当前位置:文档之家› 纳米膜过滤技术

纳米膜过滤技术

纳米膜过滤技术
纳米膜过滤技术

课题名称:纳米膜过滤技术

课题内容:

1.概述

1.1定义:

纳米过滤(简称纳滤)是介于反渗透与超滤之间的一种以压力为驱动力的新型膜分离过程,纳滤膜的孔径范围在几个纳米左右。能截留有机小分子而使大部分无机盐透过,操作压力低,在食品工业、生物化工及水处理等许多方面有很好的应用前景。

1.2纳滤与超滤及反渗透的关系:

a.纳米过滤膜的截断相对分子质量小于1000,大于100,填补了超滤与反渗透之间的空白。(比反渗透大,比超滤小)

b.纳滤可以截留能透过超滤膜的溶质;而不能截留能透过反渗透膜的溶质(水)。

2.纳米过滤机理

NF膜与UF膜一样为多孔膜,其分离过程也是利用膜的筛分作用。但NF膜大多为荷电膜,其对无机盐的分离行为不仅由化学势梯度控制,同时也受电势梯度的影响,即NF膜的行为与其荷电性能,以及溶质荷电状态和相互作用都有关系。

2.1 纳滤技术原理:

a.溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度*淌度*推动力,使得一种物质通过膜的时候必须克服渗透压力。

b.电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。

纳滤过程之所以具有离子选择性,是由于在膜上或者膜中有负的带电基团,它们通过静电互相作用,阻碍多价离子的渗透。根据文献说明,可能的荷电密度为0.5~2meq/g 。

为此,我们可用道南效应加以解释:

ηj=μj*z j*f*φ

式中

ηj ——电化学势;

μj ——化学查组分的电荷数;

f ——每摩势;

z j ——被考尔简单荷电组分的电荷量;

φ——相的内电位,并且具有电压的量纲。

式中的电化学势不同于熟知的化学势,是由于附加zj*f*φ项,该项包括了电场对渗透离子的影响。利用此式,可以推导出体系中的离子分布,以计算出纳滤膜的分离性能。

2.2 纳滤膜的离子选择性:

a.对于阴离子,截留率按以下顺序递增:

b.阳离子的截留率递增顺序为:

c.一价离子易透过,高价离子的截留率高

Eg :Na2SO4和NaCl 混合溶液

d.分子量在200~1000之间,分子大小在1nm 以上的分子被截留 --23

-24--3CO ,SO ,OH ,Cl ,NO +

+++++222Cu ,Mg ,Ca ,K ,Na ,H

2.3纳米过滤的特点

①在过滤分离过程中,它能截留小分子的有机物并可同时透析出盐,即集浓缩与透析为一体;

②操作压力低,因为无机盐能通过纳米滤膜而透析,使得纳米过滤的渗透压远比反渗透为低,这样,在保证一定的膜通量的前提下,纳米过滤过程所需的外加压力就比反渗透低得多,具有节约动力的优点。

3.纳米滤膜

3.1性质

a.大多数的纳米滤膜是由多层聚合物薄膜组成。活性层通常荷负电化学基团。一般认为纳米滤膜是多孔性的,其平均孔径为2nm,通常相对分子质量截留范围为200~1000,目前截留相对分子量在100~200的纳滤膜已成为研究热点。

b. 纳米滤膜同样要求具有良好的热稳定性、pH 值稳定性和对有机溶剂的稳定性。T≤80℃, pH=1~14 。

3.2特点

a.纳滤膜比反渗透膜有更高的水通量。(因为NF膜上含有负电荷亲水性基团)

b.改善以疏水性胶体、油脂、蛋白质和其他有机物为背景的抗污染能力强。(表面活性基团)

c.如果溶质所带电荷相反,它与膜相互配合会导致污染。因此,纳滤膜最好应用于不带电荷分子的截留,可完全看做为筛分,或组分的电荷采用静电相互作用消除。

3.3 纳滤膜组件

SelRO 系列纳滤膜包括卷式与管式两种构型的组件。

a.卷式膜:由于单位体积中拥有较大的膜面积,因而造价较低,但要求通过膜的料液必须经预处理步骤,以避免分离过程中膜间隙内堵塞;

b.管式膜:单位体积中膜面积小、造价高,但料液可不经预处理,直接浓缩,并且不易堵塞,方便清洗。

SelRO 纳滤膜的剖面示意图

A 卷式膜;

B 管式膜

A

B

4.纳滤的应用

1.纳米过滤在抗生素的回收与精制上的应用

抗生素原液含4%生物残渣,不定的盐分,抗生素含量约0.1%~0.2%

两种途径:

?先萃取,再用NF膜浓缩——溶剂可循环利用,成本降低80%;

?先用NF膜浓缩,再萃取——节省萃取剂,提高回收率;

凯能公司生产的NF—1014S卷式膜(截留分子量Mw=250)浓缩抗生素6-APA(Mw=216),可将含0.37%的6-APA的发酵液浓缩到5%,该膜对6-APA的截留率达95%,对6-APA的回收率约90%,同时将盐分等杂质除去。

2.牛奶及乳清蛋白的浓缩

利用纳滤膜浓缩的牛乳可以制成高级冰激淋。因在一般的浓缩乳中,由于存于其中的盐类也被浓缩,所制成的冰激淋口感不佳,面暖和纳举世瞩目膜浓缩的牛乳,盐类减少,使制成的冰激淋口感嫩滑,同时因为没有被加热,制品的奶味格外浓郁。

乳粉的贮藏过程中,最易发生的是风味变坏,我们把产生各种不良气味的物质称为杂味物质。利用纳滤分离,可以除这些物质。

未经处理的复原脱脂乳中杂味很强,评价较差。使用反渗透浓缩处理的乳,其风味在某种程度上得到改善,但由于盐类和乳糖都被浓缩,咸味与甜味都被增强,使总体评价降低。而使用纳滤膜,选择适当的浓缩比进行处理,不仅除去了乳中的杂味成分,还使脱脂乳具有盐类平衡的良好风味。

(由表2可以看到)

3.造纸废水处理

造纸废水是目前处理难度较大的废水之一。

M. M#ntt$ri 等在实验室, 用平板纳滤膜NF45 处理浮选和过滤预处理后的造纸废水。膜通量为90 L/(m2·h)。J. Nuortila- Jokinen等也进行了纳滤膜处理造纸废水的研究。研究表明, 膜的震动频率、错流流速、操作压力、pH、化学预处理等对纳滤膜的膜通量有很大影响。

5.纳滤膜的污染与防止

5.1纳滤膜的污染

膜的可靠性是目前阻碍膜技术推广应用的关键之一,而膜污染又是影响其可靠性的决定因素。尽管在膜的应用过程中产生膜污染是在所难免的,但是可以通过对不同的膜污染采取相应的措施来减少膜污染程度。

