【金版学案】2015届高考数学总复习 基础知识名师讲义 第九章 第一节算法的概念与程序框图 理
- 格式:doc
- 大小:1.63 MB
- 文档页数:9
§9.5椭圆1.椭圆的概念在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1 (a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b21.判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ ) (3)椭圆的离心率e 越大,椭圆就越圆.( × ) (4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) 2.已知椭圆的焦点在y 轴上,若椭圆x 22+y 2m =1的离心率为12,则m 的值是( )A.23B.43C.53D.83答案 D解析 由题意知a 2=m ,b 2=2,∴c 2=m -2. ∵e =12,∴c 2a 2=14,∴m -2m =14,∴m =83.3.(2013·广东)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1D.x 24+y 23=1 答案 D解析 由题意知c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是__________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k=1,∵焦点在y 轴上,∴2k>2,即k <1,又k >0,∴0<k <1.5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为________. 答案3-1解析 设过左焦点F 1的正三角形的边交椭圆于A ,则|AF 1|=c ,|AF 2|=3c ,有2a =(1+3)c ,∴e =c a =21+3=3-1.题型一 椭圆的定义及标准方程例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线(2)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),则椭圆的方程为________.(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1)、P 2(-3,-2),则椭圆的方程为________.思维启迪 (1)题主要考虑椭圆的定义; (2)题要分焦点在x 轴和y 轴上两种情况; (3)可以用待定系数法求解.答案 (1)B (2)x 29+y 2=1或y 281+x 29=1(3)x 29+y 23=1 解析 (1)点P 在线段AN 的垂直平分线上, 故|P A |=|PN |, 又AM 是圆的半径,∴|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |, 由椭圆定义知,P 的轨迹是椭圆.(2)若焦点在x 轴上,设方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b2=1(a >b >0).∵椭圆过点P (3,0).∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(3)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过P 1、P 2点,∴P 1、P 2点坐标适合椭圆方程.则⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ②①、②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.(2)已知P 是椭圆x 2100+y 236=1上一点,F 1、F 2分别是椭圆的左、右焦点,若∠F 1PF 2=60°,则△PF 1F 2的面积为________. 答案 (1)y 220+x 24=1 (2)12 3解析 (1)方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1.方法二 因为所求椭圆与椭圆y 225+x 29=1的焦点相同,所以其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.①又点(3,-5)在所求椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.②由①②得b 2=4,a 2=20,所以所求椭圆的标准方程为y 220+x 24=1.(2)根据椭圆的定义,得|PF 1|+|PF 2|=20,①在△PF 1F 2中,由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°=256.②①2-②得|PF 1|·|PF 2|=48.∴S △PF 1F 2=12|PF 1|·|PF 2|sin 60°=12 3.题型二 椭圆的几何性质例2 (1)在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,求这个椭圆的离心率.(2)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,求PF →·P A →的最大值和 最小值.思维启迪 本题主要考查椭圆的几何性质及其应用,解题(1)的关键是根据题意求出a ,c 的值;解题(2)的关键是表示出PF →·P A →,根据椭圆的性质确定变量的取值范围. 解 (1)设椭圆的焦半径为c ,设另一个焦点为F ,如图所示, ∵AB =AC =1,△ABC 为直角三角形,∴1+1+2=4a ,则a =2+24.设F A =x ,∴⎩⎪⎨⎪⎧x +1=2a ,1-x +2=2a ,∴x =22,∴1+(22)2=4c 2,∴c =64,e =ca=6- 3. (2)设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=2时,PF →·P A →取得最小值0, 当x 0=-2时,PF →·P A →取得最大值4. 思维升华 (1)求椭圆的离心率的方法①直接求出a ,c 来求解e .通过已知条件列方程组,解出a ,c 的值.②构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.③通过取特殊值或特殊位置,求出离心率.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.(1)已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A.0B.1C.2D.2 2(2)(2013·辽宁)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 (1)C (2)57解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C.(2)如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′,由对称性,|BF ′|=|AF |=6,∴2a =|BF |+|BF ′|=14. ∴a =7,因此离心率e =c a =57.题型三 直线与椭圆的位置关系例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N两点.(1)若直线l 的方程为y =x -4,求弦MN 的长.(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.思维启迪 直线与圆锥曲线的关系问题,一般可以直接联立方程,“设而不求”,把方程组转化成关于x 或y 的一元二次方程,利用根与系数的关系及弦长公式求解. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0), 设线段MN 的中点为Q (x 0,y 0), 由三角形重心的性质知BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4, 且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. (2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△P AB 的面积.解 (1)由已知得c =22,c a =63,解得a =2 3.又b 2=a 2-c 2=4,所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1.消去y 得4x 2+6mx +3m 2-12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4.因为AB 是等腰△P AB 的底边,所以PE ⊥AB , 所以PE 的斜率k =2-m4-3+3m 4=-1,解得m =2.此时方程①为4x 2+12x =0,解得x 1=-3,x 2=0, 所以y 1=-1,y 2=2.所以|AB |=32, 又点P (-3,2)到直线AB :x -y +2=0的距离 d =|-3-2+2|2=322.所以△P AB 的面积S =12|AB |·d =92.高考中圆锥曲线的离心率问题典例:(10分)(1) 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,上顶点为B 2,右顶点为A 2,过点A 2作x 轴的垂线交直线F 1B 2于 点P ,若|P A 2|=3b ,则椭圆C 的离心率为________.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为________.思维启迪 椭圆的离心率利用方程思想,只需利用题目条件得到a ,b ,c 的一个关系式即可.若得到的关系式含b ,可利用a 2=b 2+c 2转化为只含a ,c 的关系式. 解析 (1)由题设知|B 2O ||P A 2|=|F 1O ||F 1A 2|⇒b3b=c a +c =13,e =12.(2)依题意及正弦定理,得|PF 2||PF 1|=ac (注意到P 不与F 1F 2共线), 即|PF 2|2a -|PF 2|=a c, ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c , 即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1. 答案 (1)12(2)(2-1,1)温馨提醒 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点.这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围.无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表达,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.方法与技巧1.求椭圆的标准方程时,应从“定形”“定式”“定量”三个方面去思考.“定形”就是指椭圆的对称中心在原点,以坐标轴为对称轴的情况下,能否确定椭圆的焦点在哪个坐标轴上.“定式”就是根据“形”设出椭圆方程的具体形式,“定量”就是指利用定义和已知条件确定方程中的系数a ,b 或m ,n .2.讨论椭圆的几何性质时,离心率问题是重点,求离心率的常用方法有以下两种: (1)求得a ,c 的值,直接代入公式e =ca求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解. 失误与防范1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.