《高等几何》课程学习指南
- 格式:doc
- 大小:38.50 KB
- 文档页数:4
高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的基本概念和发展历程。
2. 掌握空间解析几何的基本知识。
3. 理解高等几何在数学和物理学中的应用。
教学内容:1. 高等几何的基本概念点的定义向量的定义线和面的定义2. 发展历程古典几何的发展微积分与解析几何的兴起高等几何的发展和应用3. 空间解析几何坐标系和坐标变换向量空间和线性变换行列式和矩阵运算教学重点与难点:1. 重点:高等几何的基本概念,发展历程,空间解析几何。
2. 难点:空间解析几何中的坐标变换和线性变换。
教学方法:1. 采用讲授法,系统地介绍高等几何的基本概念和发展历程。
2. 通过示例和练习,让学生掌握空间解析几何的基本知识。
3. 利用图形和实物,帮助学生直观地理解高等几何的概念。
教学准备:1. 教案和教材。
2. 多媒体教学设备。
教学过程:1. 引入新课:通过简单的几何图形,引导学生思考高等几何的基本概念。
2. 讲解:按照教材的顺序,系统地介绍高等几何的基本概念和发展历程。
3. 示例:通过具体的例子,讲解空间解析几何的基本知识。
4. 练习:布置练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调重点和难点。
课后作业:1. 复习本节课的内容,整理笔记。
2. 完成教材中的练习题。
教学反思:在课后对教学效果进行反思,根据学生的反馈调整教学方法和内容。
教案章节:第二章向量空间教学目标:1. 掌握向量空间的基本概念。
2. 理解线性变换和矩阵运算。
3. 学会运用向量空间解决实际问题。
教学内容:1. 向量空间向量的定义和运算向量空间的性质向量空间的基底和维度2. 线性变换线性变换的定义和性质线性变换的矩阵表示线性变换的图像3. 矩阵运算矩阵的定义和运算矩阵的逆矩阵矩阵的秩教学重点与难点:1. 重点:向量空间的基本概念,线性变换和矩阵运算。
2. 难点:线性变换的矩阵表示和矩阵的秩。
教学方法:1. 采用讲授法,系统地介绍向量空间的基本概念。
《高等几何》课程教学大纲课程名称:高等几何英文名称:课程代码: 课程类别: 专业必修学分: 3 学时: 48开课单位: 数学系适用专业: 数学与应用制订人:制订日期: 2011.11.18审核人:(教研室主任签字)审核日期:审定人: (分管教学副主任签字)审定日期:一、课程性质与目的(一)课程的性质高等几何是高等师范院校数学与应用数学专业的一门选修课程。
高等几何课程更是大学“数学与应用数学”专业的重要基础课程,在人才培养中有着最基本的重要性,是大学、研究生阶段的数学学习和未来从事数学教学、研究的重要基础。
(二)课程的目的本课程的目的是使学生在已学习初等几何,解析几何和高等代数的基础上,系统地学习射影几何的知识。
并通过学习实射影平面几何的基础知识,使学生认识射影空间、欧氏空间的内在联系。
从而发展空间概念,更深入地掌握初等几何,解析几何和高等代数的知识,在数学思想上得到启发,在数学方法上得到初步训练,为教好中学数学打下较坚实的基础。
二、与相关课程的联系与分工高等几何、高等数学、数学分析统称为“三高”,它们是高等师范院校数学专业的三门基础课程。
但是,本课程与其他两门课程相比,地位就相形见绌了。
同时本课程是以射影几何学为理论基础,因此学习本课程的学生应具备相应的初等几何、解析几何、高等代数等课程的基础知识。