纳滤膜污染的特性与水中污染物的物理、化学、微生物性质密切相关,可分为无机污染、有机污染和微生物污染。

用纳滤膜法处理水的过程中,造成膜污染的物质主要是地表水和地下水存在的水合状态的金属氧化物、含钙化合物、胶体物质、有机物以及微生物等,这些物质在膜表面上形成了滤饼、凝胶及结垢等附着层或堵塞膜孔,因此导致膜分离性能发生变化,具体表现为膜的透过通量减少、膜的荷电性质和膜孔结构发生变化,膜的使用寿命降低。

5.2纳滤膜污染的控制与防止

膜污染通常是指溶液中的溶质、膜以及溶剂相互作用而产生的一些复杂现象,主要包括膜面污堵、化学破坏以及细菌生长几种情况。其一般性机理是:当截留的污染物质没有从膜表面传质回主体液流中,膜面上污染物质的沉淀与积累,使水透过膜的阻力增加,妨碍了膜面上的溶解扩散,从而导致膜产水量和水质的下降。同时由于沉积物占据了盐水通道空间,限制了组件中的水流流动,增加了水头损失。在膜的应用过程中很难完全避免产生膜的污染,但是可以通过对不同的膜污染情况来采取相应的措施来减小膜的污染程度,目前控制纳滤过程污染的方法大体可分为以下四种:

(1)清洗:清洗方法的选择主要取决于纳滤膜的构型、膜种类和耐化学试剂能力以及污染物的种类,常用的方法有物理方法和化学方法两类。

(2)改变物料的性质:在膜过滤之前,对料液进行预处理如热处理、加配合剂(EDTA等)、活性炭吸附、预微滤和

预超滤等,以去除一些较大的粒子;也可调节pH 远离蛋白质等电点从而减轻吸附作用造成的膜污染。

(3)改变操作方式:改变操作方式实际上是改善膜面流动方式,其主要方法有:一是在膜过程中采取一定的操作策略;另外则是优化和改进膜组件及膜系统结构设计。用这两种方法可让流体在膜组件中的流动呈现出减轻膜污染和浓差极化的理想状态。

(4)纳滤膜的改性:改变膜材料或膜的表面性质把膜表面改变成亲水性的,为了强化膜的操作性能,减少膜污染,膜表面的更新是一种方法,膜面与溶质的物理化学相互作用可由合适的表面活性剂来控制。

6.纳滤膜技术的发展趋势

纳滤膜选择性敏锐,同时兼备超滤和反渗透的分离性能,特别是对于低分子量有机物的分离有着独到之处。纳滤分离过程无任何化学反应,无需加热,无相转变,不破坏生物活性,绝大部分药物的分子量都在这个范围内,且纳滤技术节能、环境友好,因而越来越多地被用到制药工业的各种分离、精制和浓缩过程中。将纳滤技术推向市场,可形成一个新的水处理技术分支。纳滤技术在全国数量巨大的低压锅炉水质软化、油水深度分离、中低分子量物质的纯化、浓缩及废水处理、环境保护等领域有极好的推广应用前景。

多介质过滤器的设计原理

多介质过滤器的设计原理 多介质过滤器是利用一种或几种过滤介质,在一定的压力下把浊度较高的水通过一定厚度的粒状或非粒材料,从而有效的除去悬浮杂质使水澄清的过程,常用的滤料有石英砂,无烟煤,锰砂等,主要用于水处理除浊,软化水,纯水的前级预处理等,出水浊度可达3度以下。过滤的含义,在水处理过程中,过滤一般是指以石英砂、无烟煤等滤料层截留水中悬浮杂质,从而使水获得澄清的工艺过程。用于过滤的多孔材料称为滤料,石英砂是最常见的滤料。滤料有粒状,粉状和纤维状多种。常用滤料有石英砂、无烟煤、活性炭、磁铁矿、拓榴石、陶瓷、塑料球等。多介质过滤器(滤床),既采用两种以上的介质作为滤层的介质过滤器,在工业循环水处理系统中,用以去除污水中杂质、吸附油等,使水质符合循环使用的要求。过滤的作用,主要是去除水中的悬浮或胶态杂质,特别是能有效地去除沉淀技术不能去除的微小粒子和细菌等,BODs和COD等也有某种程度的去除效果。性能参数如下表所示:过滤器构成 多介质过滤器主要由过滤器体、配套管线和阀门构成。其中过滤器体主要包括以下组件:简体;布水组件;支撑组件;反洗气管;滤料;排气阀(外置)等。 滤料的选择依据 (1)必须有足够的机械强度,以免在反冲洗过程中很快地磨损和

破碎;(2)化学稳定性要好;(3)不含有对人体健康有害及有毒物质,不含有对生产有害、影响生产的物质;(4)滤料的选择,应尽量采用吸附能力、截污能力大、产水量高、出水水质好的滤料。在滤料中,卵石主要是起支撑作用,在过滤工艺过程中,因其强度高,相互之间的间距缝隙稳定,孔隙大,便于正洗工序中,滤后水顺利通过;同样,反洗工序中,反洗水和反洗空气等能顺利通过。常规配置中,卵石分为四种规格,铺垫方式为自下而上先大后小。滤料的粒径和装填高度之间的关系 滤床的高度和滤料的平均粒径的比值为800~1 000(设计规范)。滤料的粒径的大小和过滤精度相关。下表所示为各部件的功用和结构形式。多介质过滤器 在水处理上使用的多介质过滤器,常见的有:无烟煤-石英砂-磁铁矿过滤器,活性炭-石英砂-磁铁矿过滤器,活性炭-石英砂过滤器,石英砂-陶瓷过滤器等。多介质过滤器的滤层设计,主要考虑的因素为:1、不同滤料具有较大的密度差,保证反洗扰动后不会发生混层现象。2、根据产水用途选择滤料。3、粒径要求下层滤料粒径小于上层滤料粒径,以保证下层滤料的有效性和充分利用。事实上,以三层滤床为例,上层滤料粒径最大,有密度小的轻质滤料组成,如无烟煤、活性炭;中层滤料粒径居中,密度居中,一般为石英砂组成;下层滤料由粒径最小,密度最大的重质滤料组成,如磁铁矿。由于密度差的限制,三层介质过滤器的滤料选择基本上是固定的。上层滤料起粗滤作用,下层滤料起精滤作用,这样就充分发挥了多介质滤床的

空气过滤系统设计参考

上海一鸣过滤技术有限公司产品选用说明 整个空气净化系统可分为两部分,如图1所示,其中总空过滤器之前是空气预处理系统,总空过滤器之后(包括总空过滤器)是超纯净化系统部分。 图1 空气净化系统示意图 1、预处理系统 空压机出口气体中含有大量的粉尘、水汽、油雾等,所以必须进行降湿除油处理,并滤除较大的尘埃粒子。常见的预处理工艺流程如图2所示: 空气吸风塔前置过滤器空压机贮气罐 一级冷却器旋风分离器二级冷却器旋风分离器丝网除沫器除油过滤器加热器总过滤器 图2 空气预处理系统工艺流程 1.1前置过滤器 在空气流量较大时可在空压机前装前置过滤器,该过滤器价格低廉,却可有效的去除空气中的大颗粒。本公司生产的滤袋式过滤器,各有关技术参数见表1。 表1 袋式过滤器技术参数一览表 空气流量较小时滤袋形状可作相应的变化,如做成套筒式。也可直接在过滤器内填装玻璃纤维复合毡。 1.2常用析水除油设备 常见的析水除油设备一般有两类,一是利用离心力进行沉降的旋风分离器,一是利用惯性拦截的介质分离器。旋风分离器是一种结构简单,阻力较小,分离效果较高的气-固或气-