注意椭圆的范围,在设椭圆x 2a 2+y 2b 2=1 (a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为( )A.9B.1C.1或9D.以上都不对答案 C解析 ⎩⎪⎨⎪⎧b =3c a =45a 2=b 2+c2,解得a =5,b =3,c =4.∴椭圆C 的焦点F 到长轴的一个端点的距离为a +c =9或a -c =1.2.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A.4B.3C.2D.5答案 A解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2×5-6=4.3.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A.4B.8C.4或8D.以上均不对答案 C解析 由⎩⎪⎨⎪⎧10-m >0m -2>0,得2<m <10,由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4, 解得m =4或m =8.4.(2012·江西)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2答案 B解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c , 且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |, 即4c 2=a 2-c 2,a 2=5c 2, 所以e 2=15,所以e =55.5.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为 ( )A.34B.1C.2D.4答案 C解析 圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), ∴m =-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x =-c ,又∵直线l 与圆M 相切,∴c =1,∴a 2-3=1,∴a =2. 二、填空题6.(2013·福建)椭圆Г:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 答案3-1解析 由直线方程为y =3(x +c ), 知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1, 所以∠MF 2F 1=30°, MF 1⊥MF 2,所以|MF 1|=c ,|MF 2|=3c 所以|MF 1|+|MF 2|=c +3c =2a . 即e =ca=3-1.7.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率等于13,其焦点分别为A 、B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.答案 3解析 在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e=3.8.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0, 34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).三、解答题9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2.解得⎩⎪⎨⎪⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m .消去y 得,3x 2+4mx +2m 2-8=0, Δ=96-8m 2>0,∴-23<m <23, ∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m 3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴(-2m 3)2+(m 3)2=1,∴m =±355.10.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2.点P (a ,b )满足|PF 2|=|F 1F 2|.(1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点.若直线PF 2与圆(x +1)2+(y -3)2=16相交于M ,N 两点,且|MN |=58|AB |,求椭圆的方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0), 因为|PF 2|=|F 1F 2|,所以(a -c )2+b 2=2c .整理得2(c a )2+c a -1=0,解得c a =-1(舍),或c a =12.所以e =12.(2)由(1)知a =2c ,b =3c , 可得椭圆方程为3x 2+4y 2=12c 2, 直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c .得方程组的解⎩⎪⎨⎪⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A (85c ,335c ),B (0,-3c ),所以|AB |=(85c )2+(335c +3c )2=165c . 于是|MN |=58|AB |=2c .圆心(-1,3)到直线PF 2的距离 d =|-3-3-3c |2=3|2+c |2.因为d 2+(|MN |2)2=42,所以34(2+c )2+c 2=16.整理得7c 2+12c -52=0,得c =-267(舍),或c =2.所以椭圆方程为x 216+y 212=1.B 组 专项能力提升 (时间:30分钟)1.(2013·四川)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32答案 C解析 由题意可设P (-c ,y 0)(c 为半焦距), k OP =-y 0c ,k AB =-ba ,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bca ,把P ⎝⎛⎭⎫-c ,bca 代入椭圆方程得(-c )2a 2+⎝⎛⎭⎫bc a 2b 2=1,而⎝⎛⎭⎫c a 2=12,∴e =c a =22.选C. 2.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A.(0,1)B.(0,12]C.(0,22)D.[22,1) 答案 C解析 ∵满足MF 1→·MF 2→=0的点M 在圆x 2+y 2=c 2上, ∴圆x 2+y 2=c 2在椭圆内部,即c <b , ∴c 2<b 2=a 2-c 2,2c 2<a 2, ∴e 2<12,即e ∈(0,22).3.在椭圆x 216+y 24=1内,通过点M (1,1),且被这点平分的弦所在的直线方程为( )A.x +4y -5=0B.x -4y -5=0C.4x +y -5=0D.4x -y -5=0答案 A解析 设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 2116+y 214=1, ①x 2216+y224=1, ②由①-②,得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0,因⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2,所以y 1-y 2x 1-x 2=-4(x 1+x 2)16(y 1+y 2)=-14,所以所求直线方程为y -1=-14(x -1),即x +4y -5=0.4.点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________. 答案 83解析 |PF 1|+|PF 2|=10,|F 1F 2|=6,21F PF S ∆=12(|PF 1|+|PF 2|+|F 1F 2|)·1=8=12|F 1F 2|·y P =3y P .所以y P =83. 5.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________. 答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|, |PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点, 此时|PM |-|PF 2|取最大值|MF 2|, 故|PM |+|PF 1|的最大值为 10+|MF 2|=10+(6-3)2+42=15.6.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32).(1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,满足P A →·PB →=PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由. 解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎨⎧1a 2+94b2=1,c a =12,a 2=b 2+c 2,解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k 1(x -2)+1,代入椭圆C 的方程得,(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0. 因为直线l 1与椭圆C 相交于不同的两点A ,B , 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)·(16k 21-16k 1-8)=32(6k 1+3)>0, 所以k 1>-12.又x 1+x 2=8k 1(2k 1-1)3+4k 21,x 1x 2=16k 21-16k 1-83+4k 21,因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54,所以(x 1-2)(x 2-2)(1+k 21)=PM →2=54. 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以[16k 21-16k 1-83+4k 21-2·8k 1(2k 1-1)3+4k 21+4]·(1+k 21)=4+4k 213+4k 21=54,解得k 1=±12. 因为k 1>-12,所以k 1=12.于是存在直线l1满足条件,其方程为y=12x.。
