2014广东省茂名一模
- 格式:doc
- 大小:473.50 KB
- 文档页数:10
2024年茂名市高三年级第一次综合测试数学试卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、单选题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3A =,{}1,0,1B =-,C A B = ,则集合C 的子集个数为()A.2B.3C.4D.8【答案】C 【解析】【分析】根据给定条件,求出集合C 即可得解.【详解】集合{}0,1,2,3A =,{}1,0,1B =-,则{0,1}C A B == ,所以集合C 的子集个数为224=.故选:C2.“1x <”是“2430x x -+>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】先解一元二次不等式,然后根据集合的包含关系可得.【详解】解不等式2430x x -+>得3x >或1x <,记()()(),13,,,1A B ∞∞∞=-⋃+=-,因为A B ,所以“1x <”是“2430x x -+>”的充分不必要条件.故选:A3.从6名女生3名男生中选出2名女生1名男生,则不同的选取方法种数为()A.33 B.45 C.84D.90【答案】B 【解析】【分析】利用组合数公式直接计算.【详解】2163C C 45=.故选:B4.曲线()e xf x ax =+在点()0,1处的切线与直线2y x =平行,则=a ()A.2- B.1- C.1D.2【答案】C 【解析】【分析】确定曲线()e xf x ax =+在点()0,1处的切线的斜率,求出函数的导数,根据导数的几何意义,即可求得答案.【详解】因为曲线()e xf x ax =+在点()0,1处的切线与直线2y x =平行,故曲线()e xf x ax =+在点()0,1处的切线的斜率为2,因为()e xf x a '=+,所以()00e 12f a a =+=+=',所以1a =,故选:C.5.椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过1F 作垂直于x 轴的直线l ,交C 于A ,B 两点,若12AB F F =,则C 的离心率为()A.B.1- C.12- D.2【答案】A 【解析】【分析】根据题意可知直线l :x c =-,结合方程可得22bAB a=,进而求离心率.【详解】因为()1,0F c -,且直线l 垂直于x 轴,可知直线l :x c =-,将x c =-代入椭圆方程可得()22221c y a b-+=,解得2b y a =±,所以22b AB a =,又因为12AB F F =,则222b c a =,即22a c c a-=,可得220c ac a +-=,则210e e +-=,解得1551222e -=-+=.故选:A.6.函数()y f x =和()2y f x =-均为R 上的奇函数,若()12f =,则()2023f =()A.2-B.1- C.0D.2【答案】A 【解析】【分析】由奇函数性质推导出()y f x =的周期为4,利用周期性、奇偶性求函数值.【详解】因为()2y f x =-为奇函数,所以()y f x =关于()2,0-对称,即()(4)0f x f x -+-=,又()y f x =关于原点对称,则()()f x f x -=-,有()(4)(4)()f x f x f x f x =-⇒+=,所以()y f x =的周期为4,故()()()()202312024112f f f f =-+=-=-=-.故选:A 7.若π3π,44α⎛⎫∈⎪⎝⎭,ππ6tan 4cos 5cos 244ααα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则sin 2α=()A.2425B.1225C.725D.15【答案】C 【解析】【分析】合理换元,求出关键数值,结合诱导公式处理即可.【详解】令π4t α=+,π,π2t ⎛⎫∈ ⎪⎝⎭,得π4t α=-,则ππ6tan 4cos 5cos 222t t t ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭,即6tan 4sin 5sin 210sin cos t t t t t +==,整理得()()5cos 3cos 10t t +-=,且cos 0<t ,那么3cos 5t =-,则2π7sin 2sin 2cos 212cos 225t t t α⎛⎫=-=-=-= ⎪⎝⎭.故选:C.8.数列{}n a 满足18a =,11nn n a a na +=+(*n ∈N ),112nn n b a λ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭,若数列{}n b 是递减数列,则实数λ的取值范围是()A.8,7⎛⎫-+∞ ⎪⎝⎭B.7,8⎛⎫-+∞ ⎪⎝⎭ C.8,7⎛⎫+∞⎪⎝⎭D.7,8⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】【分析】将11n n n a a na +=+取倒数结合累加法求得()22118n n a -=,再利用数列单调递减列不等式并分离参数,求出新数列的最大值即可求得答案【详解】由题意,11nn n a a na +=+,两边取倒数可化为1111n n n nna n a a a ++==+,所以21111a a -=,32112a a -=,1111--=-n n n a a ,由累加法可得,()()11111212n n n n a a --=++⋅⋅⋅+-=,因为18a =,所以()()212111288n n n n a --=+=,所以()221111282nn n n n b a λλ⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥⎪ ⎪ ⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,因为数列{}n b 是递减数列,故1n n b b -<,即()()2212123118282n n n n λλ-⎡⎤⎡⎤--⎛⎫⎛⎫+<+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,整理可得,2254842017288n n n λ⎛⎫--+ ⎪-+-⎝⎭>=,因为2n ≥,*n ∈N ,所以22max5548428722888n ⎛⎫⎛⎫⎛⎫--+-⨯-+ ⎪⎪ ⎪⎝⎭⎝⎭ ⎪== ⎪ ⎪⎝⎭,故7,8λ⎛⎫∈+∞ ⎪⎝⎭.故选:D.二、多选题:本题共4小题,每小题给出的选项中,有多项符合题目要求.9.若()32112132f x x x x =-+++是区间()1,4m m -+上的单调函数,则实数m 的值可以是()A.4-B.3- C.3D.4【答案】CD 【解析】【分析】求导,分析导函数的正负得到原函数的单调性,再由已知建立关于m 的不等式组,解出即可.【详解】由题意,()()()2221f x x x x x =-++=--+',令()0f x '>,解得12x -<<,令()0f x '<,解得1x <-或2x >,所以()f x 在()1,2-上单调递减,在(),1∞--,()2,∞+上单调递减,若函数()32112132f x x x x =-+++在区间()1,4m m -+上单调,则41m +≤-或12m -≥或1142m m -≥-⎧⎨+≤⎩,解得5m ≤-或3m ≥或m ∈∅,即5m ≤-或3m ≥.故选:CD.10.过抛物线C :24y x =的焦点F 作直线l 交C 于,A B 两点,则()A.C 的准线方程为2x =-B.以AB 为直径的圆与C 的准线相切C.若5AB =,则线段AB 中点的横坐标为32D.若AB 4=,则直线l 有且只有一条【答案】BCD 【解析】【分析】对于选项A:计算出准线即可判断;对于选项B:验证2AB MM '=是否成立;对于选项C ,D:借助焦点弦及通径的相关公式计算即可.【详解】对于选项A:由抛物线C :24y x =,可得24,p =解得2p =,故准线方程为12px =-=-,故选项A 错误;对于选项B:设AB 的中点为M ,且,,A B M 在准线上的投影为,,A B M ''',由抛物线的定义可知:,AA AF BB BF =''=,易知四边形ABA B ''为直角梯形,所以222AA BB AF BFAB MM ++===''',故以AB 为直径的圆与C 的准线相切,故选项B 正确;对于选项C:设()()1122,,,A x y B x y ,因为1212522p pAB AF BF AA BB x x x x p =+=+=+++=++'=',所以123x x +=,所以线段AB 中点的横坐标为12322x x +=,故选项C 正确;对于选项D:结合抛物线的焦点弦中通径最短,可得24AB p ≥=,要使AB 4=,则线段AB 为抛物线的通径,则这样的直线有且只有一条,故选项D 正确.故选:BCD.11.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱AB ,BC 的中点,则()A.直线EF 与1BC 所成的角为60°B.过空间中一点有且仅有两条直线与1111,A B A D 所成的角都是60°C.过1A ,E ,F 三点的平面截该正方体,所得截面图形的周长为25+D.过直线EF 的平面截正方体,所得截面图形可以是五边形【答案】ACD 【解析】【分析】根据线线角和截面的相关知识逐一判断各个选项即可.【详解】对于A ,如图所示,连接111,,AC AC A B ,因为E ,F 分别为棱AB ,BC 的中点,所以//EF AC ,由1111//,AA CC AA CC =可知,四边形11AA C C 是平行四边形,所以11//AC AC ,所以11//EF AC ,所以EF 与1BC 所成的角即为11A C 与1BC 所成的角,即11AC B ∠或其补角,因为11A BC V 是等边三角形,所以1160A C B ∠=︒,所以EF 与1BC 所成的角为60°,故A 正确;对于B ,因为直线11A B ,11A D 所成角是90°,且两条直线相交于1A ,所以过点1A 与两直线所成角为60°的直线有4条,故B 错误;对于C ,易知平面11A EFC 为过1A ,E ,F 三点的截面,该截面为梯形,显然1111A C A E C F EF =====所以截面图形的周长为1111A C A E EF C F +++=+=,故C 正确;对于D ,如图所示,分别取1AA ,1CC 的靠近A ,C 的三等分点G ,H ,连接1GD ,GE ,1HD ,HF ,易知1//GE HD ,1//HF GD ,故点1D ,G ,E ,F ,H 共面,该截面图形为五边形,故D 正确.故选:ACD12.从标有1,2,3,…,10的10张卡片中,有放回地抽取两张,依次得到数字a ,b ,记点(),A a b ,()1,1B -,()0,0O ,则()A.AOB ∠是锐角的概率为920B.BAO ∠是锐角的概率为9100C.AOB 是锐角三角形的概率为9100D.AOB 的面积不大于5的概率为920【解析】【分析】根据向量数量积为正结合古典概型公式判断A ,B 选项,根据数量积为正得出锐角判断C 选项,结合面积公式判断D 选项.【详解】对A ,易知OA ,OB不共线,若AOB ∠是锐角,()(),·1,10OA OB a b a b ⋅=-=-> ,易知(),A a b 共有100种情况,其中a b =共有10种,a b >与a b <有相同种情况,即45种,所以AOB ∠是锐角的概率为45910020=,A 正确;对B ,若BAO ∠是锐角,220AB AO a a b b ⋅=-++>恒成立,所以BAO ∠是锐角的概率为1,B 错误;对C ,若AOB 是锐角三角形,则000OA OB BO BA AO AB ⎧⋅>⎪⎪⋅>⎨⎪⋅>⎪⎩,即()()()()()()22,·1,10,1,1·1,12,,·1,10,a b a b a b a b a b a b a a b b ⎧-=->⎪--+=-<⎨⎪-----=-++>⎩所以1a b -=,共有9种情况,所以AOB 是锐角三角形的概率为9100,C 正确;对D,若1sin 2AOBS OA OB AOB =∠11522OA a b =+≤ ,10a b +≤,该不等式共有210109C ==4512⨯⨯组正整数解,所以AOB 的面积不大于5的概率为920,D 正确.故选:ACD.三、填空题:本大题共4小题.13.已知复数21iz =+,其中i 为虚数单位,则z =______.【解析】【分析】应用复数除法化简,结合共轭复数的概念即可得答案.【详解】∵()()()21i 21i 1i 1i 1i z -===-++-,∴1i z =+.故答案为:1i+14.如图,茂名的城市雕像“希望之泉”是茂名人为了实现四个现代化而努力奋斗的真实写照.被托举的四个球堆砌两层放在平台上,下层3个,上层1个,两两相切.若球的半径都为a ,则上层的最高点离平台的距离为______.【答案】2663a +【解析】【分析】根据给定条件,求出四个球的球心构成的正四面体的高即可得解.