x)=(a+1)x是R上的减函数,则a的取值范围为()A.a<2 B.a>2C.-1<a<0 D.0<a<1解析:由f(x)=(a+1)x是R上的减函数可得0<a+1<1,∴-1<a<0.答案:C3.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则()A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数解析:∵f(x)=3x+3-x,∴f(-x)=3-x+3x.∴f(x)=f(-x),即f(x)是偶函数.又∵g(x)=3x-3-x,∴g(-x)=3-x-3x.∴g(x)=-g(-x),即函数g(x)是奇函数.答案:B4.已知a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系是________________.解析:∵y=0.8x是减函数,∴0<b<a<1.又∵c=1.20.8>1,∴c>a>b.答案:c>a>b5.设23-2x<0.53x-4,则x的取值范围是________.解析:∵0.53x -4=⎝⎛⎭⎫123x -4=24-3x ,∴由23-2x <24-3x,得3-2x <4-3x ,∴x <1. 答案:(-∞,1)6.已知22x ≤⎝⎛⎭⎫14x -2,求函数y =2x 的值域. 解:由22x ≤⎝⎛⎭⎫14x -2得22x ≤24-2x , ∴2x ≤4-2x .解得x ≤1,∴0<2x ≤21=2. ∴函数的值域是(0,2].第二章 2.2 2.2.1 第1课时1.下列指数式与对数式互化不正确的一组是( ) A .e 0=1与ln 1=0 B .log 39=2与912=3C .8-13=12与log 812=-13D .log 77=1与71=7解析:log 39=2可化为指数式32=9,912=3可化为对数式log 93=12.答案:B2.若log a 7b =c ,则a ,b ,c 之间满足( ) A .b 7=a c B .b =a 7c C .b =7a cD .b =c 7a解析:由已知可得7b =ac ,∴b =a 7c . 答案:B3.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 解析:lg(lg 10)=lg 1=0;ln(ln e)=ln 1=0,故①②正确.若10=lg x ,则x =1010,③错误;若e =ln x ,则x =e e ,故④错误.答案:C4.已知4a =2,lg x =a ,则x =______.解析:由4a=2,得a =12,代入lg x =a ,得lg x =12,那么x =1012 =10.答案:105.方程log 5(1-2x )=1的解为x =________. 解析:由1-2x =5,解得x =-2. 答案:-26.将下列指数式化为对数式,对数式化为指数式: (1)2.52=6.25; (2)log133=-2;(3)5b =20.解:(1)log 2.56.25=2;(2)⎝⎛⎭⎫13-2=3; (3)log 520=b .。