第九章算法初步、统计与统计案例、概率第一节算法的概念与程序框图1.算法具有确切性,其确切性是指( )A.算法一定包含输入、输出B.算法的每个步骤是具体的、可操作的C.算法的步骤是有限的D.以上说法都不正确答案:B2.(2013·北京卷)执行如图所示的程序框图,输出的S值为( )A .1 B.23 C.1321 D.610987解析:执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2,退出循环体,输出S 的值为1321.答案:C3.(2013·石家庄模拟)已知流程图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填( )A.2 B.3 C.5 D.7解析:当a=1时,进入循环,此时b=21=2;当a=2时,再进入循环,此时b=22=4;当a=3时,再进入循环,此时b=24=16,所以当a=4时,应跳出循环,得循环满足的条件为a≤3,故选B.答案:B4.(2012·合肥模拟)如上图所示,该程序框图所输出的结果是( )A.32 B.62 C.63 D.64答案:D5.(2012·东北三校联考)如图,若依次输入的x 分别为56π,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定解析:由程序框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin 5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=32,所以y 1<y 2.故选C.答案:C6.(2013·福建卷)阅读如图所示的程序框图,若输入的k =10,则该算法的功能是( )A.计算数列{2n-1}的前10项和B.计算数列{2n-1}的前9项和C.计算数列{2n-1}的前10项和D.计算数列{2n-1}的前9项和解析:第一次循环:S=1,i=2,i<10;第二次循环:S=3,i=3,i<10;第三次循环:S=7,i=4,i<10……第九次循环:S=29-1,i=10,i=10.第十次循环:S=210-1,i=11,i>10,输出S.根据选项,S=-2101-2,故为数列{2n-1}的前10项和.故选A.答案:A7.(2013·重庆卷)执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是( )A.k≤6 B.k≤7 C.k≤8 D.k≤9解析:当k =2时,s =log 23,当k =3时,s =log 23·log 34,当k =4时,s =log 23·log 34·log 45.由s =3,得lg 3lg 2×lg 4lg 3×lg 5lg 4×…×k +lg k=3,即lg(k +1)=3lg 2,所以k =7.再循环时,k =7+1=8,此时输出s ,因此判断框内应填入“k ≤7”.故选B.答案:B8.(2013·浙江卷)若某程序框图如上页图所示,则该程序运行后输出的值等于________.解析:当k =5时,输出S .此时,S =1+11×2+12×3+13×4+14×5=1+1-12+12-13+13-14+14-15=2-15=95.答案:959.(2012·德阳模拟)下图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图.已知图甲中从左向右第一组的频数为4 000.在样本中记月收入在[)1 000,1 500,[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4 000]的人数依次为A 1,A 2,…,A 6.图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,则样本的容量n =________ ;图乙输出的S =__________(用数字作答).解析:∵月收入在[1 000,1 500)的频率为0.000 8×500=0.4,且有4 000人,∴样本的容量n =4 0000.4=10 000,由图乙知输出的S =A 2+A 3+…+A 6=10 000-4 000=6 000.答案:10 000 6 00010.(2013·南京二模)如图是一个算法流程图,其输出的n 值是________. 解析:程序运行如下:第一次循环:S =1+3=4,n =2; 第二次循环:S =1+3+6=10,n =3; 第三次循环:S =1+3+6+9=19,n =4; 第四次循环:S =1+3+6+9+12=31,n =5; 此时S =31>20,故退出循环体,输出n =5. 答案:511.(2013·韶关二模)执行如图的程序框图,若p =4,则输出的S =________.解析:根据流程图所示的顺序可知:该程序的作用是计算S =12+14+18+…+12p .因为S =12+14+18+…+12p =1-12p .所以p =4.所以S =1516.答案:1516次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的某个数组是(t,-6),则t=________________;(2)程序结束时,共输出(x,y)的组数为__________.解析:(1)按框图,x是公比为3的等比数列的项,y是公差为-2的等差数列的项,当y=-6时,为第4项,这时x是等比数列的第4项,即t=27.(2)n是公差为2的等差数列的项,当n>2 012时,最大的项数为1 006,即输出(x,y)共1 006组.答案:(1)27 (2)1 00613.下图是某算法的程序框图,则程序运行后输出的结果是________.解析:第一次,s=0+(-1)1+1=0,n=2;第二次,s=0+(-1)2+2=3,n=3;第三次,s=3+(-1)3+3=5,n=4;第四次,s=5+(-1)4+4=10>9,终止循环,输出结果10.答案:1014.执行下图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是________.解析:把l=2,m=3,n=5代入y=70l+21m+15n得y=278,此时y=278>105,第一次循环y=278-105=173,此时y=173>105,再循环,y=173-105=68<105,输出68,结束循环.答案:68。
【金版学案】2015届高考数学总复习基础知识名师讲义第九章第一节算法的概念与程序框图文近三年广东高考中对本章考点考查的情况回归分析、统计案例与独立性检验、古典概型和几何概型.1.近几年的高考试卷中,算法是必考的内容,主要以程序框图的形式出现,而程序框图主要考查条件结构和循环结构.要求学生能读懂程序框图及框图符号的含义,明白执行框图输出结果是什么,会用程序框图表示算法.考查多是基础题,难度不大,预计高考会继续在选择或填空题中考查程序框图的输出结果、判断条件和程序功能.2.对于统计与统计案例,了解三种抽样方法,重点关注分层抽样;会用频率分布直方图和茎叶图对样本数据进行分析,从而估计总体的数字特征;会求线性回归方程,会用2×2列联表进行独立性检验.该内容高考要求较低,预计高考仍会以选择题或填空题的方式进行考查,难度较低,也可能将概率与统计相结合以解答题的形式进行考查,重点考查概率的求法、统计的基本方法以及概率统计在实际问题中的应用.1.对算法初步的复习建议:由于试题主要考查程序框图和基本算法语句,复习该部分时要抓住如下要点:一是程序框图的三种基本逻辑结构,弄清三种基本逻辑结构的功能和使用方法,结合具体题目掌握好一些常见计算问题的程序框图题,如数列求和,累加、累乘等程序框图;二是理解基本算法语句,搞清楚条件语句与条件结构的对应关系,循环语句与循环结构的对应关系等.2.对统计与统计案例和概率的复习建议:(1)合理选用三种抽样方法,在三种抽样中,简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法是建立在它的基础上的,三种抽样方法的共同点:它们都是等概率抽样,体现了抽样的公平性;三种抽样方法各有其特点和适用范围,在抽样实践中要根据具体情况选用相应的抽样方法.(2)正确运用频率分布条形图和直方图,由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体分布,一般地,样本容量越大,估计越精确.要求会作、会用频率分布条形图和直方图.(3)掌握分析两个变量相关关系的常用方法,一是利用散点图进行判断:把样本数据表示的点在平面直角坐标系中作出,从而得到散点图,如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系;二是利用相关系数r进行判断:|r|≤1而且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.(4)掌握独立性检验的一般步骤:①根据样本数据制成2×2列联表.②根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d),计算K2的值.③比较K2与临界值的大小关系作统计推断.————————————————————————————————————————————————第一节算法的概念与程序框图1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.知识梳理一、算法的含义现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成.广义的算法是指做某一件事的步骤或程序.二、算法特点具有概括性、确切性、有限性、不唯一性、普遍性.具体地说,概括性是指能解决一类问题;确切性是指每一步操作的内容和顺序必须是明确的;有限性是指必须在有限步内结束并返回一个结果;不唯一性是指一个问题可以有多个算法,算法有优劣之分;普遍性是指很多具体的问题,都可以设计合理的算法去解决.三、程序框图程序框图又称流程图,是一种用确定的图形、指向线及文字说明来准确、直观地表示算法的图形.基础自测1.某程序框图如下图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1xC .f (x )=e xD .f (x )=sin x解析:由程序框图可知输出的函数为奇函数且有零点,只有f (x )=sin x 满足. 答案:D程序框 名称 功能终端框(起止框) 表示一个算法的起始和结束输入、输出框 表示一个算法输入和输出的信息处理框(执行框) 赋值、计算判断框判断一个条件是否成立流程线 连接程序框成立时标明“否”或“N ”.四、算法的三种基本逻辑结构和框图表示 顺序结构 条件结构 循环结构程序 框图结构说明按照语句的先后顺序,从上而下依次执行这些语句.不具备控制流程的作用.是任何一个算法都离不开的基本结构 根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支从某处开始,按照一定的条件,反复执行某一处理步骤的情况.用来处理一些反复进行操作的问题当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.两种循环语句的语句结构及框图如下:说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.2.(2013·广东卷)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2 C.4 D.7解析:程序运行过程如下:第一步:s=1+(1-1)=1,i=1+1=2,2≤3;第二步:s=1+(2-1)=2,i=2+1=3,3=3;第三步:s=2+(3-1)=4,i=3+1=4,4>3;终止循环,输出s=4.故选C.答案:C3.(2013·湖南卷)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________.解析:程序运行过程如下:第一步:a=1+2=3;第二步:a=3+2=5;第三步:a=5+2=7;第四步:a=7+2=9.此时9>8,结束循环,所以输出的a值为9.答案:94.按下图所示的程序框图运算,若输入x=8,则输出k=____________;若输出k=2,则输入x的取值范围是____________.答案:(28,57]1.(2013·辽宁卷)执行如图所示的程序框图,若输入n =8,则输出S 等于( ) A.49 B.67 C.89 D.1011解析:第一次循环:S =13,i =4;第二次循环:S =25,i =6;第三次循环:S =37,i =8;第四次循环:S =49,i =10;答案:A2.(2013·新课标全国Ⅰ卷)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ) A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5]解析:由程序框图知: s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1. ①当-1≤t <1时,-3≤s <3;②当1≤t ≤3时,s =-(t -2)2+4∈[3,4], 由①②知,s ∈[-3,4].故选A . 答案:A1.(2013·茂名一模)某程序框图如图所示,该程序运行后,输出的x 值为31,则a 等于( )A .0B .1C .2D .3解析:程序在运行过程中各变量的值如下表示: n x 是否继续循环 第一圈 2 2a +1 是 第二圈 3 4a +2+1 是 第三圈 4 8a +4+2+1 否则输出的结果为8 a +4+2+1=31,所以a =3.故选D. 答案:D2.(2013·徐州一模)如图是一个算法的流程图,若输入n 的值是10,则输出S 的值是________.解析:根据流程图所示的顺序可知:该程序的作用是输出满足条件n<2时,S=10+9+8+…+2的值.因为S=10+9+8+…+2=54,故输出54.答案:54。
