2012年浙教版七年级数学第一次单元检测题 2
- 格式:doc
- 大小:72.93 KB
- 文档页数:3
第1章有理数数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、-8的绝对值等于()A.8B.C.D.2、如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是()A.﹣2B.2C.﹣6D.6.3、在下面的四个有理数中,最小的是()A.-2B.2C.0D.-34、一个数的相反数是2,这个数是()A. B.- C.2 D.﹣25、在数轴上a所对应的点与b所对应的点相差6个单位长度,若﹣a=2,则b等于()A.4B.﹣4C.﹣8D.4或﹣86、在下列各组中,哪个选项表示互为相反意义的量( )A.足球比赛胜5场与负5场B.向东走3千米,向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义7、下列各数中,最小的数是()A.1B.C.0D.﹣18、下列各组数从小到大排列正确的是()A.﹣6<﹣5<3B.3<﹣6<﹣5C.﹣5<﹣6<3D.﹣6<3<﹣59、﹣2的相反数是()A.-B.2C.-2D.10、的绝对值是()A.5B.C.D.﹣511、若与互为相反数,则的值为()A.3B.9C.12D.2712、如果股票指数上涨 30 点记作+30,那么股票指数下跌 20 点记作()A.﹣20B.+20C.﹣10D.+1013、已知,则a+b的值是()A.-4B.4C.2D.-214、下列有理数大小关系判断正确的是()A. B. C. D.15、下列说法:①一定是负数;②一定是正数;③倒数等于它本身的数是;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、互为相反数的两个数(0除外)的商是________.17、比较大小:﹣3________﹣2(填“<”或“>”)。
18、下列一组数中-4,3.7,,0.32,,-5.4,整数和负分数共有________个.19、若|b﹣1|+ =0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是________.20、已知a是绝对值最小的负整数,b是最小正整数的相反数,c是绝对值最小的有理数,则c-b+a=________ 。
七年级数学上册第一章有理数单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.的相反数是()A. B.2 C.-2 D.2.在1,﹣2,0,这四个数中,最大的整数是()A.1B.0C.D.﹣23.﹣|﹣|的倒数是()A. B.﹣ C.2 D.﹣24.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是15.一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动3个单位长度,经过两次移动后到达的终点表示的是什么数?()A.+5B.+1C.-1D.-56.数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是()A.-5+(-2)B.-5-(-2)C.|-5+(-2)|D.|-2-(-5)|7.若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.非正数8.如图,数轴上每个刻度为1个单位长,则 A,B 分别对应数 a,b,且b-2a=7,那么数轴上原点的位置在()A.A 点B.B 点C.C 点D.D 点9.月球是地球的近邻,它的起源一直是人类不断探索的谜题之一.全球迄今进行了126次月球探测活动,因为研究月球可提高人类对宇宙的认识,包括认识太阳系的演化及特点,认识地球自然系统与太空自然现象之间的关系.我们已经认识到,在月球表面,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到﹣183℃.下面对“﹣183℃”的叙述不正确的是()A.﹣183是一个负数B.﹣183表示在海平面以下183米C.﹣183在数轴上的位置在原点的左边D.﹣183是一个比﹣100小的数10.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2B.﹣3C.+3D.+4二、填空题(共8题;共24分)11.﹣的绝对值的相反数是________.12.比较大小:﹣________﹣(填“>”或“<”)13.数轴上原点右边8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是________.14.若已知|a+2|+|b﹣3|+|c﹣4|=0,则式子a+2b+3c的值为________.15.点A在原点的左侧,且点A表示的数的绝对值是3,则点A表示的数为________.16.数轴上点A表示-3,那么到点A的距离是4个单位长的点表示的数是________.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则________.18.请把下列错误说法的序号填到后面的横线上________.①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数;⑥最大的负有理数是﹣1.三、计算题(共2题;共12分)19.已知|a|=3,|b|=5,且a<b,求a+b的值.20.列式计算:﹣的绝对值的相反数与1.5的倒数的和是多少?四、解答题(共7题;共54分)21.小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?22.数轴上A点表示的数为+4,B、C两点所表示的数互为相反数,且C到A的距离为2,点B 和点C各表示什么数.23.画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.,,,,,,,024.把下列各数分别填入相应的集合里.,(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}。
第 1 章测试卷有理数班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.如果温度上升2℃记做+2℃,那么温度下降3℃记做( )A. +2℃B. —2℃C. +3℃D. -3℃2.如图,数轴上被墨水遮盖的数可能为( )A. 1B. —1.5C. -3D. -4.23. 在数轴上,若点 M表示的有理数m 满足|m|>1,且m<0,则点M在数轴上的位置表示正确的是( )4.下列式子正确的是( )A. |-2|=-2B. |a|=aC. --|-2|<0D. -3<-45.数轴上表示-4与1的两点间的距离是( )A. 3B. -5C. 3D. 56.对于任何有理数a,下列一定为负数的是( )A. -(-3+a)B. -aC. -|a+1|D. -|a|-17.下列说法中不正确的是( )A. 最小的正整数是 1B. 最大的负整数是-1C. 有理数分为正数和负数D. 绝对值最小的有理数是08. 一个数a在数轴上对应的点是A,当点 A 在数轴上向左平移了 3个单位长度后到点 B,点A 与点 B 表示的数恰好互为相反数,则数a是( )A. -3B. -1.5C. 1.5D. 39.-|a|=-3.2,则a是( )A. 3.2B. -3.2C. ±3.2D. 以上都不对10.下列各式中,正确的是( )A. --|-2|>0 C. |-3|=-|3| D. |-6|<0二、填空题(本大题有 6 小题,每小题4分,共24分)11. -(-2)的相反数是,绝对值是 .12. 已知四个有理数在数轴上所对应的点分别为A,B,C,D,则这四个点从左到右的顺序为,离原点距离最近的点为 .13. 数轴上一个点到表示一1的点的距离是 4,那么这个点表示的数是 .14. 在数轴上表示数m的点到原点的距离为2,则m+1= .15.(1)所有不大于4 且大于-3的整数有;(2)不小于—4 的非正整数有;(3)若|a|+|b|=4,且a=-1,则b= .16. 已知数a与数b 互为相反数,且在数轴上表示数a,b的点A,B之间的距离为2020个单位长度,若a<b,则a= ,b= .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上表示下列各数,并将它们按从小到大的顺序用“<”号连接.18.(6分)下表给出了某班6名学生的身高情况(单位:cm).学生A₁A₂A₃A₄A₅A₆身高166167172身高与班级平均身高的差+1-1-2+3值(1)完成表中空白部分;(2)他们的最高身高和最矮身高相差多少?(3)他们班级学生的平均身高是多少? 6名学生中有几名学生的身高超过班级平均身高?19. (6分)把下列各数填入相应的括号内:自然数:{ };负整数:{ };正分数:{ };负有理数:{ }.20.(8分)邮递员骑车从邮局出发,先向南骑行3km到达A 村,继续向南骑行5km到达B村,然后向北骑行14km到达 C村,最后回到邮局.(1)以邮局为原点,以向南方向为正方向,用0.5cm表示 1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?21.(8分)同学们都知道,表示 2 与之差的绝对值,实际上它的几何意义也可理解为2 与两数在数轴上所对应的两点之间的距离.