【详解】依次连接四个球的球心1234,,,O O O O ,则四面体1234O O O O -为正四面体,且边长为2a ,正234O O O 外接圆半径232sin 6033r O O a == ,则1O 到底面234O O O 的距离3h a ==,所以最高点到平台的距离为6233a a a ++=.故答案为:2663a +15.动点P 与两个定点()0,0O ,()0,3A 满足2PA PO =,则点P 到直线l :430mx y m -+-=的距离的最大值为______.【答案】234+【解析】【分析】利用两点距离公式及已知求得P 的轨迹是圆心为(0,1)-,半径为2的圆上,再确定直线所过的定点并判断其与圆的位置关系,要使圆上点到直线距离最大,有圆心与定点所在直线与直线l 垂直,进而求最大值.【详解】令(,)P x y 2222(3)2x y x y +-=+,整理得22(1)4x y ++=,所以P 的轨迹是圆心为(0,1)-,半径为2的圆上,又直线l :430mx y m -+-=可化为(3)(4)0m x y ---=,易知过定点(3,4),由223(41)4++>,故点(3,4)在圆22(1)4x y ++=外,则圆心与定点所在直线与直线l 垂直,圆心与直线l 距离最大,所以点P 到直线l 223(41)2234++=+.故答案为:23416.函数()π2sin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)在区间ππ,62⎛⎫ ⎪⎝⎭上有且只有两个零点,则ω的取值范围是______.【答案】111723,5,333⎛⎫⎛⎤⋃ ⎪ ⎥⎝⎭⎝⎦【详解】利用三角函数的性质分析求解即可.由于()f x 在区间ππ,62⎛⎫⎪⎝⎭上有且只有两个零点,所以π3232T T <≤,即ππ3π393ωωω<≤⇒<≤,由()0f x =得,ππ6x k ω+=,k ∈Z ,∵ππ,62x ⎛⎫∈ ⎪⎝⎭,∴πππππ,66626x ωωω⎛⎫+∈++ ⎪⎝⎭,∴πππ66ππ2π3π26ωω⎧+<⎪⎪⎨⎪<+≤⎪⎩或πππ2π66ππ3π4π26ωω⎧≤+<⎪⎪⎨⎪<+≤⎪⎩,解得1153ω<<或172333ω<≤,所以ω的取值范围是111723,5,333⎛⎫⎛⎤⋃ ⎪ ⎥⎝⎭⎝⎦.故答案为:111723,5,333⎛⎫⎛⎤⋃ ⎪ ⎥⎝⎭⎝⎦【点睛】关键点睛:本题的关键是利用整体法得到πππππ,66626x ωωω⎛⎫+∈++ ⎪⎝⎭,再根据零点个数得到不等式组,解出即可.四、解答题:解答应写出文字说明,证明过程或演算步骤.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 0a B b A a c --+=.(1)求B 的值;(2)若M 为AC 的中点,且4a c +=,求BM 的最小值.【答案】(1)π3(2【解析】【分析】(1)利用正弦定理边化角以及利用两角和的正弦公式化简cos cos 0a B b A a c --+=,可得cos B 的值,即可求得答案.(2)由题意可得1122BM BA BC =+ ,平方后结合数量积的运算以及基本不等式,即可求【小问1详解】由正弦定理及cos cos 0a B b A a c --+=,得sin cos sin cos sin sin 0A B B A A C --+=,又()sin sin sin cos cos sin C A B A B A B =+=+,所以2sin cos sin 0A B A -=,又()0,πA ∈,∴sin 0A ≠,∴2cos 10B -=,即1cos 2B =,又()0,πB ∈,∴π3B =.【小问2详解】由M 为AC 的中点,得1122BM BA BC =+ ,而4a c +=,所以22221111122442BM BA BC BA BC BA BC ⎛⎫=+=++⋅ ⎪⎝⎭()2221111cos 4424c a ac B a c ac ⎡⎤=++=+-⎣⎦()()2221334216a c a c a c ⎡⎤+⎛⎫≥+-=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当且仅当4a c a c =⎧⎨+=⎩,即2a c ==时等号成立,所以BM18.已知某种业公司培育了新品种的软籽石榴,从收获的果实中随机抽取了50个软籽石榴,按质量(单位:g )将它们分成5组:[)360,380,[)380,400,[)400,420,[)420,440,[]440,460得到如下频率分布直方图.(1)用样本估计总体,求该品种石榴的平均质量;(同一组中的数据用该组区间的中点值作代表)(2)按分层随机抽样,在样本中,从质量在区间[)380,400,[)400,420,[)420,440内的石榴中抽取7个石榴进行检测,再从中抽取3个石榴作进一步检测.(ⅰ)已知抽取的3个石榴不完全来自同一区间,求这3个石榴恰好来自不同区间的概率;(ⅱ)记这3个石榴中质量在区间[)420,440内的个数为X ,求X 的分布列与数学期望.【答案】(1)416g(2)(ⅰ)617,(ⅱ)分布列见解析,()97E X =【解析】【分析】(1)根据题意,用每组的频率乘以该组区间的中点值再求和得解;(2)根据条件概率计算公式运算,求出X 的所有可能取值及对应的概率得解.【小问1详解】该品种石榴的平均质量为()203700.0053904104500.0104300.015x =⨯⨯+++⨯+⨯⎡⎤⎣⎦416=,所以该品种石榴的平均质量为416g .【小问2详解】由题可知,这7个石榴中,质量在[)380,400,[)400,420,[)420,440上的频率比为0.010:0.010:0.0152:2:3=,所以抽取质量在[)380,400,[)400,420,[)420,440上的石榴个数分别为2,2,3.(ⅰ)记A =“抽取的3个石榴不完全来自同一区间”,B =“这3个石榴恰好来自不同区间”,则()337337C C 34C 35P A -==,()11122337C C C 12C 35P AB ==,所以()()()12635341735P AB P B A P A ===,即这3个石榴恰好来自不同区间的概率为617.(ⅱ)由题意X 的所有可能取值为0,1,2,3,则()3437C 40C 35P X ===,()214337C C 181C 35P X ===,()124337C C 122C 35P X ===,()3337C 13C 35P X ===,所以X 的分布列为X0123P 43518351235135所以()41812190123353535357E X =⨯+⨯+⨯+⨯=.19.设n S 为数列{}n a 的前n 项和,已知()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是首项为12、公差为13的等差数列.(1)求{}n a 的通项公式;(2)令()21n n nn a b S -=,n T 为数列{}n b 的前n 项积,证明:1615n n i i T =-≤∑.【答案】(1)2n a n=(2)证明见解析【解析】【分析】(1)由等差数列定义可得n S ,由n S 与n a 的关系即可得n a ;(2)由n S 与n a 可得n b ,即可得n T ,由()()2116n n ++≥,可得16n n T -≤,借助等比数列求和公式计算即可得证.【小问1详解】由()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是首项为12、公差为13的等差数列,故()()111112336n S nn n n =+-=++,即()()()21111366n n n n n S n n ++⎛⎫=++= ⎪⎝⎭,当2n ≥时,()()12116n nn n S ---=,故()()()()121121166n n n nn n n n n S S a -++---==-()2222312316n n n n n n ++-+-==,当1n =时,113216a S ⨯===,符合上式,故2n a n =;【小问2详解】由2n a n =,()()2116n n n n S ++=,故()()()()()()()266211211212121n n n n a n n b S n nn n n n n ++-==+-=+-,则()()()()()()()()()12121412666211141121221n n nT b n b b n n --⨯=-⋅⋅⋅=++++++ ()()()()()6216211211n nn n n n -==++++,由()()211326n n ++≥⨯=,故1666nn n T -≤=,则()111116616165n ni i n n i n T ==-⨯--≤==-∑∑.20.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,//AB CD ,AB BC ⊥,22PD AB CD ===,BC =120PDC ∠=︒.(1)证明:PB AD ⊥;(2)点E 在线段PC 上,当直线AE 与平面ABCD 所成角的正弦值为5时,求平面ABE 与平面PBC 的夹角的余弦值.【答案】(1)证明见解析(2)415477【解析】【分析】(1)要证AD PB ⊥,需要证过PB 的平面与AD 垂直即可,根据面面垂直的性质定理及线面垂直的判定定理结合条件即得;(2)建立空间直角坐标系,先根据条件确定E 点的坐标,再求二面角.【小问1详解】如图:由于平面PDC ⊥平面ABCD ,平面PDC 平面ABCD CD =,过点P 作CD 的垂线交CD 的延长线于点O ,则PO ⊥平面ABCD .连接OB 交AD 于Q ,连接OA ,∵2PD =,120PDC ∠=︒,∴1OD =,∴2==OC AB ,又//AB CD ,90ABC ∠=︒,∴四边形ABCO 为矩形,∴OA BC ==,∴22OD OA OA AB ==,∴Rt Rt ODA AOB ∽△△,∴OAD ABO ∠=∠,又∵90OAD DAB ∠+∠=︒,∴90AQB ∠=︒,即AD OB ⊥,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,∴PO AD ⊥,又,,PO BO O PO BO ⋂=⊂平面POB ,∴AD ⊥平面POB ,又∵PB ⊂平面POB ,∴AD PB ⊥.【小问2详解】以O 为坐标原点,OA ,OC ,OP 所在直线分別为x ,y ,z 轴,建立如图所示的空间直角坐标系,则(P ,()0,2,0C,)A,)2,0B ,由于E 在PC 上,设PE PC λ=uur uuu r,则()0,2E λ,∴()2AE λ= ,又平面ABCD 的法向量()0,0,1n =,设直线AE 与平面ABCD 所成角为θ,∴sin cos ,5AE n θ== ,解得12λ=或52λ=(舍去),∴30,1,2E ⎛⎫ ⎪ ⎪⎝⎭,∴()0,2,0BA =- ,31,2BE ⎛⎫=- ⎪ ⎪⎝⎭,()BC = ,设平面ABE 的法向共()1111,,n x y z = ,平而PBC 的法向共()2222,,n x y z = ,则110,0,BA n BE n ⎧⋅=⎪⎨⋅=⎪⎩ 220,0,BC n BE n ⎧⋅=⎪⎨⋅=⎪⎩即111120,0,2y y z -=⎧⎪⎨-+=⎪⎩,22220,0,2y z ⎧=⎪⎨-+=⎪⎩取1x =2y =1n =,()22n = ,∴124154cos ,77n n = ,故平面ABE 与平面PBC 夹角的余弦值为415477.21.已知双曲线E :22213x y a -=(0a >)的左焦点为F ,A ,B 分别为双曲线的左、右顶点,顶点到双曲线的渐近线的距离为32.(1)求E 的标准方程;(2)过点B 的直线与双曲线左支交于点P (异于点A ),直线BP 与直线l :=1x -交于点M ,PFA ∠的角平分线交直线l 于点N ,证明:N 是MA 的中点.【答案】(1)2213y x -=(2)证明见解析【解析】【分析】(1)分析条件,求解方程即可.(2)找到斜率不存在的情况,容易证明,再求证斜率存在的情况即可.【小问1详解】因为22213x y a -=,所以b =,0ay -=,因为双曲线的右顶点为(),0a ,设右顶点到浙近线的距离为d ,由题意得22,23,d c a c ⎧⎪===⎨⎪+=⎩解得1,2,a c =⎧⎨=⎩则E 的标准方程为2213y x -=.