三、教学内容及要求第一章仿射坐标与仿射变换【教学要求】本章是基于变换群的观点,对几何学的高度抽象概括,给出研究几何学的变换群观点。
要求掌握透视仿射对应、仿射对应与仿射变换、仿射坐标系,并能熟练地求出仿射变换的代数表示式,区别什么是射影平面,仿射平面,欧氏平面【教学重点】仿射坐标系;仿射变换的代数表示【教学难点】仿射性质;射影观点的建立;仿射变换的应用【教学内容】第一节透视放射对应第二节仿射对应与仿射变换第三节仿射坐标一、仿射坐标系二、放射变换的代数表示三、几种特殊的仿射变换第四节仿射的性质第二章射线平面【教学要求】本章作为学习全课程的基础和中心内容,重点讲解欧氏平面的拓展过程,在此基础上给出射影直线和影射平面的概念和模型,使得学生明确了解欧氏直线和射影直线、欧氏平面和影射平面的区别和联系。
第五章高等几何第一节课程概论1、本课程的起源与发展早自欧洲文艺复兴时期,由于绘图和建筑等的需要,透视画的理论逐步形成,以后便建立了画法几何。
法国数学家蒙日(GaspardMonge,1746-1818)在1768到1799年之间和1809年分别出版了画法几何和微分几何两部经典著作,由于画法几何理论的发展,他的学生彭色列(JeanPoncelet,1788-1867)继承了这两部著作中的综合思想,于1822年写了一本书,它是射影几何方面最早的专者。
继彭色列之后,法国人沙尔(Michel Chasles,1793-1880) 等对射影几何的研究都做出了重要贡献。
出生于德国数学家史坦纳(Jacob Steiner,1796-1863)改进了射影几何的研究工具,并且把它们应用到各种几何领域,因而得到了丰硕结果。
到了19世纪上半叶,几何学的发展经历了它的黄金时代。
在这期间,古典的欧几里得几何学不再是几何学的唯一对象,射影几何学正式成为一门新学科。
英国人凯莱(Cayley,1821-1895)和德国人克莱因(Christian Felix Klein,1849-1925)等人用变换群的方法研究了这个分支,射影几何便成为完整独立的学科。
射影几何的诞生诱发于透视理论,一个射影平面就是由欧几里得平面添加所谓无穷远直线而得到的。
克莱因对于几何学理论的统一性有着执著的追求,他在成功地把几种度量几何统一于射影几何之后,就立即在更深层次上寻求统一各种几何学理论的基础。
在19世纪,人们开始把几何中图形的一些性质看作是一种“变换”运动的结果。
如正方形的“中心对称性”,就是将正方形绕其两条对角线的交点O“旋转”180°后仍重合的结果。
正方形的“轴对称性”,就是将正方形绕过O点的水平轴“反射”(即翻转)180°后仍重合的结果。
这里的“旋转”、“反射”就可以分别被看作是一种“变换”。
更为重要的是,数学家们进一步发现,这个正方形上的所有旋转、反射、平移等变换所构成的集合,满足群的条件,因而构成一个“变换群”。
高等几何课程标准一、课程概况课程目标1:掌握射影几何的基本概念、基础知识与基本理论,从而提升学生的专业知识素质,为后续课程及其它相关学科的学习建立良好的知识储备。
课程目标2:理解基本定理的证明过程,训练学生的抽象思维、逻辑推理和空间想象的能力,培养学生解决问题的基本意识与技能,提高学生的专业能力素质,为后续专业课程、其它相关学科的学习以及自主学习与职后发展奠定坚实的能力基础。
课程目标3:使学生进一步掌握具体与抽象、特殊与一般、对立与统一等辩证关系,培养其辩证唯物主义观点,提高学生的直观想象以及数学建模的能力,掌握本课程所涉及的现代数学中的重要思想方法,为后续专业课程、其它相关学科的学习以及自主学习与职后发展奠定坚实的思想方法基础。
