第五章 数理方程的建立,定解条件,傅里叶级数和傅里叶变换(简介),代尔塔函数的简介
- 格式:pdf
- 大小:150.84 KB
- 文档页数:18
《数理方程》课程介绍
一、本课程的性质与任务:
《数理方程》是理科很多专业的必修课以及相关专业的选修课。
数理方程主要是指在物理学、力学以及工程技术中常见的一些偏微分方程。
它是一门发展相当迅速的学科,不仅有广泛的应用,同时又与数学的其它各个分支有密切的联系,是数学理论与实际问题之间的一个桥梁。
本课程重点讲授一些经典的知识,同时兼顾新近发展的有着广泛应用的有关知识。
使学生了解到数学物理方程的某些应用背景,扩大学生的数学知识面,初步具备了解决数理方程定解问题的能力。
对培养学生的逻辑推理能力起着很大的作用。
本课程主要讲述经典的弦振动、热传导、Laplace方程的物理背景、定解问题的概念和古典的求解方法, 如波动方程的D`Alembert解法、分离变量法,积分变换法及极坐标系下的分离变量法等。
二、课程内容、学时与教学方式:
内容: 1) 绪论;
2) 分离变量法;
3)行波法与积分变换法;
4) 变分法初步与Green函数。
学时:40
教学方式:课堂讲授
三、教材:
数理物理方程与特殊函数》(第二版),南京工学院数学教研组著,北京:高等教育出版社,1997年。
四、开课范围:
力学、物理、数学等理科专业本科生。
五、预备知识:
高等数学、常微分方程。
第五章 Bessel 函数5.2 基础训练5.2.1例题分析例1 试用平面极坐标系把二维波动方程分离变量:2()0tt xx yy u a u u -+=(1)解 先把时间变量t 分离出来,令)(),(),,(t T U t u ϕρϕρ=,代入方程(1)22(,)''()(,)()0U T t a U T t ρϕρϕ-∇=两边同乘以21a UT并移项得 22''T Ua T U∇=上式左边仅是t 的函数;右边是ρ,t 的函数。
若要使等式成立,两边应为同一个常数,记为2k -,则有22''0T a k T +=(2)220U k U ∇+=(3)(3)式为二维亥姆霍兹方程,它在平面极坐标系下的表达式为:22110U U U k U ρρρϕϕρρ+++=进一步分离变量,令(,)()()U R ρϕρϕ=Φ,代入上式得2211'''''0R R R k R ρρΦ+Φ+Φ+Φ=两边同乘以2R ρΦ,并整理得222'''''R R k RRρρρΦ=+=-Φ同上讨论,等式两边应为同一常数,记为2m ,则有2''0m Φ+Φ=(4)2222'''()0R R k m R ρρρ++-=(5)对(5)式作代数变换x k ρ=后变为贝塞尔方程222'''()0x R xR x m R ++-=(6)其通解是()()()m m R AJ k BY k ρρρ=+ 其中,,m m A B J Y 为任意常数和为第一类和第二类Bessel 函数。
由周期条件,方程(4)的解为()c o s s i n 0,1,2m m m A mB m mϕϕΦ=+= 由波动问题及解在0ρ→有限的条件,方程(2)的解为cos sin n n n n n T C k at D k at =+例2 用()J x ν的级数表达式证明:(1) x x x J cos 2)(21π=-; (2) x x d x J sin cos )cos (200=⎰πθθθ证明:(1) 因为20(1)()()!(1)2k k v v k xJ x k k v ∞+=-=Γ++∑, 所以12221002220(1)()())122!(1)2k k kk k k kk k x x J x k k ∞∞--==∞∞==-==Γ-+==∑2k k k x ∞∞=====(2)2212202000(1)(cos )cos ()cos (!)2k kk k x J x d d k ππθθθθθ∞+=-=∑⎰⎰222200(1)(2)!!(1)2!sin ()()(!)2(21)!!(!)2(21)!!k k k k k k k x k x k xk k k k x ∞∞==--===++∑∑ 例3 利用Bessel 函数的递推公式: (1) 将)(3x J 用)(0x J 及)(1x J 表出;(2) 证明 )]()(2)([41)(''2''''2''x J x J x J x J n n n n +-+-=.(3) 证明 )]()([2)]([21212x J x J v xx J dx d v v v +--=.