【小问2详解】①当90PFA ∠=︒,即PF AF ⊥时,设点()2,p P y -,代入双曲线方程得,()22213P y --=,解得3p y =±,取第二象限的点,则()2,3P -,因为()1,0B ,所以直线BP 的斜率为30121BP k -==---,所以直线BP 的方程为=1y x +,令=1x -,解得2y =,即()1,2M -,因为直线FN 是PFA ∠的角平分线,且.90PFA ∠=︒,所以直线FN 的斜率为1FN k =,直线FN 的方程为2y x =+,令=1x -,解得1y =,即()1,1N -,此时12AN AM =,即N 是MA 的中点;②当90PFA ∠≠︒时,设直线BP 的斜率为k ,则直线BP 的方程为()1y k x =-,联立方程()221,1,3y k x y x ⎧=-⎪⎨-=⎪⎩消去y 得()()22223230k x k x k -+-+=,由韦达定理得,2233B P k x x k +=-,又因为1B x =,所以2233P k x k +=-,()2613P P k y k x k =-=-,点22236,33k k P k k ⎛⎫+ ⎪--⎝⎭,又因为()2,0F -,所以222226623333123PF k k k k k k k k k -===+--+-,由题意可知,直线NF 的斜率存在,设为k ',则直线NF :()2y k x ='+,因为FN 是PFA ∠的角平分线,所以2PFB NFB ∠=∠,所以tan tan 2PFB NFB ∠=∠,又因为22tan 1PF k PFB k k ∠==-,2'22tan 2tan 21tan 1NFB k NFB NFB k ∠∠='=-∠-,所以2'22211k k k k'=--,即()2210k k k k k +--''=',即()()10k k kk ''+-=,得k k '=-或1k k =',由题意知k 和k '异号,所以k k '=-,所以直线FN 的方程为()2y k x =-+,令=1x -,可得y k =-,即()1,N k --,所以AN k =-,直线PB 的方程为()1y k x =-,令=1x -,可得2y k =-,即()1,2M k --,所以2AM k =-,所以122AN kAM k -==-,即N 是MA 的中点.综上,N 是MA 的中点.22.若函数()f x 在[],a b 上有定义,且对于任意不同的[]12,,x x a b ∈,都有()()1212f x f x k x x -<-,则称()f x 为[],a b 上的“k 类函数”.(1)若()22x f x x =+,判断()f x 是否为[]1,2上的“3类函数”;(2)若()()21e ln 2xx f x a x x x =---为[]1,e 上的“2类函数”,求实数a 的取值范围;(3)若()f x 为[]1,2上的“2类函数”,且()()12f f =,证明:1x ∀,[]21,2x ∈,()()121f x f x -<.【答案】(1)()22x f x x =+是[]1,2上的“3类函数”,理由见详解.(2)2e 114e e e a ++≤≤(3)证明过程见详解.【解析】【分析】(1)由新定义可知,利用作差及不等式的性质证明()()12123f x f x x x -<-即可;(2)由已知条件转化为对于任意[]1,e x ∈,都有()22f x '-<<,()e ln 1x f x ax x x '=---,只需ln 3e x x x a x ++<且ln 1e x x x a x +->,利用导函数研究函数的单调性和最值即可.(3)分1212x x -<和12112x x ≤-<两种情况进行证明,()()12f f =,用放缩法()()()()()()()()()()1212121212f x f x f x f f f x f x f f f x -=-+-≤-+-进行证明即可.【小问1详解】对于任意不同的[]12,1,2x x ∈,有1212x x ≤<≤,1224x x <+<,所以122232x x ++<<,()()()2212121212121223222x x x x f x f x x x x x x x ⎛⎫⎛⎫++⎛⎫-=+-+=-<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()22x f x x =+是[]1,2上的“3类函数”.【小问2详解】因为()e ln 1x f x ax x x '=---,由题意知,对于任意不同的[]12,1,e x x ∈,都有()()12122f x f x x x -<-,不妨设12x x <,则()()()()21122122x x f x f x x x --<-<-,故()()112222f x x f x x +<+且()()112222f x x f x x ->-,故()2f x x +为[]1,e 上的增函数,()2f x x -为[]1,e 上的减函数,故任意[]1,e x ∈,都有()22f x '-≤≤,由()2f x '≤可转化为ln 3e x x x a x ++≤,令()ln 3ex x x g x x ++=,只需()min a g x <()()()212ln e xx x x g x x +---'=,令()2ln u x x x =---,()u x 在[]1,e 单调递减,所以()()130u x u ≤=-<,()0g x '<,故()g x 在[]1,e 单调递减,()()e 1min 4e e e g x g ++==,由()2f x '≥-可转化为ln 1e x x x a x +-≥,令()ln 1ex x x h x x +-=,只需()max a h x ≥()()()212ln e xx x x h x x +--'=,令()2ln m x x x =--,()m x 在[]1,e 单调递减,且()110m =>,()e 1e<0m =-,所以[]01,e x ∃∈使()00m x =,即002ln 0x x --=,即02000ln 2,e x x x x -=-=,当[)01,x x ∈时,()0m x >,()0h x '>,故()h x 在[)01,x 单调递增,当(]0,e x x ∈时,()0m x <,()0h x '<,故()h x 在(]0,e x 单调递减,()()000e 12max 0ln 11e e x x h x h x x ++-===,故2e 114e e e a ++≤≤.【小问3详解】因为()f x 为[]1,2上的“2类函数”,所以()()12122f x f x x x -<-,不妨设1212x x ≤<≤,当1212x x -<时,()()121221f x f x x x -<-<;当12112x x ≤-<时,因为()()12f f =,12112x x -<-≤-()()()()()()()()()()1212121212f x f x f x f f f x f x f f f x -=-+-≤-+-()()()121212122212112x x x x ⎛⎫<-+-=-+≤-+= ⎪⎝⎭,综上所述,1x ∀,[]21,2x ∈,()()121f x f x -<.【点睛】不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立()()max a f x ≥或()a f x ≤恒成立()()min a f x ≤;②数形结合(()y f x =的图象在()y g x =上方即可);③讨论最值()max 0f x ≤或()min 0f x ≥恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围扫码加微信,进微信交。
2024年广东省茂名市电白区部分学校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是()A. B. C. D.2.下面4个汉字中,可以看作是轴对称图形的是()A.中B.考C.必D.胜3.人类的遗传物质是DNA,其中最短的22号染色体含30000000个核苷酸,30000000用科学记数法表示为()A. B. C. D.4.一只蜘殊爬到如图所示的一面墙上,停留位置是随机的,则停留在阴影区域上的概率是()A.B.C.D.5.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A. B.C. D.6.如图,矩形ABCD内接于,分别以AB、BC、CD、AD为直径向外作半圆.若,,则阴影部分的面积是()A.B.C.D.207.一个不等式的解集为,那么在数轴上表示正确的是()A. B.C. D.8.甲、乙、丙、丁四支花样滑冰队的人数相同,且平均身高都是,身高的方差分别是,,,,则身高比较整齐的滑冰队是()A.甲B.乙C.丙D.丁9.如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内液体的最大深度,则截面圆中弦AB的长为()A. B.6cm C.8cm D.10.如图1,中,,,点D从点A出发沿折线运动到点B停止,过点D作,垂足为设点D运动的路径长为x,的面积为y,若y与x的对应关系如图2所示,则的值为()A.54B.52C.50D.48二、填空题:本题共5小题,每小题3分,共15分。
11.______.12.如图,数轴上的点A、B分别对应实数a、b,则______用“>”“<”或“=”填空13.两根木棒的长分别为2cm和4cm,要选择第三根木棒,将它们钉成一个三角形.如果第三根木棒长为偶数,则第三根木棒长为______.14.关于x的方程有两个相等的实数根,则c的值是______.15.代数式的最小值为______.三、解答题:本题共8小题,共75分。
春季学期初三数学(一)答题注意事项:1.本试卷一共25道题,答卷时间120分钟;2.所有试题在答题卡上作答,在试卷作答无效;3.所有试题在答题框内作答,超出答题框否则无效;一、选择题(本大题共10小题,每小题3分,共30分)1. 的倒数是( )A. B. 2024 C. D. 【答案】C【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可.【详解】解:∵,∴的倒数是,故选;C .2. “墙角数枝梅,凌寒独自开,遥知不是雪,为有暗香来.”出自宋代诗人王安石的《梅花》,梅花的花粉直径约为,用科学记数法表示为,则的值为( )A. B. C. D. 【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,解题的关键是确定的值以及的值.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:,故选:B .3. 如图,俯视图是()2024-2024-12024-120241202412024⎛⎫-⨯-= ⎪⎝⎭2024-12024-0.000036m 3.610m n ⨯n 4-5-4510n a ⨯110a ≤<n a n n a n 50.000036 3.610-=⨯A. B.C.D.【答案】C【解析】【分析】本题考查了几何体的三视图,俯视图是从上往下看,即可得到结果,正确得到俯视图是解题的关键.【详解】解:从上往下看,是一个矩形,看不见的线为虚线,所以左右两边为两条虚线,在两条虚线的中间有两条实线,故选:C .4. 下列运算结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了合并同类项,同底数幂乘除法,幂的乘方.根据幂的乘方,合并同类项的方法,以及同底数幂的乘除法的运算方法,逐项判断即可.【详解】解:A 、与不是同类项,不能合并,故本选项不符合题意;B 、,故本选项不符合题意;C 、,故本选项不符合题意;D 、,故本选项符合题意;故选:D .5. 如图,直线,直角三角形如图放置,,若,则的度数为( )A. B. C.D.的532a a a -=5315a a a ⋅=632a a a ÷=()2510a a -=5a 3a 53815a a a a ⋅=≠6332a a a a ÷=≠()2510a a -=ab ∥90DCB ∠=︒1118∠=︒2∠28︒38︒26︒30︒【分析】本题考查平行线的性质,根据平行线的性质(两直线平行,同位角相等),可以求得的度数,即可求得的度数.【详解】解:如图,,,,,,故选:A .6. 小明、小华、小亮、小雨4位同学在射箭训练中的平均成绩相同,他们的方差分别是,,,,你认为谁在训练中的发挥更稳定( )A. 小明B. 小华C. 小亮D. 小雨【答案】A【解析】【分析】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵小明、小华、小亮、小雨4位同学在射箭训练中的平均成绩相同,他们的方差分别是,,,,∴,∴在训练中的发挥更稳定小明,故选:A .7. 如果不等式(a +1)x >a +1的解集为x <1,则a 必须满足()A. a <0 B. a≤1 C. a >-1 D. a <-1BCE ∠2∠ a b ∥90DCB ∠=︒1118∠=︒1118BCE ∴∠=∠=︒228BCE DCB ∴∠=∠-∠=︒20.5s =小明21s =小华24s =小亮26s =小雨20.5s =小明21s =小华24s =小亮26s =小雨2222s s s s <<<小明小华小雨小亮【详解】∵不等式(a +1)x >a +1的解集为x <1,∴a+1<0,解得:a<-1.故选D.点睛:解不等式时,当不等式两边同时除以(或乘以)一个数后,若不等号的方向发生了改变,则说明同时除以的这个数的值小于0.8. 如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点,,都在横线上,若线段,则线段的长是( )A. B. C. D. 【答案】A【解析】【分析】过点作平行横线的垂线,交点所在的平行横线于,交点所在的平行横线于,根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:过点作平行横线的垂线,交点所在的平行横线于,交点所在的平行横线于,则,即,解得:,故选:A .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9. 