课程目标4:使学生对中学数学有关内容从理论上有更深刻的认识,培养学生的终身学习和专业发展意识,以便能够高屋建瓶地掌握和处理中学数学教材;同时,通过课前预习、课堂引导和启发、课后作业等方式,激发学生探索与求知的欲望,培养学生自主学习与职后发展的能力。
三、课程目标与毕业要求的关系、课程目标与毕业要求的对应关系1课程目标4:使学生对中学数学有关内容从理论上有更深刻的认识,培养学生的终身学习和专业发展意识,以便能够高屋建箱德萨格定理及其逆定理、对偶原理、交比和调合比、一维射影坐标和一维射影对应(变换)的代数表示、二维射影变换和二地掌握和处理中学数学教材;同时,通过课前预习、课堂引导和维射影坐标、克莱因变换群观点、二次曲线的射影定义、二阶曲线与二级曲线、帕斯卡与布利安桑定理、极点与极线、配极启发、课后作业等方式,激发学生探索与求知的欲望,培养学生自主学习与职后发展的能力。
原则、二次曲线的中心和直径、二次曲线的渐近线。
同时包含出勤、课堂表现和平时作业的完成情况以及平时测验成绩。
参考《数学学院课程目标达成度评价方法》进行评价。
九、本课程各个课程目标的权重依据第八部分中的课程目标达成度评价方法,计算得到本课程的各个课程目标的权重如下:十、持续改进根据学生的课堂表现、平时作业、期中测验和期末考试情况及教学督导的反馈,检验学生对本课程涉及的学科素养和学会反思的达成情况,及时对教学中的不足之处进行改进,调整教学指导策略;根据学生的课堂表现、平时作业、期中测验及期末考试成绩,检验本课程所支撑的毕业要求分解指标点的达成度情况;根据本课程所支撑的毕业要求分解指标点的达成度情况,在学院教学指导委员会指导下,重新修订本课程大纲,实现持续改进。
《高等几何》(第二版)自学指导Ⅱ目录·第七章二次曲线的仿射性质·第八章二次曲线的度量性质第七章二次曲线的仿射性质本章主要内容如下(所讨论的二次曲线非退化):一、中心1、定义:中心为无穷远直线的极点2、存在性:椭圆、双曲线有唯一中心,抛物线以无穷远点为中心3、性质:平分过中心的弦4、方程:中心是方程组a 11 x+a 12 y+a 13=0的解a 12 x+a22 y+a 23=0二、直径与共轭直径1、定义(1)无穷远点的极线(非无穷远线)称为直径(2)如何两直径之一的极点在另一直径上,则此两直径称为共轭直径。
2、存在性(1)二次曲线有无穷多条直径(2)有心二次曲线有共轭直径,无心二次曲线无共轭直径3、性质(1)有心二次曲线的直径过中心,无心二次曲线的直径彼此平行(2)共轭直径平分与另一条直径平行的弦;平行于过另一端点的切线。
4、求法:按照定义三、渐近线1、定义:以Γ与l∞的交点为切点的Γ的切线2、存在性:双曲线有两条实渐近线,椭圆有两条虚渐近线,抛物线以无穷远线为渐近线。
3、性质:渐近线过中心,且调和分割任一对共轭直径4、求法: (1)见EX72 (2)按照定义求四、仿射分类 虚椭圆A33 ≠0椭圆 A 33 >0 有心二次曲线二次曲线 双曲线A 33 <0A 33 =0 抛物线;无心二次曲线例1 判断二阶曲线0133221=++x x x x x x 的类型,试求曲线的中心,并求出过点(0,1,1)的直径及其共轭直径。
解 ,0021212102121210≠=ij a ,41210212131==A 4121212132=-=A ,410212133-==A 。