试探索:(1)求表示的几何意义是什么?,则x的值是多少?22.(10分)如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点 A 表示点 G 表示 8.(1)点B 表示的有理数是,表示原点的是点;(2)图中的数轴上另有点M到点A、点G的距离之和为13,求这样的点 M表示的有理数;(3)若相邻两点之间的距离不变,将原点取在点D,则点C表示的有理数是,此时点 B 与点表示的有理数互为相反数.23.(10分)有5袋小麦,以每袋25 千克为基准,超过的千克数记做正数,不足的千克数记做负数,各袋大米的千克数如下表:袋号一二三四五每袋超出或不足的千克数—.2.1一.3一.1.2(1)第一袋大米的实际质量是多少千克?(2)把表中各数用“<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?24.(12分)把几个数用大括号括起来,相邻几个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016-x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合.(1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合.(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素? 如果存在,请直接写出答案,否则说明理由.(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素? 说明你的理由.第 1章测试卷有理数1. D2. C3. D4.C 5 D 6 . D 7 . C 8 . C 9 . C10. B 11. -2 2 12. BACD A 13. -5或314. 3或-115. (1)—2,—1,0,1,2,3,4 (2)-4,-3,-2,-1,0(3)±3 16. -1010 101017. 解:-|-4|=-4,-(-1)=1.在数轴上表示如图所示:所以18. 解:(1)第一行:164 163 168;第二行:+2 +7(2)172—163=9( cm).(3)班级平均身高:165cm;共有4名学生超过班级平均身高.19. 解:自然数:{1,0,+102};负整数:{—9,—70};正分数:{0.89,};负有理数20. (1)略 (2)9km (3)28km21. 解:(1)原式=|5|=5.(2)5与—3两数在数轴上所对应的两点之间的距离.(3)x=6或-4.22. (1)—2 C (2)—4.5或8.5 (3)—2 F23.(1)24.8千克 (2)—0.3<—0.2<—0.1<0.1<0.2(3)第三的质量<第一的质量<第四的质量<第二的质量<第五的质量与(2)中一致24. 解:(1)不是是(2)存在,最小元素是—2000.(3)该集合共有 24 个元素.理由如下:①若1008是该黄金集合中的一个元素,则它所对应的元素也为1008.②若1008不是该黄金集合中的元素,因为在黄金集合中,如果一个元素为a,那么另一个元素为2016—a,故黄金集合中的元素一定有偶数个,且黄金集合中每一对对应元素的和为 2016.因为,又该黄金集合中所有元素之和为M,且24190,若1008是该黄金集合中的元素,则22176+故1008不是该黄金集合中的元素,所以该黄金集合中元素的个数为 12×2=24.。
第1章有理数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷90分,共120分,考试时间120分钟.第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.-2的相反数是( )A.-2 B.2C.12 D.-122.在数0,2,-3,-1.2中,属于负整数的是( ) A.0 B.2C.-3 D.-1.23.如图1,数轴上点A表示的数可能是( )图1 A.-3.7 B.-3.2C.-2.7 D.-2.24.在-4,0,-1,3这四个数中,最大的数是( ) A.-4 B.0C.-1 D.35.若|x|=5,则x的值是( )A.5 B.-5 C.±5 D.1 56.如图2,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )图27.在体育课的跳远比赛中,以4.00米为标准,如果小东跳出了4.22米,可记做+0.22米,那么小东跳出了3.85米,应记做( )A.-0.15米B.+0.22米C.+0.15米D.-0.22米8.在数轴上,绝对值相等的两个数对应的点之间的距离为4,则这两个数分别是( )A.4和-4 B.2和-4C.2和-2 D.-2和49.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( ) A.150元B.120元C.100元D.80元10.探索规律:根据如图3中箭头指向的规律,可知从2016到2018箭头的方向图是( )图3图4请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共24分)11.在数-1,0,2中,负数是__________. 12.比较下列各对数的大小:(1)-13________0; (2)-34________-45;(3)+1________-100.13.在数-2,-113,5中,最小数的绝对值与最大数的和是__________.14. 在数轴上,比-3.2大的最小负整数是__________;不小于-2而小于 3.1的非负整数是______________.15.到原点的距离小于3的点表示的数中整数有__________.16.在数轴上,点A 表示的数是1,点B ,C 表示的数互为相反数,且点C 与点A 间的距离为3,则点B 表示的数是____________.三、解答题(共66分)17.(6分)把下列各数填入相应的横线内:-5.7,+17,-34,0,-13,1213,2018,-0.168.正有理数:________________________;负有理数:________________________; 整数:________________________; 分数:________________________. 18.(6分)比较下列各数的大小:(1)-5 和-6; (2)-23和-56;(3)-3.14和-π; (4)0和-|-3.5|.19.(6分)在数轴上画出表示下列各数的点:1.5,-3,0,-212,同时画出表示它们相反数的点,并用“<”将这些数连接起来.20.(8分)若|a |=5,|b |=1,求a ,b 的值.21.(8分)小明的爸爸是车间主任,他们工厂为一家汽车厂生产了一批零件,为了检查这批零件是否合格,从中抽取了8个进行检查,比规定直径长的毫米数记做正数,比规定直径短的毫米数记做负数,检查记录(单位:毫米)如下:22.(10分)王老师是七年级(1)班的数学老师.有一天,王老师上课时拿出一支2B 铅笔让同学们估计它的长度,她先请五名同学把估计的数字写在黑板上,如图5所示,然后让学生用直尺量一量,如图6所示.(单位:厘米)(1)根据图6读出铅笔的长度大约是17.7厘米,以它为基准,规定大于这个值的厘米数为正,小于这个值的厘米数为负,用正、负数表示图5中的五个数;(2)哪一名同学的估计值最接近这支2B铅笔的长度?图5 图623.(10分)(1)对于式子|x|+13,当x等于什么值时有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时有最大值?最大值是多少?24.(12分)观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2018个数是什么?(3)如果这一列数无限排列下去,与哪两个数越来越接近?1.B 2.C 3.C 4.D 5.C 6.C 7.A8.C 9. B 10. A 11.-112.(1)< (2)> (3)> 13.714.-3 0,1,2,3 15.±1,±2,0 16.2或-417.解:正有理数:+17,1213,2018;负有理数:-5.7,-34,-13,-0.168;整数:+17,0,-13,2018;分数:-5.7,-34,1213,-0.168.18.解:(1)-5>-6.(2)-23>-56.(3)-3.14>-π. (4)0>-|-3.5|. 19.解:如图所示.由数轴可知:-3<-212<-1.5<0<1.5<212<3.20.解:∵|a |=5,|b |=1,∴a =±5,b =±1.21.解:第3个零件最好.根据绝对值的意义,绝对值越小,说明零件与规定的直径的偏差越小,所以表中绝对值最小的那个零件最好.22.解:(1)这五个数可分别记做:-2.7厘米,+0.3厘米,-0.7厘米,+2.3厘米,-1.7厘米. (2)估计值为18厘米的这名同学的估计值最接近这支2B 铅笔的长度. 23.解:(1)当x =0时,|x |+13有最小值,最小值为13. (2)当x =0时,2-|x |有最大值,最大值为2.24. 解:(1)第7,8,9个数分别为78,-89,910.(2)-20182019.(3)与1和-1越来越接近.。
(浙教版)七年级上册数学第一单元《有理数》教学质量检测
学校:___________姓名:___________班级:___________考号:___________一、单选题
A .