§9.6双曲线1.双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a、b、c的关系c2=a2+b2 (c>a>0,c>b>0)1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线为共轭双曲线).( √ )2.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5B.5C. 2D.2答案 A解析 焦点(c,0)到渐近线y =ba x 的距离为bc a 2+b 2=2a ,解得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2,∴离心率e =ca= 5.3.(2013·福建)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( ) A.25B.45C.255D.455答案 C解析 双曲线的顶点(2,0)到渐近线y =±12x 的距离d =25=255.4.(2012·天津)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有共同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1.由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.5.(2012·辽宁)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 答案 2 3解析 设P 在双曲线的右支上,|PF 2|=x (x >0),|PF 1|=2+x ,因为PF 1⊥PF 2,所以(x +2)2+x 2=(2c )2=8,所以x =3-1,x +2=3+1, 所以|PF 2|+|PF 1|=2 3.题型一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为__________. (3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.思维启迪 设双曲线方程为x 2a 2-y 2b 2=1,求双曲线方程,即求a 、b ,为此需要关于a 、b 的两个方程,由题意易得关于a 、b 的两个方程;也可根据双曲线的定义直接确定a 、b 、c ;根据双曲线的定义求轨迹方程.(注意条件) 答案 (1)x 24-y 23=1 (2)y 22-x 24=1(3)x 2-y 28=1(x ≤-1) 解析 (1)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274, 所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y 23=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k ,将点(2,-2)代入得k =222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.(3)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B . 根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于|C 1C 2|.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8. 故点M 的轨迹方程为x 2-y 28=1(x ≤-1). 思维升华 求双曲线的标准方程的基本方法是定义法和待定系数法.待定系数法具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为x 2a 2-y 2b 2=λ (λ≠0),再由条件求出λ的值即可.利用定义时,要特别注意条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支.(1)(2012·湖南)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1 答案 (1)A (2)A解析 (1)根据双曲线标准方程中系数之间的关系求解. ∵x 2a 2-y 2b2=1的焦距为10,∴c =5=a 2+b 2.①又双曲线渐近线方程为y =±ba x ,且P (2,1)在渐近线上,∴2ba=1,即a =2b .②由①②解得a =25,b =5,则C 的方程为x 220-y 25=1,故应选A.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知:a =4,b =3. 故曲线C 2的标准方程为x 242-y 232=1.题型二 双曲线的几何性质例2 (1)(2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边 形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62(2)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A.[3-23,+∞)B.[3+23,+∞)C.[-74,+∞)D.[74,+∞) 思维启迪 (1)求圆锥曲线的离心率e ,可以求出a ,c 的关系式,进而求出e .(2)在圆锥曲线中求某一量的值或范围,一定要注意圆锥曲线本身的x ,y 的取值范围. 答案 (1)D (2)B解析 (1)|F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b 2=1.∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a , ∴|AF 2|=2+a ,|AF 1|=2-a . 在Rt △F 1AF 2中,∠F 1AF 2=90°, ∴|AF 1|2+|AF 2|2=|F 1F 2|2, 即(2-a )2+(2+a )2=(23)2, ∴a =2,∴e =c a =32=62.故选D.(2)由条件知a 2+1=22=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1,设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ), ∵y 2=x 23-1, ∴OP →·FP →=x 2+2x +y 2=x 2+2x +x 23-1 =43x 2+2x -1=43(x +34)2-74. 又∵x ≥3(P 为右支上任意一点), ∴OP →·FP →≥3+2 3.故选B.思维升华 在研究双曲线的性质时,半实轴、半虚轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e =c a 是一个比值,故只需根据条件得到关于a 、b 、c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形求e ,并且需注意e >1.同时注意双曲线方程中x ,y 的范围问题.(1)(2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( )A. 2B. 3C.2D. 5答案 (1)C (2)C解析 (1)由e =c a =52知,a =2k ,c =5k (k ∈R +),由b 2=c 2-a 2=k 2知b =k .所以b a =12.即渐近线方程为y =±12x .故选C.(2)如图,∵FB →=2F A →, ∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2.题型三 直线与双曲线的位置关系例3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 思维启迪 本题主要考查直线与双曲线的位置关系,解题关键是联立方程用根与系数的关系求解.解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0.∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0,解得-2<k <2且k ≠±1.双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2). (2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0.∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时, S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|;当A ,B 在双曲线的两支上且x 1>x 2时, S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|.∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2,即(-2k1-k 2)2+81-k 2=8,解得k =0或k =±62.又∵-2<k <2,且k ≠±1,∴当k =0或k =±62时,△AOB 的面积为 2.思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围. 解 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A )、B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得,(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A+x B=62k1-3k2<0,x A x B=-91-3k2>0,解得33<k <1. ∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2, ∴y A +y B =(kx A +2)+(kx B +2) =k (x A +x B )+22=221-3k 2.∴AB 的中点P 的坐标为(32k 1-3k 2,21-3k 2).设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-2 2.∴m 的取值范围为(-∞,-22).忽视“判别式”致误典例:(12分)已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?易错分析 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判别式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误.规范解答解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.[2分]设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .[3分]由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0 (2-k 2≠0).