因为|A|≠0,A 33<0,所以方程表示双曲线,中心为(1,1,-1)设过点(0,1,1)的直径为0)(323222121313212111=+++++k x a x a x a x a x a x a ,于是得2212121-=+-=k所求直径为:02321=+-x x x 设所求共轭直径为0)(323222121313212111='+++++k x a x a x a x a x a x a则 221)2(2122121211=-⨯-=++-='ka a ka a k故共轭直径为:032321=++x x x例2 求平分二次曲线02322=-++-y x y x 与直线02=+y x 平行的弦的直径的方程。
大学二年级数学教案学习高等几何的基本理论与证明一、引言在大学数学的学习中,高等几何是一个重要的专题。
掌握高等几何的基本理论与证明对深入理解数学的本质和发展起着至关重要的作用。
本文将围绕大学二年级数学教案学习的主题,探讨高等几何的基本理论与证明。
二、高等几何的基本概念高等几何是几何学的一门重要分支,它研究高维空间中的几何性质与关系。
在学习高等几何之前,我们首先需要了解一些基本概念。
1. 高等几何的维数在传统的几何学中,我们研究的是二维和三维空间的图形和性质。
而在高等几何中,我们将研究的对象扩展到了更高的维度,例如四维、五维等等。
维数是指空间中所需要的坐标数量。
每个维度对应一个坐标轴,例如二维空间对应二个坐标轴(x轴和y轴),三维空间对应三个坐标轴(x轴、y轴和z轴)。
2. 几何空间的拓扑性质拓扑学研究的是空间中的连续性质与变形关系。
在高等几何中,我们将关注几何空间的拓扑性质,例如紧致性、连通性、同胚等。
这些性质的研究对于了解几何空间的结构以及其性质具有重要的意义。
3. 高等几何的基本要素高等几何的基本要素包括点、直线、面以及高维空间中的各种图形。
我们将通过研究这些基本要素的性质和关系,来理解高等几何的构建和推导过程。
三、高等几何的基本理论高等几何的基本理论是研究高维空间几何性质的理论基础。
在学习高等几何时,我们需要掌握以下几个重要的理论:1. 坐标系与变换在高维空间中,我们需要使用坐标系来表示点和向量。
坐标系的选择和变换对于研究几何性质和解决几何问题起着至关重要的作用。
在高等几何中,我们将学习各种坐标系的选择和变换方法。
2. 向量运算与线性变换向量运算是研究高维空间中向量性质的重要工具。
线性变换是指将向量从一个空间映射到另一个空间的变换。
向量运算和线性变换的研究对于理解高等几何中的向量空间和线性映射具有关键性的意义。
3. 几何性质与关系高等几何研究的核心是研究几何性质与关系。
我们将学习高维空间中的点、直线、面以及其他图形的性质和关系,例如距离、角度、平行、垂直等。
高等几何教案与课后答案教案章节一:绪论1. 教学目标了解高等几何的基本概念和发展历程。
理解几何学在数学和其他领域中的应用。
激发学生对高等几何的学习兴趣。
2. 教学内容高等几何的定义和发展历程。
几何学在数学和其他领域中的应用。
学习高等几何的意义和方法。
3. 教学步骤引入话题:介绍几何学的历史和基本概念。
讲解高等几何的定义和发展历程。
通过实际例子展示几何学在数学和其他领域中的应用。
引导学生思考学习高等几何的意义和方法。
4. 课后作业研究几何学在数学和其他领域的应用实例。
思考学习高等几何的意义和方法。
教案章节二:解析几何基础1. 教学目标掌握解析几何的基本概念和常用工具。
学会使用坐标系进行几何问题的分析和解决。
2. 教学内容解析几何的基本概念和常用工具。
坐标系的定义和应用。
点的坐标和向量的基本运算。
3. 教学步骤引入话题:回顾初中阶段的解析几何知识。
讲解解析几何的基本概念和常用工具。
通过实际例子演示坐标系的应用。
讲解点的坐标和向量的基本运算。
4. 课后作业复习解析几何的基本概念和常用工具。