B .a c >-a
A.数轴是以小明所在的位置为原点
B.数轴采用向北为正方向
二、填空题
17.如图1,点A,B,C是数轴上从左到右排列的三个点,对应的数分别为某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点
18.如图,在一张纸条上画有一条数轴.
(1)将数轴沿过原点且与数轴垂直的直线折叠,则表示的点与表示 的点
三、解答题
21.如图,在一条不完整的数轴上有A ,B 两点,它们表示的数分别为
(1)求线段的长度.
3-AB
(1)若点A所表示的数是,则点C所表示的数是
1-
参考答案:
答案第1页,共1页。
浙教版七年级数学上册第1章 测试卷一、选择题(每题3分,共30分)1.-15的相反数是( ) A .-15 B.15 C .-5 D .52.如果潜水艇下潜3 m 记做-3 m ,那么潜水艇上浮4 m 记做( )A .4 mB .-4 mC .7 mD .1 m3.在0,1,-12,-1四个数中,最小的是( ) A .0 B .1 C .-12 D .-14.数轴上表示-12的点到原点的距离是( ) A .-12 B.12 C .-2 D .25.一个数的绝对值等于3,这个数是( )A .3B .-3C .3或-3 D.136.下列各数:0.01,10,-6.67,-13,0,-90,-(-3),-|-2|,其中是负数的共有( )A .2个B .3个C .4个D .5个7.下列说法正确的是( )A .符号不同的两个数互为相反数B .零的绝对值是它本身C .一个数的绝对值一定是它本身D .在有理数中,没有绝对值最小的数8.如图所示的数轴被墨迹盖住了一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个9.在数轴上与表示-3的点的距离等于5的点所表示的数是( )A .-8B .2C .-8和2D .110.如果a ,b 表示的是有理数,并且|a |+|b |=0,那么( )A .a ,b 的值不存在B .a 和b 符号相反C .a ,b 都不为0D .a =b =0二、填空题(每题3分,共24分)11.在一批零件的检测中,如果一个零件的质量超过标准质量0.05 g ,记做+0.05 g ,那么-0.03 g 表示____________________.12.在有理数-3,0,20,-1.25,134,-|-12|,-(-5)中,正整数是__________,负整数是__________,非负数是________________.13.最大的负整数是________,最小的正整数是________,绝对值最小的有理数是________.14.比较大小:-34________-45(填“>”或“<”). 15.若|a -2|与|4-b|互为相反数,则b -a -1的值是________.16.下面是杭州钱塘江段某年雨季一周内的水位变化情况(其中0表示警戒水位,高于警戒水位为正),则水位最高的是星期________.星期 一 二 三 四 五 六 日水位变化/米+0.30 +0.41 +0.25 +0.10 0 -0.13 -0.2 17.数轴上-1所对应的点为A ,将A 点向右平移4个单位长度再向左平移6个单位长度,则此时A 点到原点的距离为________个单位长度.18.在数轴上,点A 表示的数是1,点B ,C 表示的数互为相反数,且点C 与点A 间的距离为3,则点B 表示的数是________.三、解答题(19,20,21题每题6分,22,23题每题8分,24题12分,共46分)19.把下列各数填在相应的横线上:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6. 正数:__________________________; 负分数:_______________________; 非负整数:______________________; 有理数:_______________________.20.如图,数轴上的点A ,B ,C ,D ,E 大致分别表示什么数?其中哪些数互为相反数?21.在如图所示的数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.-12,0,-2.5,-3,112.22.为了有效控制酒后驾驶,A市某交警的汽车在一条南北方向的大街上巡逻,规定向北为正,向南为负,已知从出发点开始所行驶的路程(单位:千米)为+3,-2,+1,+2,-3,-1,+2.(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机该如何行驶?(2)当该辆汽车回到出发点时,一共行驶了多少千米?23.在社会实践活动中,环保小组甲、乙、丙三位同学一起连续五天记录了高峰时段10分钟内通过解放路的车辆数(向东为正,向西为负),如下表.(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如在这10分钟内,车辆数不超过60辆时,空气质量为良,车辆数超过60辆时,空气质量为差.请你对这五天的空气质量作一个评价.24.如图,在数轴上,点A表示的数是-30,点B表示的数是170.(1)一只电子青蛙M,从点B出发,以每秒4个单位长度的速度向左运动.同时另一只电子青蛙N,从点A出发,以每秒6个单位长度的速度向右运动.假设它们在点C处相遇,求点C表示的数.(2)两只电子青蛙在点C处相遇后,继续沿原来的运动方向运动.当电子青蛙M到达点A时,问:电子青蛙N处在什么位置?(3)如果电子青蛙M从点B出发向右运动,同时电子青蛙N也向右运动.(1)中其他条件不变,假设它们在点D处相遇,求点D所表示的数.答案一、1.B 【提示】根据只有符号不同的两个数互为相反数求解即可.2.A 3.D4.B 【提示】数轴上的点到原点的距离就是该点所表示的数的绝对值.5.C 【提示】因为|3|=3,|-3|=3,所以这个数是3或-3.6.C 【提示】注意-(-3)=3,-|-2|=-2.7.B 【提示】A.只有符号不同的两个数互为相反数,故本选项错误;B .零的绝对值是它本身,故本选项正确;C .零和正数的绝对值是它本身,故本选项错误;D .在有理数中,绝对值最小的数是零,故本选项错误.8.B9.C 【提示】本题运用数形结合思想进行解答.在数轴上与表示-3的点的距离等于5的点,可能在表示-3的点的左边,也可能在表示-3的点的右边,据此即可求解.10.D二、11.零件的质量低于标准质量0.03 g12.20,-(-5);-3,-|-12|;0,20,134,-(-5) 【提示】-|-12|=-12,-(-5)=5.13.-1;1;0 【提示】最大的负整数是-1;最小的正整数是1;正数和负数的绝对值都是正数,0的绝对值是0,所以绝对值最小的有理数是0.14.>15.1 【提示】根据|a -2|与|4-b |互为相反数,可得|a -2|+|4-b |=0,由绝对值的非负性可得a =2,b =4,所以b -a -1=4-2-1=1.16.二 【提示】因为+0.41>+0.30>+0.25>+0.10>0>-0.13>-0.2,所以星期二的水位最高.17.3 18.2或-4三、19.解:正数:15,0.81,227,171,3.14,1.6; 负分数:-12,-3.1; 非负整数:15,171,0;有理数:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6. 20.解:由数轴上各点到原点的距离的大小可知各点所表示的数大致为:点A 所表示的数是-3.8;点B 所表示的数是-2.2;点C 所表示的数是-0.8;点D 所表示的数是0.8;点E 所表示的数是2.2.故互为相反数的数有-0.8和0.8,-2.2和2.2.【提示】本题运用了数形结合思想,可根据数轴上各点到原点的距离估计出各点所表示的数,再根据相反数的定义解答.答案不唯一.21.解:各数在数轴上表示如图.按从小到大的顺序排列为-3<-2.5<-12<0<112.22.解:(1)这辆汽车向北行驶了3+1+2+2=8(千米),向南行驶了2+3+1=6(千米),故此时这辆汽车应向南行驶8-6=2(千米).(2)|+3|+|-2|+|+1|+|+2|+|-3|+|-1|+|+2|+|-2|=16(千米).答:一共行驶了16千米.23.解:(1)由表可知,五天高峰时段10分钟内通过解放路的车辆数分别为65辆、40辆、50辆、85辆、55辆,所以第四天的污染指数最高,第二天的污染指数最低.(2)第二天、第三天、第五天的空气质量为良,第一天、第四天的空气质量为差.【提示】(1)污染指数的高低取决于车辆数的多少,车辆数越大,污染指数越高,反之,则越低,与汽车的行驶方向无关.(2)车辆数与汽车的行驶方向无关,只要求出每天通过的汽车辆数,再与60比较即可.24.解:(1)相遇时间为|-30-170|÷(6+4)=20(s).所以点C所表示的数是170-4×20=90.(2)当电子青蛙M到达点A时,相遇后所用的时间是|90-(-30)|÷4=30(s),所以电子青蛙N相遇后移动的距离是6×30=180,90+180=270,所以电子青蛙N处在表示270的点的位置.(3)它们在点D处相遇,所用的时间是|-30-170|÷(6-4)=100(s).电子青蛙M移动的距离为4×100=400,400+170=570,所以点D所表示的数是570.。