① [6分] ∴x 0=x 1+x 22=k (1-k )2-k 2. 由题意,得k (1-k )2-k 2=1,解得k =2.[8分] 当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.[11分]∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.[12分]温馨提醒 (1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB 的斜率,进而求方程;也可以设斜率k ,利用待定系数法求方程.(3)求得的方程是否符合要求,一定要注意检验.方法与技巧1.与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b2=t (t ≠0). 2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两条渐近线方程.失误与防范1.区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b2.2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1 (a >0,b >0)的渐近线方程是y =±a bx . 4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.A 组 专项基础训练(时间:40分钟)一、选择题1.(2013·北京)若双曲线x 2a 2-y 2b 2=1的离心率为3,则其渐近线方程为 ( )A.y =±2xB.y =±2xC.y =±12x D.y =±22x 答案 B解析 由e =3,知c =3a ,得b =2a .∴渐近线方程为y =±b ax ,y =±2x . 2.(2013·湖北)已知0<θ<π4 ,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( ) A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等 答案 D解析 双曲线C 1:e 21=sin 2θ+cos 2θcos 2θ=1cos 2θ, 双曲线C 2:e 22=sin 2θ+sin 2θtan 2θsin 2θ=1+tan 2θ=1cos 2θ, ∴C 1,C 2离心率相等.3.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3C.2D.3 答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为l :x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3.4.以椭圆x 2169+y 2144=1的右焦点为圆心,且与双曲线x 29-y 216=1的渐近线相切的圆的方程是 ( )A.x 2+y 2-10x +9=0B.x 2+y 2-10x -9=0C.x 2+y 2+10x +9=0D.x 2+y 2+10x -9=0答案 A解析 由于右焦点(5,0)到渐近线4x -3y =0的距离d =205=4, 所以所求的圆是圆心坐标为(5,0),半径为4的圆.即圆的方程为x 2+y 2-10x +9=0.5.已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( ) A.(1,+∞)B.(1,2)C.(1,1+2)D.(2,1+2)答案 B解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0), 因为△ABE 是锐角三角形,所以EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a )·(-c -a ,-b 2a)>0, 整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0,∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2),故选B.二、填空题6.已知双曲线的渐近线方程为x ±2y =0,且双曲线过点M (4,3),则双曲线的方程为________.答案 x 24-y 2=1 解析 ∵双曲线过点M (4,3),M 在y =x 2下方, ∴双曲线焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,又b a =12, 因此设a =2k ,b =k (k >0),∴x 24k 2-y 2k 2=1,代入M (4,3)解得k =1,a =2,b =1,∴方程为x 24-y 2=1. 7.已知双曲线x 2n -y 212-n=1的离心率是3,则n =________. 答案 4解析 根据双曲线方程得n (12-n )>0,∴0<n <12,∴a 2=n ,b 2=12-n ,c 2=a 2+b 2=12,则双曲线的离心率e =c a =12n=3,∴n =4. 8.(2013·湖南)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.答案 3解析 不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又∵|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,由正弦定理得,∠PF 2F 1=90°,∴|F 1F 2|=23a ,∴双曲线C 的离心率e =23a 2a= 3. 三、解答题9.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上;(3)在(2)的条件下求△F 1MF 2的面积. (1)解 ∵离心率e =2,∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,可得λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上,∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0),∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=9-12+3=0,∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上.(3)解 21MF F S =12×43×|m |=6.10.直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解 (1)将直线l 的方程y =kx +1代入双曲线C 的方程2x 2-y 2=1后,整理得(k 2-2)x 2+2kx +2=0. ① 依题意,直线l 与双曲线C 的右支交于不同两点,故⎩⎪⎨⎪⎧ k 2-2≠0,Δ=(2k )2-8(k 2-2)>0,-2kk 2-2>0,2k 2-2>0.解得k 的取值范围是-2<k <- 2.(2)设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则由①式得⎩⎪⎨⎪⎧x 1+x 2=2k2-k 2,x 1·x 2=2k 2-2.② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由F A ⊥FB 得:(x 1-c )(x 2-c )+y 1y 2=0.即(x 1-c )(x 2-c )+(kx 1+1)(kx 2+1)=0.整理得(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0. ③把②式及c =62代入③式化简得5k 2+26k -6=0.解得k =-6+65或k =6-65∉(-2,-2)(舍去),可知存在k =-6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点.B 组 专项能力提升(时间:30分钟)1.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. 2B. 3C.3+12D.5+12答案 D解析 设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),如图所示,双曲线 的一条渐近线方程为y =b a x ,而k BF =-b c , ∴b a ·(-b c)=-1, 整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),故选D. 2.(2013·重庆)设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤233,2 B.⎣⎡⎭⎫233,2 C.⎝⎛⎭⎫233,+∞ D.⎣⎡⎭⎫233,+∞ 答案 A解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30°且小于等于60°,即tan 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2,故选A.3.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( ) A.4+2 3 B.3-1 C.3+12 D.3+1答案 D解析 因为MF 1的中点P 在双曲线上,|PF 2|-|PF 1|=2a ,△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a ,所以e =c a =23-1=3+1,故选D. 4.(2013·辽宁)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,得|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.5.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a . 在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2. 要求e 的最大值,即求cos ∠F 1PF 2的最小值,∴当cos ∠F 1PF 2=-1时,得e =53, 即e 的最大值为53.6.已知离心率为45的椭圆的中心在原点,焦点在x 轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234.(1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A 、B ,在第二象限内取双曲线上一点P ,连接BP 交椭圆于点M ,连接P A 并延长交椭圆于点N ,若BM →=MP →,求四边形ANBM 的面积.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则根据题意知双曲线的方程为x 2a 2-y 2b 2=1 且满足⎩⎨⎧ a 2-b 2a =45,2a 2+b 2=234,解方程组得⎩⎪⎨⎪⎧a 2=25,b 2=9. ∴椭圆的方程为x 225+y 29=1,双曲线的方程为x 225-y 29=1. (2)由(1)得A (-5,0),B (5,0),|AB |=10,设M (x 0,y 0),则由BM →=MP →得M 为BP 的中点,所以P 点坐标为(2x 0-5,2y 0).将M 、P 坐标代入椭圆和双曲线方程, 得⎩⎪⎨⎪⎧ x 2025+y 209=1,(2x 0-5)225-4y 209=1,消去y 0,得2x 20-5x 0-25=0.解之,得x 0=-52或x 0=5(舍去).∴y 0=332. 由此可得M (-52,332),∴P (-10,33). 当P 为(-10,33)时,直线P A 的方程是y =33-10+5(x +5),即y =-335(x +5),代入x 225+y 29=1, 得2x 2+15x +25=0.所以x =-52或-5(舍去), ∴x N =-52,x N =x M ,MN ⊥x 轴. ∴S 四边形ANBM =2S △AMB =2×12×10×332=15 3.。
