数理方程 热传导方程的导出
- 格式:ppt
- 大小:234.00 KB
- 文档页数:12
第一章 热传导方程本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇到这类方程.§1 热传导方程及其定解问题的导出热传导方程的导出物理模型在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化.以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和.在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律.设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒).注意到在dt 时段内通过D 的边界D ∂上小块dS 进入区域D 的热量为dSdt n q ⋅-(n是D ∂的外法向),从而由能量守恒律,我们有,)||(2121120⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅-=-∂==t t Dt t DDt t t t dxdydz f dt ds n q dt dxdydz u u c ρρ() 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比,u k q ∇-=(梯度⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂==∇z u y u x u gradu u ,,) ()这里负号表明热量是由高温向低温流动,k 是物体的导热系数.,nu k n u k n q ∂∂-=⋅∇-=⋅从而式可改写为⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+∂∂=-∂==2121120)||(t t Dt t D D t t t t dxdydz f dt dS n uk dt dxdydz u u c ρρ 假设(,,,)u x y z t 在柱体(0,)Ω⨯+∞内具有连续微商222222,,,zu y u x u t u ∂∂∂∂∂∂∂∂.则应用散度定理(或高斯公式)立得:[]22110()t t t t DDudt c dxdydz dt k u f dxdydz t ρρ∂=∇∇+∂⎰⎰⎰⎰⎰⎰⎰⎰,由于被积函数在(0,)Ω⨯+∞内连续,以及],[21t t ,D 的任意性,又由于物体均匀,各向同性, k c ,,ρ都是常数,立得:,)(0f u k tuc ρρ+∇∇=∂∂ ,)(0cf u c kt u +∇∇=∂∂ρ ,,,,,)(222222u zuy u x u z u z y u y x u x z u y u x u z y x u ∆∂∂+∂∂+∂∂=⎪⎭⎫⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂⋅⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂=∇⋅∇记为令,,02cf f c ka ==ρ∆是三维Laplace 算子,则 ,2f u a tu+∆=∂∂ () 称为热传导方程.当0≥f 时表示热源,当0≤f 时表示热汇.为了具体确定物体内部的温度分布,我们还需要知道物体的初始温度分布以及通过物体的边界受周围介质的影响. 初始条件Ω∂⋃Ω=Ω∈=),,(),,,()0,,,(z y x z y x z y x u ϕ边界条件有三类: 1.已知边界上的温度分布),,,,(t z y x g u =∑这里[0,)∑=∂Ω⨯∞.特别当≡g 常数时,称物体的边界保持恒温. 2.已知通过边界Ω∂的热量),,,,(t z y x g nu k=∂∂∑(n 为Ω∂上的单位外法向量),0≥g 表示流入,0≤g 表示流出,特别当0≡g 表示物体绝热. 3已知通过边界Ω∂与周围介质有热交换.(),00∑∑-=∂∂u g nu kα或),,,,(t z y x g u n u =⎪⎭⎫⎝⎛+∂∂∑α这里0g 表示周围介质温度,00>=kαα表示热交换系数.定解问题为了具体确定物体的温度场,我们需要求解热传导方程的某一特定的定解问题. 设Ω是空间3R 中的有界开区域.