练习使用坐标系解决几何问题。
教案章节三:平面几何1. 教学目标掌握平面几何的基本概念和定理。
学会解决平面几何问题。
2. 教学内容平面几何的基本概念和定理。
平行线、相交线和圆的性质。
三角形的分类和性质。
3. 教学步骤引入话题:回顾初中阶段的平面几何知识。
讲解平面几何的基本概念和定理。
通过实际例子演示平行线、相交线和圆的性质。
讲解三角形的分类和性质。
4. 课后作业复习平面几何的基本概念和定理。
练习解决平面几何问题。
教案章节四:空间几何1. 教学目标掌握空间几何的基本概念和定理。
学会解决空间几何问题。
2. 教学内容空间几何的基本概念和定理。
空间直线、平面和多面体的性质。
空间角和空间向量的应用。
3. 教学步骤引入话题:回顾初中阶段的空间几何知识。
讲解空间几何的基本概念和定理。
通过实际例子演示空间直线、平面和多面体的性质。
讲解空间角和空间向量的应用。
《高等几何》课程学习指南一、课程目的本课程是大学数学类专业的主干基础课程之一。
本课程在大家具备初等几何、解析几何、高等代数、数学分析知识的基础上,系统地学习射影几何的基本知识,使我们能用变换群的观点来看待几何学,加深对几何学的理解,拓展几何空间概念。
通过本课程利用商空间思想研究亏格为零不可定向的闭曲面上的几何学的训练,一方面使得我们拓宽眼界,扩大知识领域,提高抽象思维、理性思维能力,为进一步的数学学习打下基础;另一方面使得我们加深对中学几何特别是解析几何的理论与方法的理解,从而获得用高观点来处理中学几何问题的能力,为未来的中学几何教学打下基础;第三,本课程包括了许多著名的定理,奇妙的图形,匪夷所思的处理技巧,通过本课程的学习,可以有效地提高我们的数学审美意识。
概括来说,学习本课程后,希望大家有如下收获:(1)空间不只是平直的,除欧氏空间外,还有很多其他的空间。
即让学生在空间观念上有一个提升;(2)进一步让了解处理几何问题不只是可以用综合法,还可以用解析法;(3)深刻理解对偶原理,认识到射影几何是与欧氏几何完全不同的几何学;(4)深刻理解射影变换及其性质,认识到射影几何是研究射影图形在射影变换下的不变性和不变量的一门科学;(5)深刻理解Klein的变换群观点,即研究某空间中的图形在它的某变换群作用下不变的性质和数量的科学就称为一门几何学;(6)深刻了解一些平面射影图形的射影性质。
如:点列,线束,完全n点(线)形,二次曲线的射影性质。
(7)学会构造射影图形。
因为我们的纸张是欧氏平面,所以在其上构造射影图形还是有很多技巧,我们要深刻领会这些技巧。
二、课程主要内容结构以平面射影几何为主体,涵盖射影几何,变换群理论,仿射几何等内容,主要包括5个部分:1、射影平面。
包括引论,拓广平面,齐次点坐标,线坐标,射影平面,对偶原则,复元素,Desargues定理等。
2、射影变换。
包括交比与调和比,完全四点形与完全四线形的调和性,一维基本形的射影对应,一维射影变换,一维基本形的对合,二维射影变换等。
3、变换群与几何学。
包括二维射影变换的特例,平面上的几个变换群,变换群与几何学等。
4、二次曲线理论。
包括二次曲线的射影定义,Pascal定理和Brianchon定理,极点与极线,配极变换,二次点列上的射影变换,二次曲线的射影分类,二次曲线的仿射理论,二次曲线的仿射分类等。
5、几何学寻踪。
包括Euclid几何学,从Pappus到射影几何学,Descartes与解析几何学,第五公设之争与非欧几何学,Gauss,Riemann与微分几何学,从Cantor和Poincaré到拓扑学,Hilbert 与几何基础等,作为学生课外读物。
