苏教版高中数学选修(1-1)课件1.1命题及其关系
- 格式:pptx
- 大小:1.04 MB
- 文档页数:47
第1章常用逻辑用语§1.1命题及其关系1.1.1四种命题课时目标 1.会判断所给语句是否是命题,并能判断一些简单命题的真假.2.理解命题的逆命题、否命题与逆否命题的含义.3.能分析四种命题的相互关系.1.命题的定义__________________叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做______命题.2.命题的结构在数学中,“若p则q”这种形式的命题是常见的,其中p是命题的条件,q是命题的结论.3.四种命题的概念一般地,设“若p则q”为原命题,“若q则p”就叫做原命题的__________,“若非p则非q”就叫做原命题的__________,“若非q则非p”就叫做原命题的______________.4.四种命题的真假性一般地,四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有________的真假性;(2)两个命题互为互逆命题或互否命题,它们的真假性没有关系.一、填空题1.下列语句中命题的个数为________.①空集是任何非空集合的真子集.②三角函数是周期函数吗?③若x∈R,则x2+4x+7>0.④指数函数的图象真漂亮!2.在空间中,下列命题正确的是________.(填序号)①平行直线的平行投影重合;②平行于同一直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为________.4.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是________.(填序号)①它的逆命题是真命题;②它的否命题是真命题;③它的逆否命题是假命题;④它的否命题是假命题.5.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是________________________________.6.有下列四个命题,其中真命题有________.(填序号)①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.7.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是_______________________________________;逆命题是____________;否命题是________________________.8.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中真命题有________.(填序号)二、解答题9.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.10.设有两个命题:p:x2-2x+2≥m的解集为R;q:函数f(x)=-(7-3m)x是减函数,若这两个命题中有且只有一个是真命题,求实数m的取值范围.能力提升11.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的序号为________.12.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .证明:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.1.命题的最主要的特征是能够判断真假.2.互为逆否的命题真假性相同.3.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.课时作业答案解析第1章 常用逻辑用语§1.1 命题及其关系1.1.1 四种命题知识梳理1.能够判断真假的语句 假3.逆命题 否命题 逆否命题4.(1)相同作业设计1.2解析 ①是命题;②是疑问句,故不是命题;③是命题;④是感叹句,所以不是命题.2.④3.2解析 由a>-3⇒a>-6,但由a>-6⇒a>-3,故真命题为原命题及原命题的逆否命题.4.④5.若log a 2≥0,则函数f(x)=log a x(a>0,a ≠1)在其定义域内不是减函数解析 由互为逆否命题的关系可知,原命题的逆否命题为:若log a 2≥0,则函数f(x)=log a x(a>0,a ≠1)在其定义域内不是减函数.6.①③解析 ①的逆命题显然成立;②的否命题为“如果三角形不全等,则它们的面积不相等”,由三角形的面积公式可知②的否命题为假命题;③的逆命题中,因方程x 2+2x +q =0有实根,则Δ=4-4q ≥0,即q ≤1,故③的逆命题为真命题;④的逆否命题与命题④同真假,④是假命题.7.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除8.①③9.解 逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b<0. 逆否命题:已知a 、b 为实数,若a 2-4b<0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.10.解 若命题p 为真命题,则m ≤1;若命题q 为真命题,则7-3m>1,即m<2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m>1,m<2. 故m 的取值范围是1<m<2.11.①②③解析 ①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14. 又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0, ∴③正确.12.证明 要证明命题不易入手,则证明其逆否命题即可.原命题的否命题为“若a +b<0,则f(a)+f(b)<f(-a)+f(-b).”若a +b<0,则a<-b ,b<-a ,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.。
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。