浙教新版七年级上册《第1章有理数》单元测试卷(浙江省某校)一.选择题(每小题3分,共30分)1. 数轴上表示−513的点在()A.−5与−6之间B.−6与−7之间C.5与6之间D.6与7之间2. 绝对值等于5的数是()A.5B.−5C.+5或−5D.0和53. 下列各对数中,互为相反数的是()A.2和12B.25和−0.4 C.25和−52D.2和−124. 仔细思考以下各对量:①胜二局与负三局;②气温上升3∘C与气温下降3∘C;③盈利5万元与支出5万元;④增加10%与减少20%.其中具有相反意义的量有()A.1对B.2对C.3对D.4对5. 下列说法正确的是()A.一个数的绝对值一定是正数B.一个数的相反数一定是负数C.若一个数的绝对值是它本身,则这个数一定是正数D.若一个数的相反数是它本身,则这个数一定是零6. 绝对值小于2.5的整数有()A.5个B.4个C.3个D.2个7. 下列说法正确的是()A.最小的整数是零B.有理数分为整数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等8. 下列各式中,正确的是()A.−|−16|>0B.|0.2|>|−0.2|C.−47>−57D.|−16|<09. 在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为()A.−1B.0C.1D.210. 若有理数a,b在数轴上对应的点如图所示,则a、b、−a、−b的大小关系是()A.a<b<−a<−bB.a<−b<b<−aC.−b<a<b<−aD.−a<−b<a<b二.填空题(每小题3分,共24分)如果6m表示水位升高6m,那么−2m表示________.物理竞赛成绩100分以上为优秀,老师将其三名同学的成绩以100分为标准记为:+10,−6,0,这三名同学的实际成绩分别是________.写出一个比−1大的负数________.数轴上与−1的距离等于4个单位长度的点所表示的数为________.若|x|=2010,那么x=________.小明在写作业时不慎将一些墨水滴在数轴上,根据图中的数值,判定墨迹盖住的整数共有________个.妈妈为小王存了年利率为1.15%的定期存款,一年后得到的利息是184元(扣除国家利息的20%),那么,当初她存入银行________元.对于一个数,给定条件A:该数是负整数,且大于−3;条件B:该数的绝对值等于2,那么同时满足这两个条件的数是________.三.解答题(本大题共46分)把下列各数填入相应的括号内:1,−34,0,0.89,−9,−1.98,415,+102,−70 自然数{}; 负整数{}; 正分数{}; 负有理数{}.画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连结. 2,0,−12,−3. 计算:(1)|−10|+|+12|(2)|35|−|−14|(3)|−313|×|+1.5|(4)|−20|÷|−14|−|+15|观察下面一列数,探求其规律: −1,12,−13,14,−15,16,…(1)请问第7个,第8个,第9个数分别是什么数?(2)第2015个数是什么?如果这列数无限排列下去,与哪个数越来越接近?某牛奶厂在一条南北走向的大街上设有O ,A ,B ,C 四家特约经销店. A 店位于O 店的南面3千米处;B 店位于O 店的北面1千米处,C 店在O 店的北面2千米处.(1)请以O 为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.你能在数轴上分别表示出O ,A ,B ,C 的位置吗?(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,那么走的最短路程是多少千米?参考答案与试题解析浙教新版七年级上册《第1章 有理数》单元测试卷(浙江省某校)一.选择题(每小题3分,共30分) 1. 【答案】 A【考点】 数轴 【解析】由数轴可知:−6<−513<−5,由此得出表示−513的点在−5与−6之间. 【解答】解:∵ −6<−513<−5, ∴ −513的点在−5与−6之间.故选:A . 2.【答案】 C【考点】 绝对值 【解析】根据绝对值的性质及其定义即可求解. 【解答】解:因为|5|=5,|−5|=5, 所以绝对值等于5的数是±5. 故选C . 3. 【答案】 B【考点】 相反数 【解析】根据相反数的定义,即可解答. 【解答】解:A 、2和−2互为相反数,故错误; B 、25和−0.4互为相反数,正确; C 、25和−25互为相反数,故错误; D 、2和−2互为相反数,故错误; 故选:B .4.【答案】C【考点】正数和负数的识别【解析】答题时首先知道正负数的含义.在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数;而把向指定方向的相反方向变化的量规定为负数.【解答】解:胜负、上升和下降、增加和减少都有相反意义,盈利和亏损有相反意义,故①②④具有相反意义.故选C.5.【答案】D【考点】绝对值相反数【解析】A:一个数的绝对值可能是正数或0,据此判断即可.B:一个数的相反数可能是正数,也可能是负数或0,据此判断即可.C:若一个数的绝对值是它本身,则这个数可能是正数或0,据此判断即可.D:若一个数的相反数是它本身,则这个数一定是零,据此判断即可.【解答】解:∵一个数的绝对值可能是正数或0,∴一个数的绝对值不一定是正数,∴选项A不正确;∵一个数的相反数可能是正数,也可能是负数或0,∴一个数的相反数不一定是负数,∴选项B不正确;∵若一个数的绝对值是它本身,则这个数可能是正数或0,∴若一个数的绝对值是它本身,则这个数不一定是正数,∴选项C不正确;∵若一个数的相反数是它本身,则这个数一定是零,∴选项D正确.故选:D.6.【答案】A【考点】有理数大小比较绝对值根据有理数大小比较的方法,可得绝对值小于2.5的所有整数有:−2,−1,0,1,2,据此解答即可.【解答】解:根据有理数比较大小的方法,可得绝对值小于2.5的所有整数有:−2,−1,0,1,2,一共有5个.故选:A.7.【答案】D【考点】有理数的概念【解析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和−1的绝对值相等,但+1不等于−1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|−1|=1,所以正确;故选:D.8.【答案】C【考点】有理数大小比较【解析】根据正数大于零,零大于负数,可得答案.【解答】A、−|−16|=−16<0,故A错误;B、|0.2|=−0.2|,故B错误;C、两个负数比较大小,绝对值大的反而小,故C正确;D、正数大于零,故D错误;9.【答案】D【考点】绝对值相反数【解析】本题涉及相反数的概念和绝对值的性质,需要根据知识点,逐一判断,再计算求解.【解答】解:∵是最小的正整数是1,最大的负整数的相反数是1,绝对值最小的有理数是0,∴a、b、c三数之和为1+1+0=2.10.【答案】B【考点】有理数大小比较数轴【解析】根据数轴表示数的方法得到a<0,b>0,|a|>|b|,然后根据相反数的定义易得−a>0,−b<0,a<−b.【解答】解:∵a<0,b>0,|a|>|b|,∴a<−b<b<−a.故选B.二.填空题(每小题3分,共24分)【答案】水位降低2米【考点】正数和负数的识别【解析】根据正负数表示相反意义的量,水位升高用正数表示,可得水位降低的表示方法.【解答】解:如果6m表示水位升高6m,那么−2m表示水位降低2米,故答案为:水位降低2米.【答案】110分,94分,100分【考点】正数和负数的识别【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以三名同学的成绩高于100分正,低于100分记作负数,+10,−6,0表示的三名同学的实际成绩分别是110分,94分,100分.故这三名同学的实际成绩分别是110分,94分,100分.【答案】−1(答案不唯一)2【考点】有理数大小比较【解析】根据有理数的大小比较法则即可得出答案.【解答】,答案不唯一.解:根据两个负数比较大小,绝对值大的反而小,如:−12故答案为:−1,答案不唯一.2【答案】【考点】数轴【解析】由于所求点在−1的哪侧不能确定,所以应分在−1的左侧和在−1的右侧两种情况讨论.【解答】解:当所求点在−1的左侧时,则距离4个单位长度的点表示的数是−1−4=−5;当所求点在−1的右侧时,则距离4个单位长度的点表示的数是−1+4=3.故答案为:−5或3.【答案】−2010或2010【考点】绝对值【解析】根据绝对值的含义和求法,若|x|=2010,那么x=−2010或2010,据此解答即可.【解答】解:若|x|=2010,那么x=−2010或2010.故答案为:−2010或2010.【答案】9【考点】数轴【解析】根据题意画出数轴,找出墨迹盖住的整数即可.【解答】解:如图所示:被墨迹盖住的整数有:−6,−5,−4,−3,−2,1,2,3,4共9个.故答案为:9.【答案】20000【考点】有理数的混合运算【解析】利息=本金×利率×期数-利息税=本金×利率×期数×(1−20%).【解答】解:设当初她存入银行x元.则1.15%⋅x×(1−20%)=184,解得:x=20000.【答案】−2【考点】绝对值【解析】首先根据有理数大小比较的方法,可得大于−3的负整数有:−2、−1;然后根据绝对值的含义和求法,可得绝对值等于2的数有两个:−2、2,所以同时满足这两个条件的数是−2,据此解答即可.