第一初边值问题⎪⎪⎩⎪⎪⎨⎧=Ω∈=∞⨯Ω∈=∆-∂∂∑),,,(),,(),,,()0,,,(),0(),,,(,2t z y x g u z y x z y x z y x u t z y x f u a t u ϕ 第二初边值问题⎪⎪⎩⎪⎪⎨⎧=∂∂Ω∈=∞⨯Ω∈=∆-∂∂∑),,,(),,(),,,()0,,,(),0(),,,(,2t z y x g nu z y x z y x z y x u t z y x f u a t u ϕ 第三初边值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+∂∂Ω∈=∞⨯Ω∈=∆-∂∂∑),,,(),,(),,,()0,,,(),0(),,,(,2t z y x g u nuz y x z y x z y x u t z y x f u a t u αϕ 初值问题(或称Cauchy 问题)⎪⎩⎪⎨⎧∈=∞⨯∈=∆-∂∂332),,(),,,()0,,,(),0(),,,(,R z y x z y x z y x u R t z y x f u a tu ϕ 什么是定解问题的解(解说一下)验证2212),(x t a t x u u +==是方程0222=∂∂-∂∂xu a t u 的一个解; ()0,21),(2242>=--t eta t x u ta x ξπ(ξ是参数)是方程0222=∂∂-∂∂x u a t u 的一个解. 数学物理方程的主要问题,在推导出方程之后,求出方程的解.然而求出一个偏微分方程的精确解一般是困难的. 附注1 方程f u a tu=∆-∂∂2虽然通常称为热传导方程,但绝不只用来表述热传导现象.事实上,自然界还有很多现象同样可用这个方程来刻划,一个重要的例子是考虑某类分子在介质(如空气,水,…)中的扩散.浓度u 的不均匀产生分子运动(扩散),它遵循质量守恒定律.根据Nernst 实验定律:分子运动速度与浓度的梯度成正比:u D v ∇-=,D 称为扩散系数.从而同样可导出分子浓度u 适合的方程f u a t u=∆-∂∂2,这里2a 是一个与扩散系数成正比的常数,f 表示反应项.因此人们通常把方程f u a tu=∆-∂∂2称为扩散方程,而u a ∆-2称为扩散项.附注 2 对某些三维问题,如果根据问题的某些性质,适当选取坐标系,可以化归为或近似地化归为一维或二维问题来处理.这样的简化对于 求解定解问题,特别是求问题的近似解带来方便.例 1. 如果物体可看成一根细杆,它的侧表面绝热,它与周围介质的热交换只在杆的两端l x ,0=进行;如果在任意一个与杆的轴线垂直的截面上,初始温度和热源强度的变化很小,那么我们可以近似地认为杆上的温度分布只依赖于截面的位置.因此如果取杆的轴线为轴,那么方程可改写为),(222t x f xu a t u =∂∂-∂∂ () 我们称它为一维热传导方程.同样,如考虑薄片物体上的热传导,薄片的侧面绝热,可得二维热传导方程.例2 考虑一半径为R 的球体,它通过球表面与周围介质有热交换.如果在球面上所有各点所受周围介质的影响都相同,且球内任意一点的初始温度和热源强度只依赖于它到球心的距离而与它的方位无关,那么如果我们选择以球心为坐标原点并引进球坐标,从而球内的温度),(t r u u =适合方程),(2222t r f r u r r u a t u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂ 这是由于222),,(),,,(z y x r t r v t z y x u u ++===.rx r v x r r v x u ∂∂=∂∂∂∂=∂∂, rvr x r r x r v r x x r v r x r v r x r v x x u ∂∂-+⋅∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂+⋅∂∂=⎪⎭⎫ ⎝⎛⋅∂∂∂∂=∂∂3222222222222, 同理 r vry r r y r v y u ∂∂-+⋅∂∂=∂∂322222222, r vrz r r z r v z u ∂∂-+⋅∂∂=∂∂322222222, 于是222222zuy u x u u ∂∂+∂∂+∂∂=∆ ()r v r z y x r r z y x r v ∂∂++-+++⋅∂∂=322222222223 r vr rv ∂∂+∂∂=222 .我们称它为球对称问题的热传导方程.例 3 考虑一高为H ,半径为R 的圆柱形物体.引入柱坐标系,取柱体的轴线为z 轴,下底落在0=z 平面上,假设在柱体的侧表面和上下底上给出的边界条件只分别依赖于z 和r (点到轴线的距离),且柱体初始温度和内部热源亦只是z r ,的函数.这样在柱体内温度),,(t z r u u =适合方程),,(122222t z r f z u r u r r u a t u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-∂∂ 这是一个二维轴对称问题的热传导方程. 这是由于22),,,(),,,(y x r t z r v t z y x u u +===r vrx r r x r v x u ∂∂-+⋅∂∂=∂∂322222222 r v r y r r y r v y u ∂∂-+⋅∂∂=∂∂322222222 rv r r v y u x u ∂∂+∂∂=∂∂+∂∂1222222 若进一步假设柱长无穷,且通过柱体侧表面受周围介质的影响是相同的,又若柱体的初始温度的内部热源只依赖于r ,这样在柱体内温度),(t r u u =适合方程.),(1222t r f r u r r u a t u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂ 附注3 如果物体内部的热源以及它和外界的热交换与时间无关.这样在相当长时间以后物体内部的温度渐趋于稳定。