三、单元学习目标1、第一章射影平面通过这一章的学习,我们要明了和掌握:(1)射影平面的公理化定义以及其几何模型(拓广平面)和算术模型(RP2)。
空间不只是平直的,除欧氏空间外,还有很多其他的空间。
即我们要在空间观念上有一个提升;(2)齐次点坐标和线坐标,进一步了解处理几何问题不只是可以用综合法,还可以用解析法;(3)深刻理解对偶原理,认识到射影几何是与欧氏几何完全不同的几何学;(4)深刻理解Desargues定理的美妙并学会用Desargues定理去作图或证明某些共线点和共点线问题。
具体掌握内容如下:第一节引论本节首先介绍集合的变换的概念,然后介绍了平面的正交变换、相似变换、仿射变换的概念及其性质。
第二节拓广平面本节从几何直观的角度把欧氏直线及平面拓广到了射影直线及射影平面的一个几何模型,我们称其为拓广直线及拓广平面,然后讨论了它们的性质并给出了它们的一些拓扑模型。
第三节拓广平面上的齐次坐标本节给出了拓广平面上点的齐次点坐标和直线的齐次线坐标概念,从而实现了几何代数化,为用解析法研究平面射影几何做好了准备;给出了直线的齐次点坐标方程和点的齐次线坐标方程;关于齐次坐标的一些基本结论;拓广平面上的齐次笛氏坐标系。
第四节射影平面给出了实射影平面及直线的公理化定义,并指出拓广平面和RP2 都是射影平面的模型空间;介绍了射影坐标变换并指出点列和线束是射影基本图形第五节平面对偶原则本节介绍了平面射影几何的重要定理平面对偶原则。
首先给出对偶元素、对偶运算、对偶变换、射影图形及对偶图形、射影命题及对偶命题等概念,然后给出平面对偶原则及某些代数对偶。
第六节Desargues透视定理本节介绍了一个古老而著名的定理Desargues透视定理及其在作图和证明共线点和共点线问题方面的应用。
2、第二章射影变换平面射影几何是研究平面射影图形在射影变换下的不变性质和不变量的一门科学。
所以,本章首先研究了最基本的射影不变量交比的性质和计算,然后研究了图中具有非常多调和点列和调和线束的射影图形完全四点形和完全四线形的调和性,最后主要研究了一维射影(对应)变换和二维射影(对应)变换的性质。
具体掌握内容如下:第一节交比交比是最基本的射影不变量,其他一切射影不变量都可由它表示。
本节主要研究了共线四点的交比和共点四线的交比的性质和计算。
第二节完全四点形与完全四线形的调和性本节主要研究了这两类图形中的调和点列和调和线束以及它们的应用。
第三节一维基本形的射影对应本节分别从几何和代数角度给出了一维基本形的射影对应的三个等价定义以及确定射影对应的代数条件,Pappus定理和Steiner构图法亦被介绍。
第四节一维射影变换一维射影变换是从一个一维基本形到其自身的射影对应。
本节主要讨论了一维射影变换的不变元素、不变元素性质以及一维射影变换的分类。
第五节一维基本形的对合对合是一个特殊的射影变换,它有其特殊的几何意义。
本节主要研究了一个一维射影变换是对合的代数条件和几何条件,对合的不变元素、不变元素性质以及对合的分类,Desargues对合定理及其应用。
第六节二维射影变换本节分别从几何和代数角度给出了二维基本形的射影对应的三个等价定义以及确定射影对应的代数条件,二维射影变换的不变元素亦被研究。
3、第三章变换群与几何学1872年德国数学家克莱因(F.Klein,1849~1925)在就任埃尔朗根(Erlangen)大学教授时提出了著名的埃尔朗根纲领,这个纲领用变换群的观点把当时已经知道的几种几何学统一起来。
根据这个纲领,研究某空间中图形的在某变换群的变换下不变的性质和数量的科学称为一门几何学,其中运动变换下的几何就是欧氏几何。