液分离设备。它可以除去空气中绝大多数的20微米以上的液滴和少量更为微小的液滴。对于空气中夹带的雾状液滴,则应用分离效果较高的丝网除沫器去除。丝网除沫器具有比表面积大,自由体积大,重量轻,使用方便等优点,尤其是它具有除沫效率高、压降小的特点。一般对分离大于5微米的液滴效率可达99%,对于10微米的液滴效率达99.5%,并且也能去除2~5微米直径的雾滴。 1.3除油过滤器 本公司在总结客户空气预处理经验的基础上,开发出新一代析水除油设备,该设备集旋风分离、丝网除沫等功用于一身,再加上专用的除油滤芯(滤芯材质为特种玻璃纤维,不锈钢支撑,外罩海绵),可有效去除空气中的水分与油雾,实践表明,压缩空气经除油过滤器处理后,含油量≦0.01ppm。 2、超纯净化系统 超纯净化系统一般可分为初过滤(总过滤)、预过滤、精过滤三部分,对于需要严格无菌的空气处理系统来说还需要蒸汽过滤系统。粗过滤的作用是滤除较大的颗粒杂质,保护后道过滤器。预过滤的作用是进一步滤除细小的颗粒杂质,保护除菌过滤器。合适的粗过滤和预过滤最好能滤除尘埃、细菌、噬菌体等杂质,使精过滤器达到最长的使用寿命,降低系统的运行费用。 一个优良的空气净化系统必须在达到绝对过滤要求的同时,使系统的操作费用最低,以实现可靠性与经济性的有机统一。因此各过滤单元选用的基本准则是粗过滤价格要便宜,预过滤精度要合适,精过滤必须可靠。系统滤器的配置如表2所示。 表2系统滤器匹配 2.1初过滤(总过滤,DGF) 本公司生产的总过滤器(因其过滤面积与处理量都很大,所以被称为大面积过滤器),内装DGF滤芯(形状如图3a所示),过滤精度为0.5μm,过滤效率≥95%,选用价格相对便宜的玻璃纤维复合毡,这是一种深层过滤材料。对于有油空压机最好在过滤器底部填装棉花活性炭。 2.2预过滤(JPF-YUD,JPF-G、H、I) JPF-YUD滤芯(外形如图3c所示)是专用的预过滤芯。该滤芯采用特种超细玻璃纤维滤纸,过滤精度为0.3μm,过滤效率≧99%,压缩空气经预过滤器处理后,去除大于0.3μ的杂质,为后一级精过滤提供保障。该滤芯初始压降小于0.005MPa,正常情况下使用寿命不小于一年半。当压降≧0.025MPa时,应考虑更换。

大型鱼缸的过滤设计和使用

大型鱼缸的过滤设计和使用 2011-1-24 12:29:14 观赏鱼之家 https://www.doczj.com/doc/8e18313531.html, 韩东(cnfish ID) 二十年前,大家才开始养鱼的时候就用目前市场上还较多见的简易的上部过滤盒。当时大约20多元一套,已经是很奢侈的过滤设备,这20年以来不断尝试其他过滤形式,底砂过滤在龙鱼缸里也曾经用过多年,包括桶式过滤、滴流过滤、以及底部过滤、或者多种过滤形式的有机组合。就目前的成品缸而言设计完美的过滤并不多见或者说直接没有出现。不是业者不处心积虑的去考虑设计合理的过滤来满足消费者的需要。干脆说国内目前的消费水平还达不到这个高度。当然国内顶级的玩家设计的经典过滤也层出不穷。但是绝大多数秘而不宣,私自典藏。相信所有水族爱好者都理解过滤对于水质的重要性,国内的爱好者应该学习和借鉴日本的水槽工房,把设计极致过滤作为水族爱好的一种追求! 这半年多以来由于和彩鲽鱼缸厂合作生产龙鱼缸的缘故,有了更多的条件来完善自己的设计理念,那么大型过滤设计的方针和思路是什么? 一、建立完善过滤系统的设计理念: 1 、充分收集排泄废物和饵料残留是过滤设备应具备的基本能力。 所有的过滤形式需要做的首要工作,就是废物收集,小型的过滤形式包括上部过滤和桶式过滤等收集处理能力相对很差。在大型溢流过滤中首先要做到把鱼缸内部的饵料残留和鱼类排泄废物收集起来。然后才是处理工作。 (1)、溢流区设计要达到合理的尺寸:说到底就是定水玻璃和挡水玻璃之间的间隙的横截面积和配备的水泵的排量要搭配合适,上水和下水管的尺寸要搭配适度,目前1.5米以上的鱼缸基本选择25毫米或者32毫米的上水管。50毫米左右的下水管。只要达到1—1.5厘米的水位落差,抽吸粪便的能力是绝对没有问题的。 (2)、鱼缸内部的水流设计:只有合理的设计水流才能把散落在鱼缸内部各个部位的粪便驱赶到溢流区。但是水流的强度要恰如其分。也就是说水流的强度不能过大或者过小,粪

空气过滤器的设计技巧.

多袋式过滤器 一滤芯消毒方法 1消毒柜内消毒,把滤芯从塑料袋中取出,置于消毒柜内在121oC下消毒30分钟. 2在线消毒请,滤芯按正确的方法安装在滤器内(固定板与滤芯间隔0.5mm.通蒸汽30分钟 二进出流向识别 滤芯外面进中间出,正反冲可按不同方向进行. 三孔径识别多袋式过滤器https://www.doczj.com/doc/8e18313531.html,/ 滤芯壳体有热熔字体,标明滤芯材质及孔径。

四滤芯安装方法 1将O型圈湿润,慢慢将滤芯垂直插入,必须全部插到不锈钢第圆槽内。 2将滤芯部翅片用不锈钢孔板压好,压板不需太紧,以防高温消毒时滤芯变型。 3避免直接用手接触滤芯。 4使用前尽可能冲洗滤芯。 5开机或关机时,请慢慢转动阀门,不要一下子打开或关闭,以防在高温消毒时滤被吸瘪。 五滤芯维护方法 滤芯使用至不能满足设计流量时(流量明显下降前后压力表差在0.1MPa请停机后打开滤器从滤器,从中取出滤芯,用清水冲洗表面 赃物,然后先在的4%的盐酸中浸泡24小时,再在4%的氢氧化钠中浸泡24小时,后用清水冲洗(浸泡时取下二根O型圈,以防膨胀。 六储存法袋式过滤器https://www.doczj.com/doc/8e18313531.html,/ 1将滤芯浸泡在消毒剂中,将滤器不锈钢外壳灌满消毒剂。 2滤芯取出烘干,(50oC36小时 3将滤芯取出晾干,在气候干燥地区。 4未干燥的滤芯请不要用塑料袋包装以防发霉。 聚丙烯滤芯:(PP 材质:聚丙烯滤芯介质为聚丙烯膜。 ?60?郑州轻工业学院学报f自然科学版2008年