【解答】解:∵ 大于−3的负整数有:−2、−1,绝对值等于2的数有两个:−2、2, ∴ 同时满足这两个条件的数是−2. 故答案为:−2.三.解答题(本大题共46分) 【答案】解:自然数{1, 0, +102}; 负整数{−9, −70}; 正分数{0.89, 415};负有理数{−34, −9, −1.98, −70}.【考点】 有理数的概念 【解析】根据整数、正数、分数和有理数的定义进行分类即可. 【解答】解:自然数{1, 0, +102}; 负整数{−9, −70}; 正分数{0.89, 415};负有理数{−34, −9, −1.98, −70}. 【答案】解:2的相反数是−2,0的相反数是0,−12的相反数是12,−3的相反数是3,,−3<−2<−12<0<12<2<3. 【考点】有理数大小比较 数轴 【解析】首先根据相反数的求法,分别求出2,0,−12,−3的相反数各是多少;然后把所给的各数及它们的相反数在数轴上表示出来;最后根据数轴的特征:当数轴方向朝右时,右边的数总比左边的数大,把所给的各数按从小到大的顺序排列起来即可. 【解答】解:2的相反数是−2,0的相反数是0,−12的相反数是12,−3的相反数是3,,−3<−2<−12<0<12<2<3. 【答案】试卷第11页,总12页 解:(1)原式=10+12=22;(2)原式=35−14=720;(3)原式=103×32=5;(4)原式=20÷14−15=80−15=65.【考点】有理数的混合运算绝对值【解析】(1)原式利用绝对值的代数意义化简,计算即可得到结果;(2)原式利用绝对值的代数意义化简,计算即可得到结果;(3)原式利用绝对值的代数意义化简,计算即可得到结果;(4)原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=10+12=22;(2)原式=35−14=720;(3)原式=103×32=5;(4)原式=20÷14−15=80−15=65.【答案】解:(1)∵ 第n 个数是(−1)n1n ,∴ 第7个,第8个,第9个数分别是−17,18,−19.(2)第2015个数是−12015,如果这列数无限排列下去,与0越来越接近.【考点】规律型:数字的变化类【解析】(1)分子是1,分母是从1开始连续的自然数,奇数位置为负,偶数位置为正,第n 个数是(−1)n 1n ; (2)根据(1)中发现的规律即可求解,因为它们的分子不变是1,分母越来越大,所以越来越接近0.【解答】解:(1)∵ 第n 个数是(−1)n1n ,∴ 第7个,第8个,第9个数分别是−17,18,−19.(2)第2015个数是−1,如果这列数无限排列下去,与0越来越接近.2015【答案】解:(1)该数轴为:(2)依题意得:最短路程等于AC的长加OC的长,即:2−(−3)+2=7(千米).答:走的最短路程是7千米.【考点】有理数的加减混合运算数轴【解析】(1)首先根据数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.画出数轴;再根据实数和数轴上的点的对应关系,表示各点的位置即可.(2)显然最短路程等于AC的长加OC的长.【解答】解:(1)该数轴为:(2)依题意得:最短路程等于AC的长加OC的长,即:2−(−3)+2=7(千米).答:走的最短路程是7千米.试卷第12页,总12页。
浙教版七年级第一学期数学第一章有理数单元测试卷(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 78 9 10 答案1、下列说法中,正确的是( ).A.符号不同的两个数互为相反数B.两个数比较大小,右边的比左边的大C.在数轴上绝对值相等的两个数一定是互为相反数D.mm-一定是非负数2、已知世运会,亚运会,奥运会分别于2009年,2010年,2011年举办,若这三项运动会均每四年举办一次,则这三项运动会均不在下列那一年举办( ).A.2070年B.2071年C.2072年D.2073年3、气象部门测定发现:高度每增加1 km,气温约下降6℃.现在地面气温是16℃,那么3 km高空的气温是( )A.6 ℃B.0 ℃C.-6 ℃D.-2 ℃4、在数轴上,表示-(-6),-(+312),0,-0.125,321--,20142013,65-的点中,在原点左边的点有()A.5个B.4个C.3个D.2个5、如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-2020将与圆周上的数字( )重合.A.0 B.1 C.2 D.36、已知a、b在数轴上的位置如下所示,则a、b、-a、-b的大小关系为()A.a>b>-a>-b B.a>-a>-b>b C.-a>b>-b>a D.-b>a>b>-a 7、已知数轴上A,B两点坐标分别为-3,-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列选项中,不可能为C与D的距离的是( ).A.0 B.2 C.6 D.88、若(a-2)的相反数是-9,那么-a的值是()A.+11 B.-11 C.+9 D.-99、在-0.2539中用数字4替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.9 B.3 C.5 D.210、如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.第5题图第6题图数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是( )。
浙教版数学七上第一章有理数单元测试及答案第Ⅰ卷(选择题)一.选择题(共10小题)1.下列各式中无论m为何值,一定是正数的是()A.|m|B.|m+1|C.|m|+1 D.﹣(﹣m)2.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.73.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c4.|a|+|b|=|a+b|,则a,b关系是()A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零5.如图,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣10的点是()A.点B B.点C C.点D D.点E6.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.67.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B.5 C.3 D.28.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.399.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.10.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共15小题)11.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于.12.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i 为偶数时,a i﹣a i=1,①a5﹣a1=;②若a100﹣a11=2m﹣6,则m=.+115.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A 点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过秒点P到点M,N的距离相等.17.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x 的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.18.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=.19.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.20.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.21.已知a,b,c,d为有理数,且|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,则(2a+b﹣)(2c+4d+3)=.22.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.23.一个点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位;….(1)第一次移动后这个点在数轴上表示的数是;(2)第二次移动后这个点在数轴上表示的数是;(3)第五次移动后这个点在数轴上表示的数是;(4)第n次移动后这个点在数轴上表示的数是.24.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.25.