热传导方程的热传输与相变问题热传导方程是研究热传输问题的基本方程,它描述了热量在物质中的传递过程。
作为热传输领域的核心内容,热传导方程不仅广泛应用于科学研究和工程实践,而且在解决相变问题中发挥了重要作用。
本文将从热传导方程的导出和解析出发,探究其在热传输和相变问题中的应用。
一、热传导方程的导出热传导方程从能量守恒原理出发,对热流密度和温度梯度进行推导得到。
其一维形式如下:$$\frac{\partial q}{\partial x}=-\rho C_p \frac{\partial T}{\partial t}+\frac{\partial}{\partial x}(k\frac{\partial T}{\partial x})$$其中,$q$是热流密度,$\rho$是密度,$C_p$是比热容,$T$是温度,$k$是热导率。
二、热传输问题热传导方程可以用于描述热传输问题,如热传导、对流传热和辐射传热等。
其中,热传导是指由于温度差导致的热量的传递。
对流传热是指由流体热传导导致的热量的传递。
辐射传热是指由热辐射导致的热量的传递。
对于热传导问题,热传导方程可以用来求解各种边界条件下的温度分布和热流密度分布。
例如,可以通过设定热源和边界条件,求解材料内部的温度分布,从而得到材料的热扩散系数和热传导率等相关物理参数。
这些参数在工业生产过程中起着重要的作用。
三、相变问题相变是指物质在一定条件下,由于温度或压力等原因,从一种物态转变为另一种物态的过程。
在相变过程中,物质的温度和热流密度发生了剧烈的变化,而热传导方程在相变问题中仍然适用。
例如,在利用远红外辐射加热膜材料时,会出现相变现象。
热传导方程可以用来计算膜材料内部的温度分布,根据相变温度,判断材料的相变状态,并进一步分析相变过程中温度和热流密度的变化。
由此,可以预测材料的形态和性质变化,为工业生产提供理论支持。
四、结论热传导方程是研究热传输和相变问题的基本方程,它在解决工业生产中的热传输和相变问题中起着重要的作用。
热传导方程的导出及其定解问题的导出1. 热传导方程的导出考察空间某物体G 的热传导问题。
以函数u (x ,y ,z ,t )表示物体G 在位置(x ,y ,z )及时刻t 的温度。
依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数学成正比,即o n d udQ =-k (x ,y ,z )dSdt (1-1)o n 其中k (x ,y ,z )称为物体在点(x ,y ,z )处的热传导系数,它应取正值。
(1-1)式中负号的出 o u现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和异号。
o n在物体G 内任取一闭曲面r ,它所包围的区域记为0,由(1-1)式,从时刻t 到t 流进12此闭曲面的全部热量为Q =f t 2仙k (x ,y ,z)—dS\dt (1-2)4I r O nJ这里表示u沿r 上单位外法线方向n 的方向导数。
o n流入的热量使物体内部的温度发生变化,在实践间隔(t ,t )中物体温度从u (x ,y ,z ,t )121变化到u (x‘y ,z ,t2),它所应该吸收的热量是JU c (x ,y ,z )P (x ,y ,z )[u (x ,y ,z ,t )一u (x ,y ,z ,t )]dxdydz其中c 为比热,P 为密度。
因此就成立 >dt=JfJ C (x ,y ,z )P (x,y ,z)[u (x,y ,z ,12)一U (x ,y ,z ,t i )]dxdydz(1-3)假设函数u 关于变量x ,y ,z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为交换积分次序,就得到J t t 12仰(x ,y ,z )护t10O x{k 譽'O x 丿(一O u 、 +—k 二+—°y°y 丿 O z (O u 、k 一>dxdydzdt =c P JI o 丿J 「E O u dtdxdydztO t 丿dxdydzdt =0(1-4)训c P '0、由于t i,t2,0都是任意的,我们得到(1-5)式称为非均匀的各向同性体得热传导方程。