介绍,本文不再涉及. 1空气过滤器的工作原理 空气过滤器的结构如图l所示. 1.空气过滤器本体 2.导沉板 3.滤芯 4.锁紧螺栓 5.伞形挡水板 6.保护罩 7.水杯 8.排水阀 图1空气过滤器结构图’从进口流入的压缩空气,被引进导流板2,导流板上有均匀分布的类似风扇扇叶的斜齿,迫使高速流动的压缩空气沿齿的切线方向产生强烈的旋转,混杂在空气中的液态水油和较大的杂质在强大的离心力作用下分离出来,甩到水杯7的内壁上,流到水杯的底部.除去液态水油和较大杂质的压缩空气,再通过滤芯3的进一步过滤,清除微小的固态颗粒,然后从出口输出清洁的压缩空气.伞形挡水板5将水杯分隔成上下2部分,下部保持压力静区,可以防止高速旋转的气流吸起杯底的水油.聚集在杯底的水油从排水阀8放掉.【2o空气过滤器必须竖直水杯向下安装. 2空气过滤器的主要性能指标

基于机器学习的多级垃圾邮件过滤系统研究与设计

基于机器学习的多级垃圾邮件过滤系统研究与设计[摘要] 传统的垃圾邮件过滤方法只是单方面的从邮件系统管理员的角度 将邮件理解为“垃圾邮件”和“合法邮件”两类进行二元处理,很少考虑不同用户对垃圾邮件概念的不同理解和定义,没有更多的从用户角度来过滤和处理垃圾邮件。本文设计了一种面向用户的多层过滤系统,该系统融合了多种机器学习方法,能够在服务器端针对不同的用户采取不同的过滤方案,使用户收到垃圾邮件的概率更小,提高邮件系统的服务质量。 [关键词] 垃圾邮件机器学习系统设计 1.0B0B引言 随着Intemet的快速发展,电子邮件作为一快捷、经济的通信方式得到了普及,已成为人们日常交流沟 通的手段和企业运转的重要组成部分。然而当前网络中垃圾邮件的泛滥,引起了广大研究者的极大关注,并提出了垃圾邮件问题的多种解决方法。其中基于内容的垃圾邮件过滤主要借鉴机器学习的方法具有一定的“自我学习”能力,是解决垃圾邮件的重要方法[1]。然而当前的垃圾邮件过滤产品琳琅满目,反垃圾邮件系统很少考虑不同用户对垃圾邮件的不同认定,垃圾邮件数量并没有减少。 针对垃圾邮件泛滥的现状和当前垃圾邮件产品存在的上述不足,本文设计了一种面向用户的多层过滤系统,该系统融合了多种机器学习方法,能够在服务器端针对不同的用户采取不同的过滤方案。并且本系统不直接依赖具体的邮件系统,能够和不同邮件系统实现简单集成,具有较强的可移植性。 2.系统研究与设计 2.1系统工作流程 系统工作流程图如图1所示,邮件过滤包括初步过滤、个性化过滤两个主要模块。在初步过滤阶段系统将到达的邮件分为确定合法的邮件、不确定的邮件、确定的垃圾邮件三大类。个性化模块再对不确定的邮件进行分级,将分级后的邮件送入用户邮箱中。同时个性化过滤模块也从用户邮箱中提取用户信息,以指导分级。 2.2 初步过滤模块工作流程 在初步过滤模块,邮件到达系统后,先根据邮件发送者的地址进行黑名单/白名单过滤。黑名单/白名单可以从Spamhaus、RBL服务器获取。邮件预处理模块先对邮件进行分词,英文邮件分词较为容易,中文邮件则由于中文的特殊性使得分词较为困难。本系统采用文献[2]介绍中文实时分词算法,该算法采利用TRIE

棉花活性炭空气过滤器设计

前言 生物加工工程很多情况都涉及需氧微生物的纯培养,无论是生长是合成代谢产物都需要消耗大量的氧气以满足微生物的生长繁殖以及代谢的需要。这些氧气通常有空气提供,但是空气中夹带有大量的各类微生物,这些微生物如果随空气一起进入培养系统,便会在合适的条件下大量繁殖,并与发酵生产中的生产菌竞争、抢夺营养物,产生各种副产物,从而干扰或破坏纯培养过程的正常进行,使生物产品的得率降低,产量下降,甚至是培养过程彻底失败导致倒罐,造成严重的经济损失。因此空气除菌是生物细胞培养过程中极其重要的一个环节。 用微生物细胞、动物细胞、植物细胞或酶进行生物反应来生产生物产品,或者保藏生物细胞和生物制品,均需要洁净的环境、合适的空气温度、湿度和空气压力。例如,利用生物工程技术生产药品时,要符合《药品生产和质量管理规范》(GMP)的要求。《规范》明确规定在药品生产过程中,厂房必须按生产工艺和产品的要求划分洁净级别,这时,需要对空气进行净化处理;用气流干燥操作加工产品,需要对空气的温度和湿度进行调节;进入固态发酵培养基或固态发酵室的空气温度和湿度也有严格的要求。因此,对空气进行净化和调节,使空气的温度、湿度和压力发生改变,符合工艺要求,已成为生物加工过程中的一个重要组成部分。 一.设计任务及要求 设计棉花-活性炭空气过滤器,要求通风量达到50m3/min. 二.空气除菌和灭菌方法 空气中经常可以检测到一些细菌及其芽孢、酵母、真菌和病毒。空气的含菌量随环境的不同而有很大的差异。一般干燥寒冷的北方空气中含菌量较少,而温暖潮湿的南方空气中含菌量较多,人口稠密的城市比人口较少的农村含菌量多。虽然各地空气中所悬浮的微生物种类以及比例各不相同,数量也随条件的变化而异,一般设计时可以以含量103~104个/m3为依据来进行计算。 生物加工过程中由于所用的菌种生产能力强弱、生长速度的快慢、发酵周期的长短、分泌物质的性质、培养基的营养成分和pH存在差异,对所用的空气质量有不同的要求。一般说来,生物加工过程中应用的“无菌空气”,是指通过除菌处理是空气中的含菌量降低到某一个水平,从而使污染的可能性降至极小。根据生物产品的不同,可以以染菌率10-3~10-6来表示无菌程度,10-3染菌率表示1000次培养所用的无菌空气只允许一次染菌。 常用空气除菌方法有介质过滤、辐射、化学药品、加热、静电吸附等。其中辐射杀菌、化学药品杀菌、干热杀菌等都是将有机体蛋白变性而破坏其活力,从