【金版学案】2015届高考数学总复习基础知识名师讲义第一章第一节集合的概念与运算文近三年广东高考中对本章考点考查的情况年份题号赋分所考查的知识点201125以直线、圆为背景,求交集的元素的个数45以集合表示函数的定义域201225集合的补集的运算105以向量为背景的集合新定义问题2114求集合的交集、分类讨论201315解一元二次方程,求集合的交集105以向量为背景的含有量词的命题真假的判断本章主要包括两个内容:集合、常用逻辑用语.1.集合主要包含两部分:集合的含义与表示以及集合的运算.(1)对于集合的概念问题,学生在解题过程中易忽视集合的互异性,学会检验是处理此类问题最好的方法.(2)研究元素与集合的关系,主要有两点:一是元素与集合的从属关系,二是集合与集合的包含关系.某个集合在另一个集合中,也可以为元素.此外,在处理两个集合之间的关系时,需时刻关注对空集的讨论,防止漏解.(3)对于集合的运算,应充分利用数轴、V enn图的直观性来帮助解题.此外,在解题中融入分类讨论、数形结合等思想方法.2.常用逻辑用语主要包含三部分:命题及命题的四种形式、充要条件、量词.(1)在判断四种命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系,要注意四种命题关系的相对性,一个命题定为原命题,也就相应地有了它的“逆命题”、“否命题”和“逆否命题”.(2)有关充要条件的证明必须分“充分性”和“必要性”两个环节分别进行推理论证,证明时易出现充分性与必要性概念混淆的情形,因此证明时必须依“定义”弄清楚.第一章集合与常用逻辑用语(3)逻辑联结词“或”、“且”、“非”与集合中的并集、交集、补集有着密切的关系,要注意类比.其中对逻辑联结词“或”的理解是难点.(4)全(特)称命题的否定与命题的否定有区别,全(特)称命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定;而命题的否定则是直接否定结论即可.从近几年的高考题来看,常以逻辑联结词“或”、“且”、“非”为工具,考查函数、不等式、数列、立体几何、解析几何等知识.预测高考仍以选择题、填空题为主要考查题型,难度以容易题为主,以基本概念、基本方法为考查对象,以函数、不等式、三角、立体几何、解析几何等知识为依托,重点考查集合的运算,全称命题与特称命题的否定,判断特称命题、全称命题的真假,确定充分(或必要)条件等内容.本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.3.要注意逻辑联结词“或”、“且”、“非”与集合中的“并”、“交”、“补”是相关的,二者相互对照可加深对双方的认识和理解.4.复习常用逻辑用语知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握常用逻辑知识的目的.要突出常用逻辑用语的工具性作用,从概念入手,根据有关的符号、术语、关系、条件,结合实际问题进行逻辑推理,重点是命题的相互关系,全称量词、存在量词及其否定,确定命题成立的充分或必要条件.复习应侧重于以下几点:(1)能写出已知命题的四种形式,会根据命题的相互关系判断充分(或必要)条件、充要条件.(2)了解简单逻辑联结词,能用数学符号表示命题,并能根据简单命题的真假判定含有逻辑联结词的命题的真假.(3)理解全称量词、存在量词及其关系,能区分否命题与命题的否定的不同.5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.第一节集合的概念与运算1.集合的含义与表示:(1)了解集合的含义、元素与集合的从属关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系:(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中了解全集与空集的含义.3.集合的基本运算:(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.知识梳理一、集合的含义与表示方法1.集合的含义:把研究的对象统称为________,把一些元素组成的总体叫做________.2.集合元素的性质:________、________、________.3.元素与集合的关系:①属于,记为________;②不属于,记为________.4.集合的表示方法:________、________和________.5.常用数集的记号:空集________,正整数集________,自然数集________,整数集________,有理数集________,实数集________,复数集________.二、集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的________都是集合B的元素x∈A⇒x∈B A⊆B或______真子集集合A是集合B的子集,但集合B中____有一个元素不属于AA⊆B,∃x0∈B,x0∉A ________或B A相等集合A,B的元素完全____A⊆B,B⊆A⇒A=B ________空集______任何元素的集合.空集是任何集合A的______∀x,x∉∅,∅⊆A ∅三、集合的基本运算表示运算文字语言符号语言图形语言记法交集属于A____属于B的元素组成的集合{x|x∈A____x∈B}______并集属于A____属于B的元素组成的集合{x|x∈A____x∈B}______补集全集U中____属于A的元素组成的集合{x|x∈U,x____A} ______一、1.元素集合 2.确定性无序性互异性 3.∈∉ 4.列举法描述法自然语言法 5.∅N*N Z Q R C二、任意一个元素B⊇A至少A B相同A=B不含子集三、且且A∩B或或A∪B不∉∁U A,基础自测1.(2013·广东卷)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析:S={-2,0},T={0,2},所以S∩T={0}.故选A.答案:A2.(2013·北京东城区模拟)设全集U=R,A={x|-x2-3x>0},B={x|x<-1},则图中阴影部分表示的集合为()A.{x|x>0} B.{x|-3<x<-1}C.{x|-3<x<0} D.{x|x<-1}解析:依题意,得集合A={x|-3<x<0},所求的集合即为A∩B,所以图中阴影部分表示的集合为{x|-3<x<-1}.故选B.答案:B3.(2013·福建卷)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3C.4 D.16解析:因为A∩B={1,3},有2个元素,所以子集个数为22=4个.答案:C4.(2012·广州一模)已知集合A={x|1≤x≤2},B={x||x-a|≤1},若A∩B=A,则实数a的取值范围为______________.解析:化简得B={x|a-1≤x≤1+a}.∵A∩B=A,∴A⊆B.∴a-1≤1且1+a≥2.解得1≤a≤2.答案:[1,2]1.(2013·重庆卷)已知集合U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=() A.{1,3,4} B.{3,4}C.{3} D.{4}解析:因为A∪B={1,2,3},全集U={1,2,3,4},所以∁U(A∪B)={4},故选D.答案:D2.(2013·上海卷)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞),解析:对集合A 讨论后,根据A 与B 的关系利用数轴可知,⎩⎪⎨⎪⎧ a ≥1,a -1≤1或⎩⎪⎨⎪⎧a ≤1,a -1≤a ,解得a ≤2 ,故选B.答案:B1.(2013·增城下学期调研)设集合U ={x |x 是小于9的正整数},集合A ={1,2,3},集合B ={3,4,5,6},则(∁U A )∩(∁U B )=( )A .{3}B .{7,8}C .{4,5,6,7,8}D .{1,2,7,8}解析:U ={1,2,3,4,5,6,7,8},∁U A ={4,5,6,7,8},∁U B ={1,2,7,8},所以(∁U A )∩(∁U B )={7,8}.故选B.答案:B2. (2013·广州模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N-M ),设A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,B ={x |x <0},则A ⊕B =( )A.⎝⎛⎦⎤-94,0B.⎣⎡⎭⎫-94,0C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析:因为A -B ={x |x ≥0},B -A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-94,所以A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <-94或x ≥0. 答案:C。
§9.1 直线的方程1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. ②倾斜角的范围为[0°,180°). (2)直线的斜率①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内的直线都适用3.过P 1(x 11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.4.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x22y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置. ( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率. ( × ) (3)直线的倾斜角越大,其斜率就越大. ( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × ) (6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示. ( × ) (7)不经过原点的直线都可以用x a +yb=1表示.( × )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ ) 2.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过一、二、四象限,不经过第三象限.3.若直线斜率的绝对值等于1,则直线的倾斜角为________________________________. 答案 45°或135°解析 由|k |=|tan α|=1,知:k =tan α=1或k =tan α=-1.又倾斜角α∈[0°,180°),∴α=45°或135°.4.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为____________. 答案 ⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析 直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 又∵α∈[0,π),∴α∈⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π. 5.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 答案 x +y +1=0或4x +3y =0 解析 ①若直线过原点,则k =-43,∴y =-43x ,即4x +3y =0.