如图,四边形是的内接四边形,若,则的度数为( )A B C 4AB =BC 24113A B D C E A B D C E AB AD BC DE =42BC=2BC =ABCD O 110A ∠=︒BOD ∠A. B. C. D. 【答案】D【解析】【分析】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解题的关键.先根据圆内接四边形的性质求出的度数,再由圆周角定理即可得出结论.【详解】解:∵四边形是的内接四边形,,∴,∴.故选:D .10. 如图,在中,,,,直线经过点,且垂直于,直线从点出发,沿方向以的速度向点运动,当直线经过点时停止运动,分别与、()相交于点,,若运动过程中的面积是(),直线的运动时间是(s ),则与之间函数关系的图象大致是( )A.B.40︒70︒110︒140︒C ∠ABCD O 110A ∠=︒18011070C ∠=︒-︒=︒2140BOD C ∠=∠=︒ABC 10AB =8AC =6BC =l A AB l A AB 1cm/s B l B AB AC BC M N AMN y 2cm l x y xC. D.【答案】B【解析】【分析】本题考查了二次函数的应用.分类讨论是解答本题的关键.过点C 作于D .先证明是直角三角形,进而求出的长.然后分和两种情况,求出的长,根据三角形面积公式即可得出y 与x 的函数关系式,进而得出结论.【详解】过点作于.∵,∴是直角三角形,∴,,∴,.分两种情况:(1)当时,如图1.∵,∴,∴,函数图象是开口向上,对称轴为轴,位于轴右侧的抛物线的一部分;(2)当时,如图2.∵,∴,∴,函数图象是开口向下,对称轴为直线,位于对称轴右侧的抛CD AB ⊥ABC CD AD 、0 6.4x ≤≤ 6.410x <≤MN C CD AB ⊥D 2222228610010AC BC AB +=+===ABC 63cos 105CD BC CAB AC AB ∠====84cos 105AD AC CAB AC AB ∠====4.8CD = 6.4AD =0 6.4x ≤≤3tan 4MN BC CAB AM AC ∠===34MN x =2133248y x x x =⋅=y y 6.410x <≤4tan 3MN AC CBA BM BC ∠===()4103MN x =-()()2142501052333y x x x =⋅⋅-=--+5x =物线的一部分;综上所述:B 选项符合题意.故选:B .二、填空题(本大题6小题,每小题4分,共24分)11. 分解因式:___________.【答案】【解析】【分析】本题考查了运用平方差公式分解因式,注意运算的准确性即可.详解】解:,故答案为:12.______.【答案】【解析】【分析】本题考查了二次根式的乘除法运算,根据法则计算即可.故答案为:13.的取值范围是______.【答案】【解析】【分析】直接根据二次根式有意义的条件列不等式求解即将.,∴.故答案为.【点睛】本题主要考查了二次根式有意义的条件,根据题意正确列出不等式是解答本题的关键.14. 如图,禁令标志是交通标志中的一种,是对车辆加以禁止或限制的标志,如禁止通行、禁止停车、禁止【214a -=1122a a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭22211114222a a a a ⎛⎫⎛⎫⎛⎫-=-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1122a a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭====x 1x ≥10x -≥1x ≥1x ≥左转弯、禁止鸣喇叭、限制速度、限制重量等.如图,该禁令标志的内角和是______.【答案】【解析】【分析】本题考查了正多边形的内角和,根据公式可得到正多边形的内角和,正确计算是解题的关键.【详解】解:由图可得,该标志为正八边形,即,故答案为:.15. 若单项式的与是同类项,则______.【答案】6【解析】【分析】由题意直接根据同类项的概念,进行分析求解即可.【详解】解:∵单项式与是同类项,∴.故答案为:.【点睛】本题主要考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”即相同字母的指数相同.16. 如图,的半径为4,圆心M 的坐标为,点P 是上的任意一点,,且、与x 轴分别交于A 、B 两点.若点A 、点B 关于原点O 对称,则当取最大值时,点A 的坐标为______.1080︒()2180n -⨯︒()()2180821801080n -⨯︒=-⨯︒=︒1080︒3m x y 62x y -m =3m x y 62x y -6m =6M ()68,M PA PB ⊥PA PBAB【答案】【解析】【分析】本题主要考查点与圆的位置关系,勾股定理,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出取得最小值时点的位置.由中知要使取得最大值,则需取得最大值,连接,并延长交于点,当点位于位置时,取得最大值,据此求解可得.【详解】解:连接,∵,∴,∵点、点关于原点对称,∴,∴,若要使取得最大值,则需取得最大值,连接,并延长交于点,当点位于位置时,取得最大值,过点作轴于点,则、,∴,又∵,∴,∴;∴,即点A 的坐标为,故答案为:.()14,0-AB P Rt APB 2AB OP =AB PO OM M P 'P P 'OP 'PO PA PB ⊥90APB ∠=︒A B O AO BO =2AB PO =AB PO OM M P 'P P 'OP 'M MQ x ⊥Q 6OQ =8MQ =10OM =4MP r '==10414OP MO MP ''=+=+=221428AB OP '==⨯=1142OA OB AB ===()14,0-()14,0-三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:【答案】5【解析】【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答【详解】解:原式【点睛】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则18. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了分式的化简求值和分母有理化,括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后代入数值进行分母有理化计算即可【详解】解:原式,当时,原式19. 小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到组(体温检测)、组(便民代购)、组(环境消杀).(1)小红的爸爸被分到组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)【答案】(1);(2).【解析】【分析】(1)共有3种可能出现的结果,被分到“B 组”的有1中,可求出概率.20-11-23++())(4313=-++5=2221211a a a a a a+⎛⎫-÷ ⎪-+-⎝⎭2a =2a a +1-()()()()()21211111a a a a a a a a a ⎡⎤-+=-÷⎢⎥+-+--⎢⎥⎣⎦()()()11112a a a a a a -+=⋅+-+2a a =+2a =-11===-=A B C B 1313(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.【详解】(1)共有3种可能出现的结果,被分到“B 组”的有1种,因此被分到“B 组”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:小红爸爸王老师AB CAAA AB AC BBA BB BC C CA CB CC 共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P (他与小红爸爸在同一组)=.【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 已知关于x 的一元二次方程.(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为、,且,求m 的值.【答案】(1)(2)【解析】【分析】本题主要考查了一元二次方程根与系数的关系,根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根,若是该方程的两个实数根,则.(1)根据题意可得,据此求解即可;13133193=240x x m -+=1x 2x 12121x x x x ++=4m ≤3m =-()200ax bx c a ++=≠240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-12x x ,1212b c a x x x x a+=-=,()2440m ∆=--≥(2)由根与系数的关系得到,再根据已知条件得到,解之即可得到答案.【小问1详解】解:∵关于x 的一元二次方程有两个实数根,∴,∴;【小问2详解】解:∵关于x 的一元二次方程的两个实数根为、,∴,∵,∴,∴,∵,∴符合题意.21. 如图,在四边形中,,过点B 作交于点E ,点F 为边上一点,,连接.(1)求证:四边形为矩形;(2)若,求的长.【答案】(1)见解析(2)10【解析】【分析】(1)由题意易证四边形为平行四边形,再根据有一个角是直角的平行四边形是矩形即可判定;(2)由题意易证,即得出,代入数据,即可求出的长,最后由勾股定理即可求解.【小问1详解】12124x x x x m +==,41m +=240x x m -+=()2440m ∆=--≥4m ≤240x x m -+=1x 2x 12124x x x x m +==,12121x x x x ++=41m +=3m =-34-<3m =-ABCD 90A C ∠=∠=︒BE AD ∥CD AD AF BE =EF ABEF 634AB BC CE ===,,ED ABEF BEC EDF ∽CE BC DF EF=DF证明:∵,即,,∴四边形为平行四边形.∵,∴四边形为矩形;【小问2详解】解:∵,∴.∵四边形矩形,∴,,∴,∴,即,解得:,∴.【点睛】本题考查矩形的判定和性质,平行线的性质,相似三角形的判定和性质,勾股定理.熟练掌握上述知识是解题关键.22. 应用题:深圳某学校为构建书香校园,拟购进甲、乙两种规格的书柜放置新购置的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高10%,用3300元购进的甲种书柜的数量比用4500元购进的乙种书柜的数量少5台.(1)求甲、乙两种书柜的进价;(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.请您帮该校设计一种购买方案,使得花费最少,并求出最少花费多少钱.【答案】(1)每个甲种书柜的进价为360元,每个乙种书柜的进价为300元.(2)购进甲种书柜20个,购进乙种书柜40个时花费最少,费用为18600元.【解析】【分析】(1)设每个乙种书柜的进价为x 元,每个甲种书柜的进价为元,根据“用3300元购进的甲种为BE AD ∥BE AF ∥AF BE =ABEF 90A ∠=︒ABEF BE AD ∥BEC D ∠=∠ABEF 90C EFD ∠=∠=︒6EF AB ==BEC EDF ∽CE BC DF EF =436DF =8DF =10DE == 1.1x书柜的数量比用4200元购进的乙种书柜的数量少5台”列方程求解即可;(2)设购进甲种书柜m 个,则购进乙种书柜个,购进两种书柜的总成本为y 元,然后根据意义列出y 与m 的函数关系式,然后再根据“乙种书柜的数量不大于甲种书柜数量的2倍”列不等式确定m 的 取值范围,最后根据函数的增减性求最值即可解答.【小问1详解】解:设每个乙种书柜的进价为x 元,则每个甲种书柜的进价为元,根据题意得,,解得,经检验,是原方程的根.(元).答:每个甲种书柜的进价为360元,每个乙种书柜的进价为300元.【小问2详解】解:设购进甲种书柜m 个,则购进乙种书柜个,购进两种书柜的总成本为y 元,根据题意得:,即,∵,∴y 随x 的增大而增大,当时,(元).答:购进甲种书柜20个,购进乙种书柜40个时花费最少,费用为18600元.【点睛】本题考查了分式方程的应用、一元一次不等式的应用、一次函数的应用等知识点,读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程和不等式以及函数解析式是解答本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ;(2)若sinC=,BD=8,求EF 的长.()60m - 1.1x 3300450051.1x x+=300x =300x =300 1.1330⨯=()60m -()33030060602y m m m m ⎧=+-⎨-≤⎩301800020y m m =+≥()600k =>20m =18600y =13【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,,可得,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得,求出OE ,,求出OF ,即可求出EF .