过滤用纳米纤维膜的研究进展

过滤用纳米纤维膜的研究进展 郑伟剑(11材料科学与工程1,2011327120123) 摘要:近年来聚合物纳米纤维膜因具有比表面积大、密度低、孔隙率高、孔间结合性良好、易与纳米尺寸的活性物质结合等系列优异性能而受到越来越多的关注。本文回顾了纤维过滤材料的发展历史,介绍静电纺纳米纤维过滤材料的研究发展,分别简述静电纺纳米纤维过滤膜在气体和液体过滤方面的应用。 关键词:纳米纤维膜,静电纺丝,过滤材料 1 前言 在人类生活生产过程中,如制造,生物,医药,电子等行业,必定产生气载污染物、有害生物制剂、过敏原、气溶胶颗粒等。环境保护一直是现代人的热门议题,近年来,由于纳米科学技术的巨大进展,特别是纳米技术与环境保护、环境治理的进一步有机结合,使得作为其基础和先导的纳米材料极大的提升了人类保护环境的能力,为解决环保领域的难题如有害物质监控、污水处理、水体浮油处理等提供了可能。其中静电纺纳米纤维材料不仅具有可控的多级粗糙结构、堆积密度、纤维直径、比表面积、连通性等结构特性,还具有独特的表/界面效应和介质输运性质,在超精细过滤、有害物质检测、污染物吸附等环境领域有着广阔的应用前景。 2 纤维过滤材料的发展历史 早在第一次世界大战期间,就出现了以石棉纤维为滤料的防毒气面具。1940年,美国制备出玻璃纤维过滤材料,并发明了专利。20世纪50~70年代,纤维过滤材料得到了飞速发展,出现了以玻璃纤维为滤材的高效空气过滤器(HEPA),并应用于房间的空气净化。为了进一步提高过滤性能,又采用超细玻璃纤维制备出的高效过滤器,对大于等于0.3μm的微粒的过滤效率达到99.9998%。随后日本又开发出一种超高效过滤器(ULPA),对0.1μm的微粒,其过滤效率可以高达99.9995%以上。随着电子、航天、精密仪器等对室内空气洁净度要求极高的新型行业的出现和发展,微米级纤维过滤材料已经达不到过滤精度的要求,在过滤材

Smc压缩空气过滤器

Smc压缩空气过滤器 。而测量扩散流值是一个定量值,不但能准确的确定过滤器的完整性,而且还能反应出膜的孔隙率、流量和有效过滤面积等方面的问题,这也就是为什么国外都用扩散流法测试完整性的原因。※水侵入法测试原理:水侵入法专用于疏水性滤芯的测试,疏水性膜抗拒水,孔径越小,把水挤入疏水膜中需要的压力越大。所以在一定的压力下,测量挤入滤膜中的水流量来判断滤芯的孔径。18行业标准CJ/T 3068-1997高分子烧结微孔管式过滤器GB/T13554-2008高效空气过滤器GB/T14295-2008空气过滤器GB/T14382-2008管道用三通过滤器GB/T17486-2006液压过滤器HG/T21637-1991化工管道过滤器HG/T4085-2009压力式纤维 一、压缩空气精密过滤器参数 Working condition and technical data 进气温度(Inlet temperature):≤80℃ 进气压力(Inlet pressure):0.4~1.0MPa 二、精密过滤器概述 工作原理 精密过滤器(又称作保安过滤器),筒体外壳一般采用不锈钢材质制造,内部采用PP熔喷、线烧、折叠、钛滤芯、活性炭滤芯等管状滤芯作为过滤元件,根据不同的过滤介质及设计工艺选择不同的过滤元件,以达到出水水质的要求。机体也可选用快装式,以方便快捷的更换滤芯及清洗。该设备广泛应用于制药、化工、食品、饮料、水处理、酿造、石油、印染、环保等行业,是各类液体过滤、澄清、提纯处理的理想设备。 结构特点 精密过滤器具有纳污能力高、耐腐蚀性强、耐温好、流量大、操作方便、使用寿命长、没有纤维脱落等诸多特点。各种涂装设备顶棉过滤及框架式、袋式过滤器,适用于精细化工,油品,食品医药,水处理等场合。 精密过滤器应用 用于各种悬浮液的固液分离,适用范围广,适用于医药。食品。化工。环保。水处理等工业领域、各种涂装设备顶棉过滤及框架式、袋式过滤器,适用于精细化工,油品,食品医药,水处理等场合. 精密过滤器特点 1、高效能去除水、油雾、固体颗粒,100%去除0.01μm及以上颗粒、油雾浓度控制在0.01ppm/wt; 2、结构合理,体积小、重量轻; 3、带有防护罩塑胶外壳和铝合金外壳可选择。 4、三级分段净化处理,使用寿命长 精密过滤器材料 1、外壳:铝合金; 2、防护罩:塑胶杯、聚碳酸脂、金属杯、铝合金; 3、滤芯材料:B、C系列环保特殊纤维、不织布;D系列、活性碳; 4、液位指示器、金属杯、PV。 精密过滤器种类 C级精密过滤器 通用范围:一般往复式空压机前置过滤材质:多层玻璃纤维滤芯滤杂质:5MICRON滤油含量:5PPM 最大压力:16KG/CM最高温度:65℃一般压差:0.2KG/CM最大压差:0.7KG/CM 功能:将压缩气内大量的油气滤到5PPM以内及滤除杂质颗粒至5MICRON能除去大量的液体及3μm以上固体微粒,达到最低残留油分含量仅5ppm,有少量的水分、灰尘和油雾。用于空压机,后部冷却器之后,其它过滤器之前,

游泳池过滤与恒温系统设计方案

游泳池过滤与恒温系统设计方案 —— 一、前言 现阶段我国高档住宅小区和星级酒店的建设,游泳池(馆)已成为人民文化生活和城市建设的重要组成部分。为节约用水,保证泳池水质符合国家卫生标准,保证游泳爱好者的身心健康,设置游泳池循环水处理设备已被列入游泳池(馆)建设的必备项目。我公司本着投资少、保质量、讲信誉的原则,设计了游泳池水处理工艺。水质达到国家颁布的《游泳池场所卫生标准》。 我国过去游泳池循环水设备一般采用国产钢制过滤器,设备体积大、设计流量小、占地面积大、防腐性能差、成本高、进出水管采用钢管、因加氯腐蚀生锈,池水被锈水污染,反冲洗时间长,浪费水源。 由于以上缺点,为此我公司引进了国外先进的游泳池循环水处理设备。 二、工程概况 技术文件完全按业主要求编制,重点体现了以下几点技术要求: 1、本游泳池的数量、布置和使用功能要求: 本游泳池为非标准室内恒温游泳池。 2、游泳池水处理系统工艺和设备材料的要求: 2.1、循环方式: 池水均采用逆流式循环布水方式,全部循环水量由池壁送入池中,由游泳池周边或两侧边的上缘溢流回水的方式。池水初次给水、补水均采用市政自来水,补水可利用均衡池的液位控制进行自动补水。 2.2、循环水泵

