数学物理方程01_数学物理方程定解问题
- 格式:ppt
- 大小:708.00 KB
- 文档页数:48
§1.2 什么是定解问题1. 定解问题定解问题是根据已知物理规律求解特定物理过程的数学条件,它由泛定方程和定解条件两个部分组成,泛定方程也称为数学物理方程。
2. 泛定方程泛定方程是待解物理过程所遵循的物理规律的数学表达式,具体表现为某物理量关于时间和空间变量的偏微分方程,同一类物理过程遵循相同的物理规律,因此泛定方程反映一类物理过程的共性。
方程中物理量对时间变量的偏微分项反映物理过程的因果关联。
方程中物理量对空间变量的偏微分项反映物理过程的内部作用,或内在关联。
例1. 质点运动状态的演化问题在质点动力学问题中常求质点的运动轨迹,一旦求出运动轨迹,则一切与质点运动有关的物理量(如动能、动量、角动量等)都可求出。
质点的运动状态是由质点的位矢和动量完全确定,求质点运动轨迹的方法就是求解质点的运动状态随时间演变的过程,即由前一时刻的位矢和动量推算出下一时刻位矢和动量,从物理上看前后二时刻质点的运动状态的联系为dt t p m t r dt t r t r dt t r )(1)()()()(K K K K K +=+=+, dt t F t p dt t p t p dt t p )()()()()(K K K K K +=+=+ 因此,只要知道质点的受力情况就能由前一时刻的运动状态求出下一时刻的运动状态,这样的推演过程就是求解常微分方程F t r m K K =)(满足初始条件“0000)(,)(v t r r t r K K K K ==”的解。
§1.3 定解条件。
一、初始条件初始条件描述特定物理过程的起因,就t 这个自变数而言,如果泛定方程中物理量u 对t 最高阶偏导数是n 阶偏导数n n tu ∂∂,则要确定具体的定解问题,需要n 个初始条件。
例1:均匀细杆的导热问题满足的泛定方程为02=−xx t u a u ,则要确定具体的导热问题的解只需一个初始条件:)(0x u t ϕ==,即要已知初始温度分布。
第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。
它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。
数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。
②它广泛地运用数学物理中许多的技术成果。
如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。
⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。
由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。
本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。
一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。
由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。
若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。
▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)U tt = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);U t(x,0)=Ψ2(x)。
2.热传导方程(抛物型)U t = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)U xx +U yy =f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);U t(y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x) 2COSa2△x在小的振动下SINa1≈TANa1=U x(x,t), SINa2≈TANa2=U x(x+△x,t), COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ U x(x+△x,t)- U x(x,t)]/ △x-(b/ρ) U t(x+n△x,t) 即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F(x,y,z,t),试导出扩散方程。
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)Utt = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);Ut (x,0)=Ψ2(x)。
2.热传导方程(抛物型)Ut = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)Uxx +Uyy=f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);Ut (y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x在小的振动下SINa1≈TANa1=Ux(x,t), SINa2≈TANa2=Ux(x+△x,t),COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ Ux (x+△x,t)- Ux(x,t)]/ △x-(b/ρ) U t(x+n△x,t)即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F (x,y,z,t),试导出扩散方程。
数学物理方程习题解习题一1, 验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。
证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =-⋅⋅=-+++-⋅-=-=++=-⋅⋅=-+++-⋅-=-=++--+=+=++所以(,)lnu x y =是方程0xx yy u u +=的解。
(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=-⋅所以 s i ns i n 0x xxx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。
2,证明:()()u f x g y =满足方程: 0xy x y uu u u -= ,其中f 和g 都是任意的二次可微函数。
证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''-=⋅-⋅⋅=得证。
3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
Mathematical Methods for Physics第二篇数学物理方程Mathematical Equations for Physics要想探索自然界的奥秘就得解微分方程。
-牛顿中心:将物理问题翻译成数学语言 目的:1、如何用数理方程研究物理问题2、如何导出方程3、能正确写出定解问题§ 6.1 引言Introduction第六章 定解问题Mathematical Problem1、数学物理方程概念:数学物理方程是指从物理、工程问题中,导出的反映客观物理量在各个地点、时刻之间相互制约关系的一些偏微分方程。
数学物理方程 ♣ 线性方程♦♥ 非线性方程一、数理方程简介:§ 6.1 引言一、数理方程简介§ 6.1 引言ttu =a2⊗u +fut=D⊗u +f2、数理方程的产生和发展:(1)十八世纪初期(2)十九世纪中期三类数学物理方程:波动方程u -波动,a-波速,f-与源有关的函数输运方程u -浓度,D-系数,f -与源有关的已知量泊松方程h-与源有关的已知量,u-表示稳定物理量+fxx2Taylor :utt=a u⊗u =-h一、数理方程简介:§ 6.1 引言a u2、数理方程的产生和发展:(3)十九世纪末到二十世纪初高阶方程(梁的横振动):utt= 2xxxxf ( x, t )非线性方程KdV:ut+σuux+uxxx= 0∂ψh2schro&-dinger:i h∂t=-Δψ2μ+U(r)ψ+1、写出定解问题♣ 泛定方程:数理方程(一般规律)♦♥ 定解条件:初始、边界、衔接条件(个性)如:y '(t) - 4 y = 0♣y ' -4y = 0 -泛定方程♠y(0) = 0 ↔ y = C e 2t+ C e -2t♦ ← -定解条件 12-通解♠♥y '( 0) = 4↑♦1、写出定解问题2、求解:求解方法: 行波法、分离变量法、积分变换法、格林函数法、保角变换法、复变函数法、变分法 ♣ 物理意义3、分析解答:♠♠ ♣存在 ♠♥ 适定性 ♦唯一♠♥稳定数学物理方法物理(内容)桥梁数学(成果)、数理方法的特点三 § 6.1 引言。