【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠ADC+∠ODA=90°,∵OF ⊥AD ,∴∠AOF+∠DAO=90°,∵OD=OA ,∴∠ODA=∠DAO ,∴∠ADC=∠AOF ;(2)设半径为r ,在Rt △OCD 中,,∴,∴,sin 13C =3OD r OC r ==,12OE OA BD AB ==34OF OC BD BC ==1sin 3C =13OD OC =3OD r OC r ==,∵OA=r ,∴AC=OC-OA=2r ,∵AB 为⊙O 的直径,∴∠ADB=90°,又∵OF ⊥AD ,∴OF ∥BD ,∴,∴OE=4,∵,∴,∴.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y 轴正半轴交于C 点.(1)求二次函数的解析式.(2)在第一象限抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.【答案】(1) (2) (3)【解析】的12OE OA BD AB ==34OF OC BD BC ==6OF =2EF OF OE =-=()()()21121y t x t x t -++=+≠0x =3x =PBC S 45CAQ ∠=︒213222y x x =-++()2,31013,39⎛⎫ ⎪⎝⎭【分析】(1)把与代入,求出t 的值,即可;(2)过点P 作轴,交于点D .先求出直线的解析式为,设点,则点D 的坐标为,可得,再由,得到S 关于a 的函数关系式,即可求解;(3)将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,求出直线的解析式,即可求解.【小问1详解】解:∵与时的函数值相等,∴,解方程,得,把代入二次函数,∴二次函数的解析式为:.【小问2详解】解:如图,过点P 作轴,交于点D .把代入,得:,解得,∴点A ,∴,0x =3x =()()()21121y t x t x t -++=+≠PD y ∥BC BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2221a PD a -=+12PBC S PD OB =⋅△AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH 0x =3x =()()()()221010213132t t t t =++-⨯+⨯+-⨯+⨯+12t =12t =()()()21121y t x t x t -++=+≠213222y x x =-++PD y ∥BC 0y =213222y x x =-++2132022x x -++=121,4x x =-=()()1,0,4,0B -4OB =当时,,∴,设直线的解析式为,把点,代入得:,解得:,∴直线的解析式为,设点,则点D 的坐标为,∴,∴,当时,有最大值,最大值为4,所以点P 的坐标;【小问3详解】解:如图,将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,设直线的解析式为,把代入得:0x =2y =()0,2C BC y kx b =+()4,0B ()0,2C 240b k b =⎧⎨+=⎩122k b ⎧=-⎪⎨⎪=⎩BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2211312222222a a PD a a a ⎛⎫-+=+ ⎭=-++-⎝-⎪()22211244241222PBC PD OB a S a a a a ⎛⎫⋅=+⨯=-+=--- ⎪⎝=+⎭ 2a =PBC S ()2,3AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH ()1110y k x b k =+≠()21,02,11,A H -⎛⎫ ⎪⎝⎭,解得:,∴直线的解析式为,联立得,解得或,∴.【点睛】本题主要考查了二次函数的综合题,涉及了二次函数的图象和性质,求一次函数解析式,利用数形结合思想解答是解题的关键.25. 在中,.将绕点A 顺时针旋转得到,旋转角小于,点B 的对应点为点D ,点C 的对应点为点E ,交于点O ,延长交于点P .(1)如图1,求证:;(2)当时,①如图2,若,求线段的长;②如图3,连接,延长交于点F ,判断F 是否为线段的中点,并说明理由.【答案】(1)见解析(2)①;②F 是线段的中点.理由见解析【解析】【分析】(1)由旋转的性质得到,,,根据证明,即可证明;(2)①连接,由勾股定理求得,利用全等三角形性质和平行线的性质求得,推出,据此求解即可;②连接,延长和交于点G ,证明,求得,得到,再证明,据此即可证明F 是线段的中点.的111101122k b k b -+=⎧⎪⎨+=⎪⎩111313k b ⎧=⎪⎪⎨⎪=⎪⎩AH 1133y x =+2113313222y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩10x y =-⎧⎨=⎩103139x y ⎧=⎪⎪⎨⎪=⎪⎩1013,39Q ⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒ABC ADE V CAB ∠DE AB DE BC PC PE =AD BC ∥68CA CB ==,BP BD CE ,CE BD BD 6BP =BD AC AE =90C AEP ∠=∠=︒HL Rt Rt APE APC ≌△△PC PE =AP 10AB =DAP APD ∠=∠10DP AD ==AP AD CE Rt Rt ACP GAC ∽△△18AG =8GD BC ==GDF CBF ≌△△BD【小问1详解】证明:连接,由旋转的性质知,,,∵,∴,∴;【小问2详解】解:①连接,∵,,∴,由旋转的性质知,,, 由(1)知,∴,,∵,∴,∴,∴,∴,∴;②F 是线段的中点.理由如下,连接,延长和交于点G,如图,AP AC AE =90AED C AEP ∠=∠=∠=︒AP AP =()Rt Rt HL APE APC ≌PC PE =AP 90C ∠=︒68CA CB ==,10AB ==10AD AB ==8DE BC ==Rt Rt APE APC ≌△△PC PE =APE APC ∠=∠AD BC ∥DAP APC ∠=∠DAP APD ∠=∠10DP AD ==1082PC PE ==-=826BP BC PC =-=-=BD AP AD CE由(1)知,,∴是的垂直平分线,∴,∵,∴,∴, ∵,,∴,∴,∵,∴,,∴,∴,即F 是线段的中点.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,正确引出辅助线解决问题是解题的关键.AE AC =PE PC =PA CE PA CG ⊥90PAC ACG G ∠=︒-∠=∠Rt Rt ACP GAC ∽△△AC AG PC AC=2PC =6CA =18AG =18108GD BC =-==AD BC ∥G BCF ∠=∠GDF CBF ∠=∠GDF CBF ≌△△DF BF =BD。
2023年茂名市高三级第一次综合测试数学参考答案一、单选题:4.【解析】将2个8插空放入不相邻的5个空位(4个6之间有5个空位)中,2510C =5.【解析】如图所示为该圆锥轴截面,设顶角为α,因为其轴截面(过圆锥旋转轴的截面)是腰长为,面积为2的等腰三角形,所以2211sin sin 22l αα=⨯⨯=sin α=π3α=或2π3α=.由2π3α=得,πcos cos 23h l α==,πsin sin 323r l α===,则上半部分的体积为22311ππ333r h =⨯=,下半部分体积为218r h ππ=蒙古包的体积为3(18+6.【解析】1cos 211()sin 2sin(222242x πA f x x x T π-=+=-+∴=对于选项,,选项B:221(1-2)20且0()=22sin x sin x sin x cos x ,f x tan x T πsin x cos x sin x cos x-≠≠==∴=11()cos cos 222C f x x x x x x T π=-++=∴=对于选项,cos ,11()sin 2()sin(2)2623ππD f x x x T π=+=+∴=对于选项,,7.【解析】,685ln ,13ln ,564ln -=-=-=c b a 故可构造函数()(),112ln +--=x x x x f ()()(),01122'>+-=x x x x f 所以()()()543f f f <<12345678D A A D C C B D8.【解析】当PC CD ⊥时,三棱锥P ACD -的表面积取最大值,PD =三棱锥P ACD -的外接球的半径为R =.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9101112ACD ACD ABD BC10.【解析】由题意得,()()中心对称,,的图像关于01 x f 故A 正确;由()()()()x f x f x f x f +-=-=-2,且得()()()()x f x f x f x f ⇒+-=-=2的周期为4,故B 错误;()()01 01=-∴=f f ,故C 正确;()412121274 =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∴f f f x f ,的周期为 ,故D 正确11.【解析】A 选项:由抛物线C 的定义知A 是正确的;B 选项:由12y x '=,切线方抛物线C 在点(21-,)处的切线斜率为1-,切线方程为10x y ++=;C 选项:顶点在原点O 的正三角形与抛物线相交与A 、B 两点,这个正三角形的边长为,OAB ∆的周长为C 错;D 选项:F 为抛物线的焦点,过H 作HD 垂直抛物线C 的准线y=1-于点D ,如图由抛物线的定义知,1sin HG HG t HF HD HGD===∠当t 取最大值时,HGD ∠取最小值,(正弦函数的单调性的应用)即直线GH 与抛物线C 相切.设直线HG 的方程为1y kx =-,由214y kx x y=-⎧⎨=⎩得2404x x k +=-,所以216160k ∆=-=,解得1k =±,此时2404x x k +=-,即2440x x ±+=,所以2x =±,故()2,1H ±,所以1122222H S GF x =⋅=⨯⨯=△GFH ,故D 正确.12.【解析】原式变形为n n n m me m ln ln ->-,构造函数()x xe x f x -=,()()11'-+=x e x f x ,()()()x f x f x e x x ,0,110'>∴>+>时, 单调递增,()()()x f x f x e x x ,0,110'<∴<+<时, 单调递减对于A ,取1==n m 满足原式,所以A 错对于B ,当n e m n n m≥>∴>≤≤1,010ln 时,,即,当()()时,在时,∞+>00ln x f n 单调递增,原式()()n f m f ln >⇔,n e n m m>>∴,即ln ,所以B 对。
2023年广东省茂名市高州市中考物理一模试卷一、选择题(本题共7小题,每小题3分,共21分)1.(3分)对中学生的估测符合实际的是( )A.身高约为165mB.步行速度约为10m/sC.体重约为500ND.脉搏1s跳动次数约为60次2.(3分)如图所示,舞台上经常用喷撒干冰(固态二氧化碳)的方法制造白雾以渲染气氛。
对“白雾”的形成,以下解释正确的是( )A.上述现象的形成涉及的物态变化主要有凝华与液化B.干冰升华成二氧化碳气体吸热使周围环境温度降低,二氧化碳气体液化形成白雾C.白雾就是水蒸气D.形成白雾的过程中要放出热量3.(3分)中国诗词蕴含着丰富的光学知识,下列说法正确的是( )A.“小时不识月,呼做白玉盘”,天上的月亮是天然光源B.“掬水月在手,弄花香满衣”,水中的月亮是由于光的反射形成的C.“潭清疑水浅,荷动知鱼散”,“疑水浅”是因为光一直沿直线传播D.“峰多巧障日,江远欲浮天”,“巧障日”是因为光在经过山峰时发生了折射4.(3分)关于安全用电,下列说法正确的是( )A.用湿布擦正在发光的白炽电灯或日光灯B.人跟火线接触,一定会发生触电事故C.家庭电路必须安装保险盒或空气开关D.更换灯泡可以不断开控制灯泡的开关5.(3分)如图所示,水杯放在桌面上,有一铅球沉于水底,这时铅球受到的力有( )A.重力、浮力、水的压力、杯底的支持力B.重力、浮力、对杯底的压力C.重力、浮力、杯底的支持力D.重力、杯底的支持力6.(3分)如图所示四个实验中,能说明电动机工作原理的是( )A.B.C.D.7.(3分)卧室里的同一个照明灯通常用两个单刀双掷开关控制,一个安装在进门处,另一个在床头附近,操作任意一个开关均可以开灯、关灯,如图中能满足设计要求的是( )A.B.C.D.二、填空题(每空1分,共21分)8.(2分)冬天人们常搓手取暖,这是通过 方式来改变物体的内能;小萱放学一进家门,看到妈妈在做饭,做饭主要是通过 方式改变物体的内能。