2.2.1、循环水泵采用澳洲“雷达”牌产品。 2.2.2、循环水泵为共轴式端离心泵,涡型石墨壳体、不锈钢轴、机械密封,转速为1450rpm。 2.2.3、水泵的流量不得小于池水净化循环流量,水泵的扬程不得小于用水设施的几何高度和管道(管件、阀门、毛发聚集器等)、设备(过滤器等)、附配件(给水口、回水口)等水头损失流出水头之和。 2.2.4、循环水泵设3台水泵,3台同时运行。 2.2.5、循环水泵设在地下室,成自灌式。 2.2.6、循环水泵的进水前端均配置毛发聚集器,进出口两端均设有阀门控制和隔震软接头,水泵的出水端均设置压力表和缓闭式静音止回阀。 2.3、过滤器: 2.3.1、过滤系统的过滤器采用压力过滤器,压力过滤器罐体承受的压力可超过0.45MPa。 2.3.2、过滤器材质为FRP。 2.3.3、过滤器过滤速度小于45m/h,过滤器均采用池水进行反冲洗。 2.4、系统管道: 2.4.1、循环给水管内的水流速度不得超过 2.0m/s;循环回水管的水流速度宜为0.7-1.0m/s。 2.4.2、循环水泵的进水管水流速度宜采用 1.0-1.2m/s,出水管内的水流速度宜采用1.5-2.0m/s。 2.4.3、循环水管道的材质采用UPVC塑料管,其工作压力1.0MPa。 2.5、水质检测和加药系统控制: 2.5.1、水质检测仪选用美国“卫星”,原产地原品牌原装进口。

纳米膜过滤技术在提高人血浆制品安全性方面的应用

纳米膜过滤技术在提高人血浆制品安全性方面的应用 来源:本站原创作者:代旭兰陈海陈代杰刘文芳(四川远大蜀阳药业股份有限公司,四川双流 610214)发 布时间:2009-12-2 病毒污染严重威胁血液制品的安全性,如何进一步提高制品的安全性是人们始终所关注的问题。虽然经过改进原料血浆筛选的检测方法、增加血浆检疫期、增加制品有效病毒灭活/去除步骤、提高生产技术和GMP等措施已经使制品安全性得到了很大的提高,HIV、HBV和HCV)经由现代生产工艺制得的血液制品传播的可能性已经非常小,但仍有少量的病毒,如细小病毒B19(B19)等小型病毒,通过一些凝血因子浓缩物传播的危险还没有完全消除[1—3],新出现的病原体,如变异型克雅氏病(vCJD),也是安全性关注的焦点[4,5]。因此,血液制品的研究与生产厂家仍然要致力于不断研发增加病毒灭活/去除的新方法。 采用小孔径的膜过滤血浆蛋白溶液,是通过筛选机制截留并去除血浆中的病毒的一种方法;和常规的过滤不同,这项技术所采用的膜的平均孔径为纳米级别,且专为去除病毒而开发,所以又被称为纳米膜过滤。目前,这项技术作为病毒灭活/去除方法的一种安全补充措施,已被广泛接受并应用于生物制品的病毒去除。 1 纳米膜过滤技术及其产品类型 1.1 纳米膜过滤的原理该技术是根据根据分子筛原理,按膜孔径大小截留病毒,使目的蛋白通过滤器,大致分为错流(切向)过滤和直流(死端)过滤2种方式,其病毒去除率和蛋白透过率很大程度上都依赖膜的结构。纳米膜过滤能有效去除大于膜平均孔径的病毒,对于小于或接近平均膜孔径的病毒、病毒聚合体、潜在的病毒与抗体复合物则去除效果不甚理想,蛋白质浓度和因电荷效应产生的膜表面吸附等因素都可能影响病毒清除的程度。该技术的蛋白质回收率取决于蛋白浓度、蛋白质聚合物或高分子量组分、过滤表面积、pH和温度等因素。市售的多数纳米膜为整装的易处理囊式膜包或盒式膜包,可在过滤前后对其进行完整性测试,以确保该滤器在使用中滤除病毒的能力,这是纳米膜过滤可靠性的一个额外的保障。纳米膜过滤通常置于工艺中常规病毒去除步骤和层析纯化步骤之后,因为通过下游工艺处理后的料液的蛋白浓度降低,纯度提高,更有利于满足纳米膜过滤的要求。纳米膜过滤之前往往会先做预过滤,以去除蛋白聚合体、DNA和其它的痕量污染物[6]。有研究发现35 nm纳米膜过滤免疫球蛋白(IgG)并不能完全清除其中的HCV,即虽然纳米膜有良好的病毒去除能力,但不能作为单独的病毒灭活/去除步骤使用[7]。本着确保制品安全性的原则,生产工艺中通常采用多种不同机制的方法联用,如结合S/D、pH4、巴氏、纳米膜过滤等技术以提高病毒安全性。 1.2纳米膜过滤产品的类型见表1。旭化成公司(日本东京)于1989年推出了第1款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova ,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Viresolve NFP膜(Millipore)是一种复合聚偏氟乙烯膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常>4 log;Viresolve NFR膜是一种铸塑的高分子膜,专门研发用于去除在生产重组蛋白的培养基和杂交瘤细胞培养物中可能污染的80—120 nm的逆转录病毒,在血液制品生产中的应用有限,因为它对<80 nm的脂包膜和非脂包膜血浆传播病毒无法去除。Ultipor VF(病毒过滤)DV50和DV20是美国Pall公司的亲水改性聚偏氟乙烯微孔折叠膜;Sartorius生产的Virosart CPV为聚醚砜过滤器,能去除>4 log的PPV和>6 log的逆转录病毒。 表1 常见的纳米膜产品类型

过滤器设计计算书

设计计算书产品/项目名称:过滤器 编制人/日期: 审核人/日期: 批准人/日期:

1. 滤芯截面尺寸的确定 为了不增加水流水阻,滤芯过水截面积应等于管子的截面 积,即滤芯的直径应等于公称通径(D DN )。如右图所示阴影部分的面积为管子公称通径的截面积。 8寸管的公称通径为 200mm ,滤芯的直径为200mm 8吋过滤机公称通径的截面积 242 21014.34 2004 mm D A DN DN ?=?= = ππ 2. 滤芯长度的确定 2.1. 根据SH/T3411-19991.6倍公称通径截面积,本项目取1.6。样机有一个圆过滤面,如右图所示: DN DN A K L D 6.1=???π 式中: K--------方孔筛网的开孔率为10% ∴80010 .020014.31014.36.16.14 ≈????=??=K D A L DN DN π 经画图,调整比例,L 取700mm 。 则mm L A D DN DN 228700 10.014.310 14.36.1πK 6.14 ≈????==' 滤芯直径圆整取230mm 。 3. 主管的确定

参考中国建筑标准设计研究所的标准图集《除污器》,刷式全自动过滤机主管与进出 3.2主管壁厚的确定 参考《压力容器与化工设备使用手册》上册,第2章:压力容器壳体与封头 ??φ σ2i PD S = (2-1-6) 式中:--计算厚度S ,mm D i ――圆筒的内直径,mm P ――设计压力,MPa ;设计压力取最大级别工作压力P=1.6 MPa φ――焊缝系数,取φ=0.85 [σ]――材料的许用应力,主管材料采用Q235-A ,[σ]=n s σ n ――安全系数,取n=1.5 出入水管:4.285 .06.12352200 6.108≈???= S mm 主管: 21.485 .023523506.1' 08≈???=S mm