②若直线不过原点.设x a +ya =1,即x +y =a .∴a =3+(-4)=-1,∴x +y +1=0.题型一 直线的倾斜角与斜率例1 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.思维启迪 本题考查斜率求解公式以及k 与α的函数关系,解题关键是在求倾斜角时要对其分锐角、钝角的讨论. 答案 [-1,1] [0,π4]∪[3π4,π)解析 如图所示,结合图形:为使l 与线段AB 总有公共点,则 k P A ≤k ≤k PB ,而k PB >0,k P A <0,故k <0时,倾斜角α为钝角,k =0时, α=0,k >0时,α为锐角.又k P A =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴-1≤k ≤1. 又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈[0,π4]∪[3π4,π).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).(1)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B.-13C.-32D.23(2)直线x cos α+3y +2=0的倾斜角的范围是( )A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6D.⎣⎡⎦⎤π6,5π6答案 (1)B (2)B解析 (1)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.(2)由x cos α+3y +2=0得直线斜率k =-33cos α. ∵-1≤cos α≤1,∴-33≤k ≤33.设直线的倾斜角为θ,则-33≤tan θ≤33. 结合正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的图象可知, 0≤θ≤π6或5π6≤θ<π.题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.思维启迪 本题考查直线方程的三种形式,解题关键在于设出正确的方程形式. 解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)设直线l 在x 、y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.题型三 直线方程的综合应用例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 思维启迪 先求出AB 所在的直线方程,再求出A ,B 两点的坐标,表示出△ABO 的面积,然后利用相关的数学知识求最值. 解 方法一 设直线方程为x a +yb =1 (a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=01-y =0,解得⎩⎪⎨⎪⎧x =-2y =1, ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-21+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.(3)解 由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧-1+2kk <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.分类讨论思想在求直线方程中的应用典例:(5分)与点M (4,3)的距离为5,且在两坐标轴上的截距相等的直线方程为________.思维启迪 解答本题应抓住直线在两坐标轴上的截距相等,分类设出直线的方程求解. 解析 当截距不为0时,设所求直线方程为x a +ya =1,即x +y -a =0,∵点M (4,3)与所求直线的距离为5, ∴|4+3-a |2=5,∴a =7±5 2.∴所求直线方程为x +y -7-5 2 =0或x +y -7+52=0.当截距为0时,设所求直线方程为y =kx ,即kx -y =0. 同理可得|4k -3|1+k 2=5,∴k =-43.∴所求直线方程为y =-43x ,即4x +3y =0.综上所述,所求直线方程为x +y -7-52=0或x +y -7+52=0或4x +3y =0. 答案 x +y -7-52=0或x +y -7+52=0或4x +3y =0 温馨提醒 在选用直线方程时常易忽视的情况有 (1)选用点斜式与斜截式时忽视斜率不存在的情况; (2)选用截距式时,忽视截距为零的情况; (3)选用两点式时忽视与坐标轴垂直的情况.方法与技巧1.要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割, 牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.A 组 专项基础训练 (时间:40分钟)一、选择题1.如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A.k 1<k 2<k 3 B.k 3<k 1<k 2 C.k 3<k 2<k 1D.k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A.1B.-1C.-2或-1D.-2或1答案 D解析 由题意得a +2=a +2a,∴a =-2或a =1.3.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A. 3B.- 3C.0D.1+ 3答案 A解析直线PQ的斜率为-3,则直线PQ的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.4.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )答案 A解析 化为截距式x a +y -b =1,x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.5.设直线l 的方程为x +y cos θ+3=0 (θ∈R ),则直线l 的倾斜角α的范围是 ( )A.[0,π)B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4答案 C解析 当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ. ∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π), ∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.综上知,倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C. 二、填空题6.直线l 与两直线y =1,x -y -7=0分别交于P 、Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________. 答案 -23解析 设P (m,1),则Q (2-m ,-3),∴(2-m )+3-7=0,∴m =-2,∴P (-2,1), ∴k =1+1-2-1=-23.7.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________. 答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-a a +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是(-∞,-12)∪(0,+∞).8.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 三、解答题9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4);(2)斜率为16.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫-4k -3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是 y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b·b|=6,∴b=±1.∴直线l的方程为x-6y+6=0或x-6y-6=0.10.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0) 作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落 在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.B 组 专项能力提升 (时间:25分钟)1.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( )A.-13B.-3C.13D.3答案 A解析 结合图形可知选A.2.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3D.⎝⎛⎭⎫-12,-3答案 D解析 ∵(2x +1)-m (y +3)=0恒成立,∴2x +1=0,y +3=0,∴x =-12,y =-3,定点为(-12,-3).3.经过点P (1,4)的直线的两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A.x +2y -6=0B.2x +y -6=0C.x -2y +7=0D.x -2y -7=0答案 B解析 方法一 直线过点P (1,4),代入选项,排除A 、D , 又在两坐标轴上的截距均为正,排除C.方法二 设所求直线方程为x a +yb =1(a >0,b >0),将(1,4)代入得1a +4b=1,a +b =(a +b )(1a +4b )=5+(b a +4ab)≥9,当且仅当b =2a ,即a =3,b =6时,截距之和最小, ∴直线方程为x 3+y6=1,即2x +y -6=0.4.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 答案 3解析 直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.5.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小 值和最大值.∴b 的取值范围是[-2,2].6.直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点. (1)当|P A |·|PB |最小时,求l 的方程; (2)当|OA |+|OB |最小时,求l 的方程. 解 依题意,l 的斜率存在,且斜率为负. 设l :y -4=k (x -1)(k <0).令y =0,可得A (1-4k ,0);令x =0,可得B (0,4-k ).(1)|P A |·|PB |=(4k)2+16·1+k 2 =-4k (1+k 2)=-4(1k +k )≥8.(注意k <0)∴当且仅当1k =k 且k <0即k =-1时,|P A |·|PB |取最小值.这时l 的方程为x +y -5=0. (2)|OA |+|OB |=(1-4k )+(4-k )=5-(k +4k )≥9.∴当且仅当k =4k 且k <0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.。
第九章算法初步、统计与统计案例
总体、回归分析、统计案例与独立性检验.