2014年茂名市“一模”理综(物理部分)试卷分析邱耸源一、试卷(物理部分)总体评价1、试卷难度适中:单选题比2013年高考的难;双选题、实验题与2013年高考基本持平;两计算题都比2013年高考略难了一点,特别是36题的第三问,难度设置过大。
但整份试题没有“超标”、“超纲”;题量、分值、题型均与《考试说明》相吻合,能比较全面地考查学生,有较好的区分度,是一份比较理想的模拟试卷。
二、茂名一模暴露的问题1、基础知识不够扎实;2、解答实验题的能力太差;3、解答计算题不够规范;书写马虎,字母不规范,不愿意作图;4、答题时间分配不合理。
三、复习教学的几点建议1、总思想:降低难度、重视梯度;讲最通识的、教最基础的、做最经典的;潜心专研、理清思路、把握方向。
注重“基础”:①放心大胆地删除复习资料中的难题;②基础行、则物理行,基础行、则高考行;③拿稳基础分是永远不变的策略;④试题一定控制在60分左右甚至更高(稳定的难度,)不出现偏题、怪题是二轮复习的关键;十粒补药不如一粒毒药。
2、围绕这次考试暴露的问题进行教学①知识点和能力要求的缺陷;②应考技巧的缺陷。
3、复习讲究效率⑴、回归课本、浏览教材;尤其交流电、热学、原子物理部分的内容(争取拿足这个约16%)。
⑵、提高思维层次;A、减少在课堂讲解选择题。
以专题、课外作业形式,学生自主完成(教师提供参考答案);B、加强选择题专项训练:①分值大、难度不大,但要注意知识的覆盖面;a、加强对考纲、考试说明的学习,增加复习的针对性;b、对照考试大纲制定双向细目表;c、查漏补缺,关注冷偏;d、只要考到了冷偏点,难度小但差距大;②热学、原子物理必考、必易,志在必得;③加强选择题解题技巧的指导;④4单5双限时15~20分钟内完成。
(3)、增加学生对中等难度计算题训练、以学生训练为主,而不是老师讲解为主;(教师要做的事:选题要有代表性,试题要覆盖主干知识,组合要合理;提供的参考答案要简捷明了、思路清晰、正确规范)。
2023年广东省茂名市茂南区中考一模英语试题学校:___________姓名:___________班级:___________考号:___________一、完形填空Fan Shenghua, 59, is one of the inheritors (传承人) of the Longjing tea roasting technique (炒茶技术). We can know about __1__ his job is from his hands—they are thick and full of calluses (手茧).“Roasting tea leaves is __2__ part of the tea making process. You have to touch the leaves with your hands __3__ how much water should be removed (去除),” Fan said. This traditional technique not only makes sure the quality of the tea, but also is __4__ important part of Chinese tea culture. “Longjing tea leaves are known __5__ their color, taste and shape. Only by hand can we make __6__ better. It’s like making a work of art,” Fan said.Modern technology can save more time and energy. It __7__ more and more popular now. “It’s easier, __8__ the quality is not so good,” Fan said.When President Xi Jinping visited Hangzhou this year, he watched Fan roasting tea leaves __9__. President Xi later said, “Longjing tea __10__ by two hands and it greatly ensures the quality of the tea. It will never be replaced by modern technology. It’s our traditional culture. We need to pass it on.”1.A.who B.what C.when2.A.difficult B.more difficult C.the most difficult 3.A.feel B.feeling C.to feel4.A.a B.an C.the5.A.for B.with C.of6.A.they B.them C.their 7.A.becomes B.become C.became8.A.and B.or C.but9.A.care B.careful C.carefully 10.A.make B.is made C.madeIn your life, you are sure to meet thousands of people. Can you remember everyone? My answer is no.Before I graduated from the nursing school, we had an important exam in class. So Ireviewed the ___11___ for a whole night. The next day when I read the last question, “What is the name of the woman who cleans our classroom?” I was ___12___ at the question. I could only remember what she looked like but not her ___13___, even though I saw the woman almost every day. Finally, I had to ___14___ my paper without finishing the question. My classmates couldn’t ___15___ it, either.After class, one of my classmates asked the teacher if the last question would affect (影响) our ___16___. All of us hoped to get a good result. “Of course,” the teacher said___17___. “In our lives, we will meet a lot of people. They play different roles in our society. Many of them are important and ___18___ to us. They always give us a hand, and what we can do is just to smile at them or ___19___ them politely.”I will never ___20___ the test. We should try showing our kindness to everyone. Sometimes they make the world better and better.11.A.lesson B.meeting C.exam D.discussion 12.A.good B.angry C.surprised D.disappointed 13.A.age B.name C.look D.hobby 14.A.look up B.throw away C.deal with D.hand in 15.A.receive B.answer C.refuse D.discover 16.A.grades B.lives C.jobs D.choices 17.A.carefully B.easily C.luckily D.crazily 18.A.helpful B.similar C.strange D.dangerous 19.A.hate B.stop C.greet D.worry 20.A.remember B.fall C.finish D.forget二、阅读单选The summer holiday is coming. Here are three fun courses for you.21.Who may like the course in Pay Attention to Landscapes?A.A girl with singing skills.B.A boy without dancing skills.C.A woman interested in sports.D.A boy interested in watercolors. 22.Which course lasts the shortest time?A.Find Your Voice.B.Drawing for Fun.C.Pay Attention to Landscapes.D.The Music Takeaway.23.What can students do in the course Drawing for Fun?A.Paint outdoors together.B.Use soft pencils.C.Learn knowledge about watercolors.D.Have lunch with teachers. 24.When does the course Drawing for Fun start?A.B.C.D.25.Where is this passage most probably from?A.A textbook.B.A newspaper.C.A guidebook.D.A novel.Kenya(肯尼亚), a country in East Africa, is a land of natural beauty.Kenya lies along the equator on Africa’s east coast. The Indian Ocean is to the east of Kenya. Highlands rise in the western part of Kenya. Mount Kenya, at 5,199 meters, isKenya’s highest mountain. East of the highlands, the land goes down toward the coast.Kenya’s most important river, the Tana, starts from the highlands to the Indian Ocean. Most of the country’s other rivers are short and shallow. They sometimes dry up when there is little rainfall.Kenya has two wet seasons and two dry seasons. Rainfall is usually heavy from April to May and from November to December, while some areas are more cloudy without much rain between July and August and from January to March. Temperatures are generally warmer in the north and cooler in the highlands.Kenya is home to many national parks. Green forests and bamboo grow in the highlands. The country’s animals include elephants, lions, giraffes, zebras and many rare(稀有的) animals. The Kenyan government has set up more than 50 nature parks. Inside the parks, the wildlife is protected from hunting. This makes them excellent places to take a journey. 26.From Paragraph 2 we can know that ________.A.the western part of Kenya is level landB.Mount Kenya is Kenya’s highest mountainC.Kenya lies along the equator on Africa’s west coastD.the land goes down toward the coast in the west of the highlands27.What does the underlined word “shallow” in Paragraph 3 mean?A.not safe B.not deep.C.not wide.D.not dirty. 28.What is Kenya famous for according to Paragraph 5?A.Hunting.B.Fishing.C.Tourism.D.Growing trees. 29.What is the purpose of the passage?A.To invite people to visit Kenya.B.To introduce the country Kenya. C.To give advice on how to travel Kenya.D.To call on people to protect the wildlife. 30.What is the structure of the passage?A.B.C.D.三、阅读匹配配对阅读。