空气过滤器的详细解析

洁净室产品网:https://www.doczj.com/doc/8e18313531.html,/ 空气过滤器 中文名称:空气过滤器英文名称:airfilter定义1:滤除压气机进口空气中的尘粒、盐分等杂质的设备。应用学科:电力(一级学科);汽轮机、燃气轮机(二级学科)定义2:能清除空气中灰尘及杂质的器件。应用学科:机械工程(一级学科);实验室仪器和装置(二级学科);气候环境试验设备-气候环境试验设备零部件及附件(三级学科)概述 在气动技术中,空气过滤器、减压阀和油雾器称为气动三大件。为得到多种功能,往往将这三种气源处理元件按顺序组装在一起,称为气动三联件,用于气源净化过滤、减压和提供润滑。三大件的安装顺序按进气方向依次为空气过滤器、减压阀、油雾器。三大件是多数气动系统中不可缺少的气源装置,安装在用气设备近处,是压缩空气质量的最后保证.其设计和安装,除确保三大件自身质量外,还要考虑节省空间、操作安装方便、可任意组合等因素。编辑本段空气过滤器的发展 空气过滤器的原型是人们为保护呼吸而使用的呼吸保护器具。据记载,早在一世纪的罗马,人们在提纯水银的时候就用粗麻制成的面具进行保护。在此之后的漫长时间里,空气过滤器也取得了进展,但其主要是作为呼吸保护器具用于一些危险的行业,如有害化学品的生产。1827年布朗发现了微小粒子的运动规律,人们对空气过滤的机理有了进一步的认识。空气过滤器的迅速发展是与军事工业和电子工业的发展紧密相关的。在第一次世界大战期间,由于各种化学毒剂的使用,以石棉纤维过滤纸作为滤烟层的军用防毒面具应运而生。玻璃纤维过滤介质用于空气过滤于1940年10月在美国取得专利。50年代,美国对玻璃纤维过滤纸的生产工艺进行了深入的研究,使空气过滤器得到了改善和发展。60年代,HEPA过滤器问世;70年代,采用微细玻璃纤维过滤纸作为过滤介质的HEPA过滤器,对013微米粒径的粒子过滤效率高达99.9998%。八十年代以来,随着新的测试方法的出现、使用评价的提高及对过滤性能要求的提高,发现HEPA过滤器存在着严重的问题,于是又产生了性能更高的ULPA过滤器。目前,各国仍在努力研究,估计不久就会出现更先进的空气过滤器。编辑本段过滤器本身的设计也取得了显著进展 其中最重要的是分隔板的去除,即无隔板过滤器的发展。无隔板过滤器不仅消除了分隔板损坏过滤介质的危险,而且有效地增加了过滤面积,提高了过滤效率,并降低了气流阻力,从而减少了能量消耗。此外,空气过滤器在耐高温、耐腐蚀以及防水、防菌等方面也取很大的进展,满足了一些特殊的需求。编辑本段空气过滤器的作用 从气源出来的压缩空气中含有过量的水汽和油滴,同时还有固体杂质,如铁锈、沙粒、管道密封剂等,这些会损坏活塞密封环,堵塞元器件上的小排气孔,缩短元器件的使用寿命或使之失效.空气过滤器的作用就是将压缩空气中的液态水、液态油滴分离出来,并滤去空气中的灰尘和固体杂质,但不能除去气态的水和油.编辑本段空气过滤器的工作原理空气过滤器的结构如右图所示从进口流入的压缩空气,被引进导流板(2 空气过滤器原理图 ),导流板上有均匀分布的类似风扇扇叶的斜齿,迫使高速流动的压缩空气沿齿的切线方向产生强烈的旋转,混杂在空气中的液态水油和较大的杂质在强大的离心力作用下分离出

(完整版)压缩空气系统设计手册

压缩空气中水分的含量及影响 ( ) 一般大气中的水份皆呈气态,不易觉察其存在,若经空气压缩机压缩及管路冷却后,则会凝结成水滴。[例如]在大气温度30℃,相对温度75℃状况下,一台空气压缩机,吐出量为3m3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含有100升的水份。 压缩空气系统中水分的影响: 一、压缩空气管路快速腐蚀,压降增加; 设定压力提高1kgf/cm2G,动力输出增加5%-7%,或减少排气量6%-8%。 二、设备严重故障,增加维修保养费用; 1.腐蚀零件。 2.阻塞气控仪器。 3.降低气动工具的效率。 三、破坏产品品质,产品不良率提高; 1.应用产品清洁时,造成湿气污染。 2.应用喷漆涂装时,影响产品品质。 四、影响生产流程,生产能量降低; 1.粉体输送时,易阻塞管线。 2.气动设备故障,而停工。 ----冲刷掉气动工具,电机和气缸中的润滑油,增加磨损并缩短寿命,提高维护成本----使气动阀门和控制仪器失灵,影响可靠操作,效率降低 ----影响油漆和整饰作业质量 ----引起系统中的金属装置腐蚀生锈,影响其寿命,并可导致过度压降 ----气流分配成本提高(需倾斜管道,设置U形管和滴水管) ----在冰冻季节,水气凝结后会使管道及附件冻结而损害,或增加气流阻力,产生误动 压缩空气中油的危害: 在一些要求比较严格的地方,比如气动控制系统中,一滴油能改变气孔的状况,使原本正常的自动运行的生产线瘫痪。有时,油还会将气动阀门的密封圈和柱要胀大,造成操作迟缓,严重的甚至堵塞,在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源 由于大部分压缩空气系统都使用油润滑式压缩机,该机在工作中将油汽化成油滴。它们以两种方式形成:一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”,其直径在1-50um。另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。 * 无油压缩机是否含油污 在最理想的工作状态下,此类压缩机也会产生不少于0.5ppm W/W的碳氢化合物,即按100scfm气量计,每月产生的汽化冷凝液也超过15ml. 氧化铝和分子筛的比较 ( ) 吸附剂 特性 氧化铝分子筛 价格较低较高平均再生气量15%20~25% 吸附特性相对湿度较高,吸附能力越强, 效果越好 相对湿度与吸附能力变化不大 露点温度10min=-40℃ 4 min=-70℃ -70℃ 再生特性相对湿度越低,再生风量越少, 效果越好 相对湿度越低,再生风量须较大, 效果不佳 使用寿命最少三年相同 操作成本由于再生风量较小,故操作成本 较低 再生风量较大,操作成本较高 吸附剂需求量较少较多 耐热度低高(≤ 320℃)粒径 (mm)Φ3~5(4?)Φ3~5(4?)堆密度(g/ml)0.7>0.65 静态吸附(%wt)10%相对湿度≥6 60%相对湿度≥16 60%相对湿度≥18