四个数w、x、y、z满足x﹣2001=y+2002=z﹣2003=w+2004,那么其中最小的数是,最大的数是.三.解答题(共15小题)26.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?27.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?28.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)求出这7天的行驶路程中最多的一天比最少的一天多行驶多少千米?(2)若每行驶100km需用汽油8升,每升汽油6.5元,计算小明家这7天的汽油费用共是多少元?29.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.30.阅读下面文字,根据所给信息解答下面问题:把几个数用大括号括起来,中间用逗号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素所以吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}都是条件集合.求m、n的值.31.已知买入股票与卖出股票均需支付成交金额的0.5%的交易费,张先生上周星期五在股市收盘价每股20元买进某公司的股票1000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:注:①涨记作“+”,跌记作“﹣”;②表中记录的数据每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.32.在学习绝对值后,我们知道,表示a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点与原点的距离.|5﹣3|表示5、3在数轴上对应两点之间的距离,而|x+1|=|x ﹣(﹣1)|表示x,﹣1在数轴上对应两点之间的距离;一般的,点A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示4和1的两点之间的距离是;若数轴上表示x、1的距离为4,即|x ﹣1|=4,则x的值为.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么,点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示),满足|x﹣4|+|x+1|=7的x的值为;(3)由以上探索猜想,对于任何有理数x,|x﹣4|+|x+5|是否有最小值?如果有,写出最小值,并写出此时x的取值范围;如果没有,说明理由.33.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.34.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中A→C(,),B→C(,),D→A(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.35.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?36.2017年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为万人.(2)这八天,游客人数最多的是10月日,达到万人.游客人数最少的是10月日,为万人.(3)这8天参观故宫的总人数约为万人(结果精确到万位);(4)如果你们一家人打算在下一个国庆节参观故宫,请你对你们的出行日期提一个建议.37.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为.(2)如果|x﹣3|=5,则x=.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.38.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.39.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)40.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.参考答案与试题解析一.选择题(共10小题)1.下列各式中无论m为何值,一定是正数的是()A.|m|B.|m+1|C.|m|+1 D.﹣(﹣m)【分析】直接利用绝对值的意义分析得出答案.【解答】解:A、|m|≥0,是非负数,不合题意;B、|m+1|≥0,是非负数,不合题意;C、|m|+1,一定是正数,符合题意;D、﹣(﹣m)=m,无法确定它的符号,故此选项错误.故选:C.【点评】此题主要考查了绝对值的意义,正确分析各数的符号是解题关键.2.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【分析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.【点评】本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.3.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c+2b<0,∴原式=a+c﹣a+2b+c+2b=2c+4b.故选:A.【点评】此题考查了数轴以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.|a|+|b|=|a+b|,则a,b关系是()A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零【分析】根据绝对值都是非负数,|a|+|b|=|a+b|,可得答案.【解答】解:∵|a|+|b|=|a+b|,∴a、b满足的关系是a、b同号或a、b有一个为0,或同时为0,故选:D.【点评】本题考查了绝对值,绝对值都是非负数,根据绝对值的和等于和的绝对值,得出两数的关系.5.如图,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣10的点是()A.点B B.点C C.点D D.点E【分析】根据数轴上两点间的距离求出AF,然后求出AB的长度,再求出B、C、D表示的数,然后确定出与﹣10接近的点即可.【解答】解:由图可知,AF=﹣4﹣(﹣13)=﹣4+13=9,∵AB=BC=CD=DE=EF,∴AB==1.8,∴点B表示的数是﹣13+1.8=﹣11.2,点C表示的数是﹣13+1.8×2=﹣9.4,点D表示的数是﹣13+1.8×3=﹣7.6,∴最接近﹣10的点是点C.故选:B.【点评】本题考查了数轴以及线段等分点的定义,主要利用了数轴上两点间距离的求解,是基础题.6.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.6【分析】分为四种情况,去绝对值符号进行合并,即可得出答案.【解答】解:∵①当x<﹣2时,|x﹣1|+|x+2|+|x﹣3|=1﹣x﹣x﹣2+3﹣x=2﹣3x>8,②当﹣2≤x<1时,|x﹣1|+|x+2|+|x﹣3|=1﹣x+x+2+3﹣x=6﹣x,即5<6﹣x≤8③当1≤x<3时,|x﹣1|+|x+2|+|x﹣3|=x﹣1+x+2+3﹣x=4+x,即5≤4+x<7,④当x≥3时,|x﹣1|+|x+2|+|x﹣3|=x﹣1+x+2+x﹣3=3x﹣2≥7,∴|x﹣1|+|x+2|+|x﹣3|的最小值是5.故选:C.【点评】本题考查了绝对值的应用,注意:正数的绝对值等于它本身,0的绝对值式0,负数的绝对值等于它的相反数.7.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B.5 C.3 D.2【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.8.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.39【分析】若以班长为第1人,依顺时针方向算人数,小嘉是第17人,此时共有17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,此时共有21人,但班长和小嘉两次都数了,所以要减去2.【解答】解:根据题意小嘉和班长两次都数了,所以17+21﹣2=36.故选:A.【点评】主要考查正负数在实际生活中的应用.本题中班长和小嘉两次都数了,可能有学生考虑不到.9.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.【分析】有条件:分母为22的既约真分数(分子与分母无公约数的真分数,用列举法逐个尝试即可得出答案.【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.【点评】其实根据这个结果,还可逐一减去每一个真分数,从而得出每一个有理数具体的值10.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定【分析】根据有理数大小比较的方法,以及乘法分配律可解.