埃尔朗根纲领对后世几何的发展具有重要的指导意义。
本章我们主要了解克莱因的变换群观点。
具体掌握内容如下:第一节射影仿射平面本节主要介绍了射影仿射平面的射影仿射变换、射影相似变换、射影正交变换及通常平面的仿射变换、相似变换、正交变换。
第二节平面上的几个变换群本节主要介绍了射影变换群、射影仿射变换群、射影相似变换群、射影正交变换群及仿射变换群、相似变换群、正交变换群。
第三节变换群与几何学本节主要介绍了克莱因的变换群观点,并讨论了射影几何、射影仿射几何、射影相似几何、射影欧氏几何、仿射几何、相似几何、欧氏几何的关系。
4、第四章二次曲线理论二次曲线是重要的射影不变图形、仿射不变图形,所以它们是射影几何和仿射几何的重要研究对象。
本章主要研究二次曲线的射影理论和仿射理论。
具体掌握内容如下:第一节二次曲线的射影定义本节给出了二阶曲线及二级曲线的代数定义和射影定义及确定非退化二阶曲线及二级曲线的条件、讨论了非退化二阶曲线的切线及非退化二级曲线的切点、二阶曲线与二级曲线的统一(即任一条非退化二阶(级)曲线的全体切线(点)构成一条非退化二级(阶)曲线,而且从几何上看,这两条线是重合的)、最后介绍了二阶曲线束及用四点形束求无三点共线的五点确定的二阶曲线的方法。
第二节Pascal定理和Brianchon定理这是两个古老而著名的定理,它们是一对对偶命题。
本节介绍了这两个定理及其逆定理、它们的几种极限形式和应用。
第三节配极变换给点射影平面上的一条非退化二阶曲线,关于它的极点和极线之间的对应是同底点场到线场的一个保交比的双射,我们称其为同底点场到线场关于这条非退化二阶曲线的配极变换。
本节介绍了配极变换、配极原则、自极三点形以及它们的应用。
第四节二次点列上的射影变换本节研究了二次点列上的射影对应、射影变换、对合的性质及其应用。
第五节二次曲线的射影分类射影平面上的两条二阶曲线等价的充要条件是存在一个射影变换把其中一条二阶曲线映为另一条。
本节给出了射影平面上的所有二阶曲线的等价类,即对所有二阶曲线进行了分类;对偶地,我们可以得到所有二级曲线的等价类。
第六节二次曲线的仿射理论二次曲线亦是重要的仿射不变图形。
本节讨论了射影仿射平面上的二次曲线的仿射性质。
主要讨论了二阶曲线的中心、直径与共轭直径、有心二阶曲线的渐近线等性质。
第七节二次曲线的仿射分类射影仿射平面上的两条二阶曲线等价的充要条件是存在一个射影仿射变换把其中一条二阶曲线映为另一条。
本节给出了射影仿射平面上的所有二阶曲线的射影仿射等价类,即对所有二阶曲线进行了分类;对偶地,我们可以得到所有二级曲线的等价类。
四、课程的重点、难点及解决办法重点:要求我们通过齐次坐标、射影变换的学习,获得利用代数、分析的方法研究几何问题的基本能力,拓展几何空间概念,通过以拓广平面为模型的射影平面几何的学习,学会在亏格为零、不可定向的闭曲面上用综合的方法研究几何问题,接受变换群思想。
难点:齐次坐标和不可定向的闭曲面等都超出了学生久已习惯的欧氏空间,抽象且不直观,初学者会感到非常别扭,难以入门,难以认清问题的本质。
解决办法:运用“立体式”教学理念辅以多媒体手段,化抽象为具体,化难以想象为直观,化深奥为简单。
教材和教师教学中均采用射影平面的某局部与欧氏平面同胚的原理,使得问题直观化、可视化,通过多媒体生动地刺激视觉,效果更佳。
经常建立与欧氏几何、线性代数、微积分的联系,充分利用学生已有的代数、分析知识以及对偶原则,对许多概念、定理给出统一的处理方法,使得学生逐步适应高等几何的思想方法,逐步认识高等几何中的问题之本质,从而使得其思维能力在潜移默化的过程中得到提高。