锦鲤生态过滤系统设计实务及思考溢流过滤篇

锦鲤生态过滤系统设计实务及思考——溢流过滤篇 溢流过滤篇 一个完整的溢流过滤方式要包括以下环节: 沉淀室——物理滤室——生物滤室——清水室——植物滤室,还有做为排水设施的竖管室。辅助设施为紫外线杀菌灯、砂缸以及文氏管。其中前三种滤室往往因为加强效果的目的而被设计成多个并排。特别是生物滤室一般都采用这样的 设计方式。 动力驱动原理:在锦鲤池的一侧修建一些相互连通的过滤室单元,第一个室与池水相通,最后一个室用水泵把水抽回鱼池,从而利用水自身的重力源源不断地从鱼池里补水到整个过滤系统里。 过滤原理:在每个过滤单元里设置许多有大量孔隙的过滤介质,利用过滤介质的吸附和阻隔,把流经介质的水流里的杂物停留在介质上;同时减缓水的流速,利用杂物自身的重力把它们沉降在每个过滤单元的底部。 在设计溢流滤室时还有一个要特别注意的细节,就是每个单元的底部要设计成倒锥型、半圆型或倒梯型,这样所有沉降的固体废物都会停留在这个锥型或梯型的最低处。在这里再设计一个底排管,这样就可以把所有的沉降物排出。 过滤设计数据化的要求:这里有一些被广泛认可的数据—— 过滤室的面积相当于鱼池面积的三分之一以上;这里说的是面积而不是体积,但倾向于认为滤材的辅设最低也要达到30公分以上的厚度,50公分是比较理想的数据。当然这和采用什么滤材有关,整个过滤系统的总面积及体积越大 处理水质的能力就越好。 过滤水流经整个过滤系统的时间在10—15分钟,最少不得少于8分钟;当然水流经过滤系统的时间越长微生物处理水质的效果就越彻底,而且废物沉淀的效果越理想。但要注意不能出现死水区。池水每天至少要经过滤循环8周,当然这是相对于一个大型鱼池的最下限,我们的鱼池一般都较小,而且养殖的密度一般都远高于每吨水一条成鱼的要求,所以应该采用更大的泵来促进水的过滤循环,经常采用的数据是每小时循环一周以上。 其实对于设计一个过滤系统来说,物理过滤和生物过滤的滤材并没有严格的区分。物理过滤的滤材因为表面也要附着净水微生物所以也兼具生物净化的功能;而生物滤器由于表面一般都有很多的孔隙也能够附着大量的杂物所以也具有物理净化的作用;在生物滤器下面的沉淀室其实就是为物理沉降所设置的。两种滤材之间也没有严格的界定——如毛刷一般用于物理过滤,也可以用于生物过滤——主要是看个体的具体设定。个人倾向于这样划分:需要经常反冲或清洗的滤材属于物理滤材,反之则属于生物滤材。因为经常冲洗忙必然会破坏附着于滤材上的净水微生物。下面就一 般采用的传统意义上的划分进行论述和探讨。 1.物理滤室:主要包括沉淀室、毛刷过滤室 沉淀室:是池水进入过滤系统的第一个单元。其工作原理非常简单,就是当水流通过PVC输送管进入沉淀室后流速急剧下降,体积较大的固体杂物就因为自身比重较大的关系而沉降在沉淀室里。很多人认为设计一个完全没有任何滤材的沉淀室是在浪费空间,其实当他日后看到很多的固体废物沉降在这个单元里而不是进入物理和生物滤室里就会庆 幸这样做是完全有必要的。 沉淀室需要有较大的体积以便于缓和水流的流速。在沉淀室里经常会采用一些孔隙较大的挡板之类的设计以帮助减 缓流速,这样较大颗粒的固体杂物就很容易被沉降下来。

静电纺丝纳米纤维膜在过滤领域的应用研究

建设科技 ∣ 81部品技术与应用 建设科技CONSTRUCTION SCIENCE AND TECHNOLOGY 2018年11月上 总第371 期1 前言 随着现代化进程的加快,污染问题也越来越严重。 空气中漂浮的颗粒物浓度超标,由此形成的雾霾天气不 仅影响人们的生活,更是严重危害人民的身心健康;水 资源的匮乏也使得污水处理问题引起人们的极大关注。 因此,开发出有效拦截污染物的过滤材料是全世界共同 的目标。静电纺制备的纤维直径可达到微纳米级,且纤 维直径在一定的程度上可以进行有效调控,大到几微米 小到几十纳米。静电纺丝纳米纤维因其优良的性能被引静电纺丝纳米纤维膜在过滤领域的应用研究 方梦珍1 张弘楠1 覃小红1 匡宁2 (1.东华大学纺织学院,上海 201620;2.中材科技股份有限公司,江苏南京 210012) [摘要]静电纺丝纳米纤维膜具有很高的比表面积、孔隙率和通透性,在多个领域都有着不可替代的作用,尤其是过滤领域。本文简要介绍了近年来国内外静电纺丝纳米纤维膜在空气过滤和液体过滤领域中的研究进展。项目团队在功能型纳米纤维过滤材料研究及产业化方面取得的研究成果,展望了未来在被动式建筑室内空气质量提升方面的应用趋势。 [关键词]静电纺丝;纳米纤维膜;空气过滤;液体过滤;被动式建筑 Progress in Application of Electrospun Nanofibrous Membranes for Filtration Fang Mengzhen 1, Zhang Hongnan 1, Qin Xiaohong 1, Kuang Ning 2 (1.College of Textile of Donghua University, Shanghai, 201620; 2.Sinoma Science & Technology Co., Ltd., Nanjing, 210012, Jiangsu) Abstract : Electrospun nanofibrous membranes enjoy high specific surface area, porosity and permeability, and have an irreplaceable role in many fields, especially in the field of filtration. This review briefly summarizes the progress on application of electrospun nanofibrous membranes in the field of air filtration and liquid filtration in recent years as well as the achievements of the project team in the research and industrialization of functional nanofiber filtration materials. The application trend to improve indoor air quality in passive buildings in the future is prospected. Keywords : Electrospun, nanofibrous membrane, air filtration, liquid filtration, passive buildings 入过滤领域,表现出极大的优势。2 静电纺丝的发展静电纺丝即高分子流体在电场下受到静电力而拉伸成丝的过程,最终固化形成纤维。其最早可以追溯到18世纪中,一种牛顿流体的静电雾化。但是真正被世人认可的静电纺丝的开端是1934年Formhals 申请的关于纺丝装置的专利[1-3],这是首次利用高压静电制备纤维的装置,其专利详细描述了高分子溶液如何在高压DOI: 10.16116/https://www.doczj.com/doc/8e18313531.html,ki.jskj.2018.21.014

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m3/h =91800m3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用, m 25.0a j = 5 支管长度: 每池支管数:根480.25 62a 2n j =?=? =L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634 d f == π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000 f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1 d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07 .1n 2 1 l a k j k =?= ?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k == )(μ 5.复算配水系统: 管长度与直径之比不大于60,则 6023075 .07 .1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

相关主题
文本预览
相关文档 最新文档