【解答】解:根据数的分成和乘法分配律,可得M=2008×(20 090 000+2009)=2008×20 090 000+2008×2009=2008×2009×10000+2008×2009=2009×20 080 000+2008×2009,N=2009×(20 080 000+2008)=2009×20 080 000+2009×2008,所以M=N.故选:A.【点评】熟练运用乘法分配律进行数的计算,然后比较各部分即可.二.填空题(共15小题)11.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于4.【分析】根据数轴上两点间的距离公式以及绝对值的意义,可求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值.【解答】解:根据|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的几何意义,可得|x﹣1|+|x﹣2|+|x﹣3|+|x ﹣4|表示x到数轴上1,2,3,4四个数的距离之和,∴当x在2和3之间的任意位置时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|有最小值,最小值为4.故答案为:4.【点评】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a、b,则这两点间的距离可表示为|a﹣b|.12.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第1345次移动到的点到原点的距离为2018.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.【点评】本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i ﹣a i=1,①a5﹣a1=6;②若a100﹣a11=2m﹣6,则m=70.为偶数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1寻找规律【分析】依题意当i为奇数时,a i+1可得a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2+1=6 a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134从而得到答案.﹣a i=2,当i为偶数时,a i+1﹣a i=1【解答】解:①∵当i为奇数时,a i+1∴a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2=6;②∵a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134∴a100﹣a11=134=2m﹣6,∴m=70故答案为:6、70.【点评】本题主要考查了通过找规律解决问题,解题的关键点是找规律.15.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是0.04.【分析】根据相对误差的计算公式代入计算即可.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.【点评】本题考查了有理数的减法和绝对值,正确理解绝对误差,相对误差的意义是解题的关键.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A 点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过5秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过或秒点P到点M,N的距离相等.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.故答案为:5.(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,故答案为:或.【点评】此题主要考查了数轴,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.17.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x 的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【分析】分五种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.【点评】本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.18.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=±1.【分析】由于|m﹣n|+|p﹣m|=1,且m、n、p都是整数,那么只有两种情况:①|m﹣n|=1,p﹣m=0;②m﹣n=0,|p﹣m|=1;这两种情况都可以得出p﹣n=±1;从而求解.【解答】解:因为m,n,p都是整数,|m﹣n|+|p﹣m|=1,则有:①|m﹣n|=1,p﹣m=0;解得p﹣n=±1;②|p﹣m|=1,m﹣n=0;解得p﹣n=±1.综合上述两种情况可得:p﹣n=±1.故答案为:±1.【点评】本题主要考查了非负数的性质,根据已知条件求出p、n的关系式是解答本题的关键.19.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.20.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.【解答】解:由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2﹣(2n÷2)=2,故答案为:3,2.。
最新浙教版七年级数学上册单元测试题全套及答案第一章《有理数》单元测试卷班级_______学号 ______姓名____________成绩____________一、选择题1.│-3│的相反数是( )A 、3B 、-3C 、31D 、-31 2.飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米. 3.最小的正整数是( )A 、-1B 、0C 、1D 、2 4.绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 5.在已知的数轴上,表示-2.75的点是 ( )A 、E 点B 、F 点C 、G 点D 、H 点 6.下列对“0”的说法中,不正确的是( )A 、0既不是正数,也不是负数;B 、0是最小的整数C 、0是有理数D 、0是非负数 7.在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个 8.比较-0.5,-,0.5的大小,应有( ) A .->-0.5>0.5 B .0.5>->-0.5 C .-0.5>->0.5 D .0.5>-0.5>- 9.│a │= -a ,a 一定是( )1515151515A 、正数B 、负数C 、非正数D 、非负数 10.将五个数,,,,按从大到小的顺序排列,那么排列在中间的一个数应是( ) A.B. C. D. 二、填空题11.整数和分数统称为 .12.如果自行车车条的长度比标准长度长2毫米记作 +2毫米,那么比标准短2毫米记作 . 13.计算:│-(+4.8)│= 14.│-2005│的倒数是________. 15.绝对值等于2的数是16.若a <0,b <0,且│a │>│b │,那么a ,b 的大小关系是________.17.在数轴上,A 、B 两点在原点的两侧,但到原点的距离相等,如果点A 表示73,那么点B 表示 18.在7,-6,-,0,-, 0.01中,绝对值小于1的数是________. 19.如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 20.12+1=1×2=2,22+2=2×3=6,32+3=3×4=12,…,试猜想:992+99=_____×_____=________. 三、解答题21.比较下列各组数的大小. (1)-与-0.76; (2)-与-; (3)-3与-3; (4)-│-3.5│与-[-(-3.5)].1017121915232033304930491523203312191423343103111331022.小明的家(记为A)与他上学的学校(记为B)、书店(记为C)依次坐落再一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条大街向东走了40米,接着又向西走了70米达到D处.试用数轴表示上述A,B,C,D的位置.23.已知有理数a为正数,b、c为负数,且│c│>│b│>│a│,用“<”把a、b、 c、-a、-b、-c连接起来.24.假日公司的西湖一日游价格如下:A种:成人每位160元,儿童每位40元B种:5人以上团体,每位100元现有三对夫妇各带1个小孩,共9人,参加西湖一日游,最少要多少钱?25.