第一节完形填空(共15小题;每小题2分,满分30分)My good friend and neighbor is dying. She has 1 more health problems through the years than anyone should have to tolerate. Now as she approaches her 57th birthday she knows that it will 2 be her last. She has started 3 a lot of her things. She has given all of us around her much more than just her things though. She has also given us her friendship, her kindness, and her4 smile. She has given us her shining spirit that has made all of our lives so much5 . Whena local dog was 6 killed by a bear, my friend welcomed it into her home and nursed it back to7 . When any of us needed anything she was there doing all that she could with a 8 full of love and a soul full of goodness.She did all of this too while her health 9 to grow worse and worse. My friend, 10 , is not afraid of death. She has told me several times that she believes it will only be like a brief 11 and then she will awaken in Paradise(天堂). I am 12 as well that she will fit right in there because she already has a lot of paradise within herself. It is the paradise within her that she has so 13 and beautifully given to us all. ks5uWe all have a bit of paradise within ourselves. She has shown me that the best way to enjoy that paradise is to 14 it with everyone you meet. I wish my friend only joy in her 15 days here and endless love and life in her coming days in Paradise.1.A.asked B. battled C. raised D. checked2.A. probably B. temporarily C. unbelievably D. hardly3.A. collecting B. purchasing C. consuming D. donating4.A.arficifical B. bitter C. cold D. joyous5.A. tougher B. stranger C. brighter D.heavier6.A. nearly B. accidentally C. suddenly D. cruelly7.A. death B. health C. happiness D. heaven8.A.story B.purpose C. heart D. friend9.A.refused B. stopped C. intended D. continued10.A. however B. therefore C. instead D. also11.A. report B. sleep C. journey D. account12.A. sure B.doubtful C. afraid D. pleased13.A. easily B. bravely C. freely D. quickly14.A. charge B. create C. provide D. share15.A. terrifying B. remaining C. coming D. interesting第二节语法填空(共10小题,每小题1.5分,满分15分)When I was a child in 1970s, my family was very poor,just like other average families in the countryside. The second-hand clothes, rain-leaking roof of old house became part of 16 memory. However, the worst 17 (impress) is that I was feeling hungry all the time. Sometimes hunger bit me so severely 18 I regarded dried sweet potato slices as delicious snack. At that time, my dream was getting enough to fill my empty stomach.Ⅱ阅读 (共两节,满分50分) ks5u第一节阅读理解(共20小题;每小题2分,满分40分)AA man sat at a metro station in Washington DC and started to play the violin; it was a cold January morning. He played six Bach pieces for about 45 minutes. During that time, since it was rush hour, 1,100 people went through the station, most of them on their way to work.Three minutes went by, and a middle aged man noticed there was musician playing. He slowed his pace, and stopped for a few seconds, and then hurried up to meet his schedule.A minute later, the violinist received his first dollar tip: a woman threw the money in the till without stopping, and continued to walk.A few minutes later, someone leaned against the wall to listen to him, but the man looked at his watch and started to walk again. Clearly he was late for work.The one who paid the most attention was a 3-year-old boy. His mother tagged him along, hurried, but the kid stopped to look at the violinist. Finally, the mother pushed hard, and the child continued to walk, turning his head all the time. This action was repeated by several other children. All the parents, without exception, forced them to move on.In the 45 minutes the musician played, only 6 people stopped and stayed for a while. About 20 gave him money, but continued to walk their normal pace. He collected $32. When he finished playing and silence took over, no one noticed it. No one applauded, nor was there any recognition.No one knew this, but the violinist was Joshua Bell, one of the most talented musicians in the world. He had just played one of the most beautiful pieces ever written, on a violin worth $3.5 million dollars. ks5uTwo days before his playing in the subway, Joshua Bell sold out at a theater in Boston where the seats averaged $100.This is a real story. Joshua Bell playing in the metro station was organized by the Washington Post as part of a social experiment.The outlines were: in a commonplace(普通的)environment at an inappropriate hour: Do we enjoy beauty? Do we stop to appreciate it? Do we recognize the talent in an unexpected situation?One of the possible conclusions from this experience could be: If we do not have a moment to stop and listen to one of the best musicians in the world playing the best music ever written, how many other things are we missing?”26. Few people stopped to listen to Joshua Bell playing because____________.A. people were in a hurryB. they were not interested in musicC. it was too cold in the subwayD. the performance was not good enough27. When children stopped to look at the violinist, their parents ____________.A. would give him some moneyB. would stop to enjoy