1.近几年的高考试卷中,算法是必考的内容,主要以程序框图的形式出现,而程序框图主要考查条件结构和循环结构.要求学生能读懂程序框图及框图符号的含义,明白执行框图输出结果是什么,会用程序框图表示算法.考查多是基础题,难度不大,预计高考会继续在选择或填空题中考查程序框图的输出结果、判断条件和程序功能.
2.对于统计与统计案例,了解三种抽样方法,重点关注分层抽样;会用频率分布直方图和茎叶图对样本数据进行分析,从而估计总体的数字特征;会求线性回归方程,会用2×2列联表进行独立性检验.该内容高考要求较低,预计高考仍会以选择题或填空题的方式进行考查,难度较低,也可能在综合解答题中作为试题的一小部分进行考查,重点考查统计的基本方法以及在实际问题中的应用.
1.对算法初步的复习建议:由于试题主要考查程序框图和基本算法语句,复习该部分时要抓住如下要点:一是程序框图的三种基本逻辑结构,弄清三种基本逻辑结构的功能和使用方法,结合具体题目掌握好一些常见计算问题的程序框图题,如数列求和,累加、累乘等程序框图;二是理解基本算法语句,搞清楚条件语句与条件结构的对应关系,循环语句与循环结构的对应关系等.
2.对统计与统计案例的复习建议:
(1)合理选用三种抽样方法,在三种抽样中,简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法是建立在它的基础上的,三种抽样方法的共同点:它们都是等概率抽样,体现了抽样的公平性;三种抽样方法各有其特点和适用范围,在抽样实践中要根据具体
情况选用相应的抽样方法.
(2)正确运用频率分布条形图和直方图,由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体分布,一般地,样本容量越大,估计越精确.要求会作、会用频率分布条形图和直方图.
(3)掌握分析两个变量相关关系的常用方法,一是利用散点图进行判断:把样本数据表示的点在平面直角坐标系中作出,从而得到散点图,如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系;二是利用相关系数r 进行判断:|r |≤1而且|r |越接近于1,相关程度越大;|r |越接近于0,相关程度越小.
(4)掌握独立性检验的一般步骤: ①根据样本数据制成2×2列联表.
②根据公式K 2=n ad -bc 2a +b a +c b +d c +d
,计算K 2
的值.
③比较K2与临界值的大小关系作统计推断.第一节 算法的概念与程序框图 第九章 算法初步、统计与统计
案
知识梳理 一、算法的含义
现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成.广义的算法是指做某一件事的步骤或程序.
二、算法特点
具有概括性、确切性、有限性、不唯一性、普遍性.具体地说,概括性是指能解决一类问题;确切性是指每一步操作的内容和顺序必须是明确的;有限性是指必须在有限步内结束并返回一个结果;不唯一性是指一个问题可以有多个算法,算法有优劣之分;普遍性是指很多具体的问题,都可以设计合理的算法去解决.
三、程序框图
程序框图又称流程图,是一种用确定的图形、指向线及文字说明来准确、直观地表示算法的图形.
程序框
或“N”.
四、算法的三种基本逻辑结构和框图表示
1.了解算法的含义,了解算法的思想.
2.理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.两种循环语句的语句结构及框图如下:
说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.
基础自测
1.某程序框图如下图所示,现输入如下四个函数,则可以输出的函数是( )
A .f (x )=x 2
B .f (x )=1x
C .f (x )=e x
D .f (x )=sin x
解析:由程序框图可知输出的函数为奇函数且有零点,只有f(x)=sin x满足.答案:D
2.(2013·肇庆一模)某程序框图如图所示,则输出的结果S=( )
A.26 B.57 C.120 D.247
解析:程序在运行过程中各变量的值如下表示:
是否继续循环k S
循环前 / 1 1
第一次是 2 4
第二次是 3 11
第三次是 4 26
第四次是 5 57
第五次否
故选B.
答案:B
3.(2013·湖南卷)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________________.
解析:程序运行过程如下:
第一步:a=1+2=3;
第二步:a=3+2=5;
第三步:a=5+2=7;
第四步:a=7+2=9.
此时9>8,结束循环,所以输出的a值为9.
答案:9
4.按下图所示的程序框图运算,若输入x=8,则输出k=________;若输出k=2,则输入x的取值范围是________.
答案:4 (]
1.(2013·辽宁卷)执行如图所示的程序框图,若输入n=10,则输出S=( )
A.
511 B.1011 C.3655 D.7255
解析:
执行第一次循环:S =1
3,i =4;
执行第二次循环:S =2
5,i =6;
执行第三次循环:S =3
7,i =8;
执行第四次循环:S =4
9,i =10;
执行第五次循环:S =511,i =12,此时i ≤n 不成立,退出循环,输出S =5
11
.
答案:A
2.(2013·山东卷)执行下面的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.
解析:第一次循环:F1=3,F0=2,n=2;第二次循环:F1=5,F0=3,n=3.
此时1
F1
=0.2≤0.25,所以输出的n的值为3.
答案:3
1.(2013·茂名一模)某程序框图如图所示,该程序运行后,输出的x值为31,则a等于( )
A.0 B.1 C.2 D.3
解析:程序在运行过程中各变量的值如下表示:
n x是否继续循环
第一圈 2 2a+1 是
第二圈 3 4 a+2+1 是
第三圈 4 8 a+4+2+1 否
则输出的结果为8 a+4+2+1=31,所以a=3.故选D.
答案:D
2.(2013·徐州一模)如图是一个算法的流程图,若输入n的值是10,则输出S的值是
________.
解析:根据流程图所示的顺序可知:该程序的作用是输出满足条件n<2时,S=10+9+8+…+2的值.
因为S=10+9+8+…+2=54,故输出54.
答案:54。