某市对电话费作了调整,原市话费为每3分钟0.2元(不足3分钟,按3分钟计算),调整后,前3分钟为0.2元,以后每分钟加收0.1元(不足1分钟按1分钟计算).(1)根据提供的信息,完成下列表格:(2)若通话时间为11分钟,请你设计两种通话方案(可以分几次拨打),使所需话费小于调整后的话费.26.设a =,b =,c =,比较a ,b ,c 的大小.(提示:用整数1分别减去a ,b ,c )200220032003200420042005参考答案一、选择题1.B 2.B 3.C 4.D 5.D 6.B 7.B 8.B 9.C 10.A 二、填空题11.有理数 12.-2毫米 13.4.8 14.15.±2 16.b a 17.-7318.-,0,-,0.01 19.8或2 20.99,100,9900三、解答题21.(1)>;(2)<;(3)<;(4)= 22.略23.c b a a b c --- 24.720元25.(1)调整前:0.4,0.4,0.4,0.6,0.6,0.8;调整后:0.3,0.4,0.6,0.7,0.8,1;(2)第一次3分钟,第二次3分钟,第三次3分钟,第四次2分钟或第一次3分钟,第二次3分钟,第三次5分钟.其他符合条件的也可.26.c b a第二章 有理数的运算(综合)班级 学号 姓名 成绩120051423一、仔细填一填(每小题3分,共30分)1、把)11()9()10()8(--+--+-写成省略加号的和式是______.2、计算=+-3121______,_______, 3)21(-=________.3、将0 , -1 , 0.2 , , 3各数平方,则平方后最小的数是_________.4、2003个―3与2004个―5相乘的结果的符号是________号.5、现今世界上较先进的计算机显卡每秒可绘制出27000000个三角形,且显示逼真,用科学记数法表示这种显卡每秒绘制出三角形__________个.6、近似数1.23×105精确到________位.78、小明学了计算机运算法则后,编制了一个程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的平方减去2的差.,那么最后得到的结果是________.9、数轴上点A 所表示数的数是-18 , 点B 到点A 的距离是17, 则点B 所表示的数是________.100, 则x -y=________. 二、精心选一选(每题2分,共20分)11.冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( ) A .4℃ B .6℃ C .10℃ D .16℃ 12.下列计算结果是负数的是( )(A) (―1)×(―2)×(-3)×0 (B) 5×(-0.5)÷(-1.84)2(C) 222)7()6()5(-+-+- (D) 13.下列各式中,正确的是( )(A) ―5―5=0 (B)(C) 222)13()12()5(-=-+- (D) 14.如果两个数的积为负数,和也为负数,那么这两个数( )(A) 都是负数 (B) 都是正数(C) 一正一负,且负数的绝对值大 (D) 一正一负,且正数的绝对值大15.数a 四舍五入后的近似值为3.1, 则a 的取值范围是( )(A) 3.05≤a <3.15 (B) 3.14≤a <3.15 (C) 3.144≤a ≤3.149 (D) 3.0≤a ≤3.2 16.一个数的立方就是它本身,则这个数是( )(A) 1 (B) 0 (C) -1 (D) 1或0或-117.以-273 0C 为基准,并记作0°K,则有-272 0C 记作1°K,那么100 0C 应记作( )(A )-173°K (B )173°K (C )-373°K (D )373°K 18.用科学记数法表示的数1.001×1025的整数位数有 ( )(A) 23位 (B) 24位 (C) 25位 (D) 26位19.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是 ( )(A) 相等 (B) 互为相反数 (C) 互为倒数 (D) 相等或互为相反数20.在1,2,3,……,99,100这100个数中,任意加上“+”或“-”,相加后的结果一定是 ( )(A) 奇数 (B) 偶数 (C) 0 (D)不确定三、认真解一解(共50分) 21.(6分)举例说明:(1)两数相加,和小于其中一个加数而大于另一个加数;(2)两数相减,差为6,且差大于被减数。
从自然数到有理数
姓名____________成绩____________
一、仔细选一选(30分) 1. 0是( )
A .正有理数
B .负有理数
C .整数
D .负整数 2. 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于( ) A .计数 B .测量 C .标号或排序 D .以上都不是 3. 下列说法不正确...
的是( ) A .0既不是正数,也不是负数 B .0的绝对值是0 C .一个有理数不是整数就是分数 D .1是绝对值最小的数 4. 在数-
2
1
, 0 , 4.5, |-9|, -6.79中,属于正数..的有( )个
A .2
B .3
C .4
D .5 5. 一个数的相反数是3,那么这个数是( ) A .3 B .-3 C .13 D .1-3
6. 下列式子正确的是( )
A .2>0>-4>-1
B .-4>-1>2>0
C .-4<-1<0<2
D .0<2>-1<-4 7. 一个数的相反数是最大的负整数,则这个数是( ) A .1 B .±1 C .0 D .-1 8. 把数轴上表示数2的点移动3个单位后,表示的数为( )
A .5
B .1
C .5或1
D .5或-1 9. 大于-2.2的最小整数是( )
A .-2
B .-3
C .-1
D .0
10. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在 ( )
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方 二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示 。
12.举出一个既是负数又是整数的数 。
13.计算:
=+⨯-5.24__________。
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。
15.绝对值大于1而不大于3的整数是 。
16.最小的正整数是_____;最大的负整数是_____。
17.比较下面两个数的大小(用“<”,“>”,“= ”)
(1) 1 -2; (2)
3
1
-
-0.3; 18.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度 ,则终点表示的数是 。
19.相反数等于本身的数是______,绝对值等于本身的数是_______________。
20.观察下面一列数,根据规律写出横线上的数,
-
11;2
1;-31;41
; ; ;……;第2013个数是 。
三、全面答一答(本题有5个小题,共40分)
21、(8分)把下列各数的序号填在相应的数集内:①1 ②-
35 ③+3.2 ④0 ⑤13•⑥-6.5 ⑦+108 ⑧-4 ⑨-64
7
.
(1)正整数集合{ …} (2)正分数集合{ …} (3)负分数集合{ …} (4)负数集合{ …} 22、(8分)求0,–2.5,2
1
3
的相反数 并把这些数及其相反数表示在数轴上;并按从大到小....的顺序排列。
23计算:(6分)
(1)2
18++- (2)
5.35.6--+
24、(8分)云云的爸爸驾驶一辆汽车从A 地出发,且以A 为原点,向东为正方向。
他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加2012年奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g 符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
(1) 有几个篮球符合质量要求?
(2) 其中质量最接近标准的是几号球?
① ② ③ ④ ⑤ ⑥ +3
-2
+4
-6
+1
-3
2012学年第一学期七年级数学第一单元检测
参考答案
一、仔细选一选:
1 C
2 B
3 D
4 A
5 B
6 C
7 A
8 D
9 A 10 B
二、仔细填一填:
11.下降8米
12.答案不唯一;
13. 10;
14.4
5
,0.8;
15.±2,±3
16. 1 ﹣1
17. < <
18. ﹣1
19.0,零或正数,(非负数)
20.
111 --562013
;;
三、全面答一答
21.(1)(①,⑦)
(2)(③,⑤)
(3)(②,⑥,⑨)
(4)(②,⑥,⑧,⑨)
22.解:0的相反数是0;﹣2.5的相反数是2.5;
1
3
2
的相反数是﹣
1
3
2
;(3分)
画数轴略(2分)
从大到小排列:
1
3
2
,2.5, 0,﹣2.5,﹣
1
3
2
(3分)
23.(1)20,(2)3
24.①+15-25+20-40=-30(千米)答:在A地西30千米处
②15+25+20+40=100(千米)
因为这种汽车行驶100千米消耗的油量为8.9升,所以本次耗油为8.9升。
25.(1)①②③⑤⑥
(2)⑤。