(4) 证明 )]()([)]()([212010x J x J x x J x xJ dxd -=.(5) 证明 ⎰+-=C x x xJ x x xJ xdx x J cos )(sin )(sin )(100. (1) 解 由 )()(2)(11x J xx mJ x J m m m -+-=得 )()(2)(012x J xx J x J -=021********()4()4()84()()8()(1)()()J x J x J x J x J x J x J x J x x x x x x=-=--=-- (2) 证明:由'111()[()()]2m m m J x J x J x -+=-得''''1122221()[()()]21111{[()()][()()]}[()2()()]2224m m m m m m m m m m J x J x J x J x J x J x J x J x J x J x -+-+-+=-=---=-+ (3) 证明: 由11()[()()2v v v x J x J x J x v +-=+,'111()[()()]2m m m J x J x J x -+=-得 '22112()()[()()]2v v v v xJ x J x J x J x v-+=-即22211[()][()()]2v v v d xJ x J x J x d v-+=- (4) 证明:用贝塞尔函数的递推公式,得:01011011002201()()[()()]()()()()()()[()()]dJ x dJ x dxJ x J x xJ x xJ x d dx dxJ x xJ x J x xJ x x J x J x =+=-+=-(5) 证明:用贝塞尔函数的递推公式,得:001001001001()sin ()sin [()cos ()sin ]()sin ()cos ()cos ()sin ()cos [()cos ()cos ]()sin ()cos Jx xdx xJ x x x J x x J x x dxxJ x x xJ x xdx xJ x d xxJ x x xJ x xdx xJ x x xJ x xdx xJ x x xJ x x C=--=--=---=-+⎰⎰⎰⎰⎰⎰例4 计算⎰dx ax J x )(03。
傅里叶级数的定义及应用傅里叶级数是一种将周期函数表示为三角函数和正弦函数之和的数学工具。
它在信号处理、图像处理和电子通信等领域中有着广泛的应用。
本文将介绍傅里叶级数的定义及其在实际中的应用。
第一部分:傅里叶级数的定义傅里叶级数是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
它将周期函数表示为无穷级数的形式,其中每一项为三角函数或正弦函数的乘积。
一个周期为T的函数f(t)可以表示为以下无穷级数的形式:f(t) = a₀ + Σ(aₙcos(nω₀t) + bₙsin(nω₀t))在公式中,a₀是常数项,aₙ和bₙ是系数,n是正整数,ω₀是基波角频率。
根据傅里叶级数的定义,周期函数f(t)可以通过确定其系数来表示。
系数的计算可以通过将函数f(t)与三角函数进行内积运算来实现。
这种数学上的运算使得我们能够将任意周期函数表示为一系列简单的三角函数的和,从而更好地理解和分析函数的特性。
第二部分:傅里叶级数在信号处理中的应用傅里叶级数在信号处理中有着广泛的应用。
信号处理是指对信号进行分析、合成、编码和解码的过程,傅里叶级数为信号处理提供了有效的工具。
首先,傅里叶级数可以将时域信号转换为频域信号。
通过对信号进行傅里叶级数分解,我们可以将信号的频谱表示出来,了解信号在不同频率下的成分情况。
这对于音频信号的合成、滤波、去噪等处理非常有用。
其次,傅里叶级数在通信系统中起着重要的作用。
在数字通信中,信号需要经过调制、解调等处理。
傅里叶级数可以帮助我们理解信道传输中的信号畸变情况,从而对传输信号进行补偿和恢复。
此外,傅里叶级数还广泛应用于图像处理领域。
图像可以看作是由像素点组成的二维数组,每个像素点的灰度值可以用一个周期为1的函数表示。
通过对图像进行傅里叶级数分析,我们可以提取图像中的频域特征,如边缘、纹理等。
这对于图像压缩、增强和恢复等处理具有重要意义。
第三部分:傅里叶级数在其他领域的应用除了信号处理领域,傅里叶级数还在许多其他领域有着广泛的应用。