the musicC.would applaud for the performanceD. would urge them to continue walking28. Which of the following is true about Joshua Bell’s performance?A. Nobody gave him moneyB. Nobody recognized him. ks5uC.Nobody appreciated itD. Nobody organized it29.Joshua Bell played in the metro station in order to ____________.A. make more moneyB. practice his skills in playing musicC. made an advertisement for his concertD. find out people’s reaction under such a circumstance30. The purpose of the passage is to _________.A.set us to think about our life B.show us how to play musicC.tell us the importance of music D.report a subway performanceBKids undergo a large amount of pressure and stress during their school exams, which can often become quite overwhelming for them. It may be the first experience of stress, at this level, they have ever experienced and therefore quite frightening. Yes, you may say that it's all a part of growing up and therefore good lessons for them to learn, and to an extent I agree with you. However, it’s important to learn how to prepare for life’s challenges so that they aren’t overwhelming or scary and so that we are able to manage them the best we can.Here are some tips you can use during your kids exam time.Break their revision plan down into small parts. Doing this will help transform what once seemed like a huge impossible task into a more manageable one.Help them arrange properly so that the subjects they like the least (perhaps ones that require more time and effort) are worked on first; once they are out of the way, it will help reduce the worry.Plan week on week to make sure they are on track. Ticking items of a list each week will help them to feel good about themselves and their progress.Create rewards for all the ticks - a favourite TV programme, a delicious snack, an hour’s surfing the Internet, computer games or whatever it was that they enjoy the most. This will encourage them to carry on and make them feel good.Think of strategies on how to deal with exams calmly so their anxieties don't get the better of them.Talk about times in their lives when they had been successful at something and look at the qualities they used to get them there - determination, persistence, hard work, patience, positivity, dedication - discuss how they can apply these skills to their exams.Acknowledge that if they do their best that is good enough.Ensure they realize that this period in their lives will pass and that exams are only a temporary time in their lives; nothing can and does last forever.Ensure they keep their eye on the prize: enjoying their long summer holiday when the exams are finished; giving them something to look forward to will help to motivate them and provide a positive end in sight.31. According to paragraph 1, it’s important to learn how to prepare for exams because___.A. it is a part of growing up.B. It is the first experience of stressC. it helps kid release stress and do better.D. it is important to get a good mark in exams.32. Which subjects should be worked on first?A.Their best ones.B. Their favourite ones.C. the easiest onesD. the most difficult ones33. The underlined expression get the better of in Paragraph 7 is closest in meaning to ______.A. defeatB. worryC. keep sb. calmD. make sb. feel better34. According to the passage, which of the following is true?A.Kid should become aware of the importance of exams.B.Kids should learn to deal with exam pressure independently.C.Parents should keep their kids away from entertainment.D.Parents should care about the psychological development of children.35. Who are the intended readers of the passage?A. Kids.B. Parents.C. Educators.D. People in general.CThe rise in smartphones(智能手机)among young people may be having a direct effect on how successful they become as adults.Research from the University of Nebraska-Lincoln has discovered the average university student checks their phones 11 times per lesson, and more than 80 per cent believe this tech addiction is interfering with their learning.A quarter of students across five U.S states also blamed poor grades in exams specifically on the fact they used mobile devices(设备)when they should have been concentrating and revising - and these grades could determine the jobs they end up going into.Barney McCoy, an associate professor of broadcasting at the university, surveyed 777 students at six universities across five states about how they used digital devices in the classroom.The students were from UNL and the University of Nebraska at Omaha in Nebraska, Morningside College in Iowa, the University of North Carolina, the University of Kansas and the University of Mississippi.Around two thirds said they used phones, tablets and laptops for “non-classroom purposes” up to ten times during a typical university day, while 15 per cent admitted this figure was closer to 30 times.Among the top reasons why students checked their devices so regularly were staying connected and fighting boredom, at 55 per cent. Less than half said the devices were used for classwork.Texting was the most popular distraction(注意力分散)technique at 86 per cent, while 68 per cent said they used their phones to check personal emails. Two thirds used social networks, 38 per cent surfed the web and eight per cent admitted to playing games when they should have been studying.Despite eight out of ten students admitting their devices were distracting, fewer than five per cent considered it to be a “very big” distraction.“I don’t think students necessarily think it’s a big problem,” said McCoy said. “They think it’s part of their lives.”“It’s become automatic behaviour on the part of so many people - they do it without even thinking about it.”He continued, “They’ve got their laptops open, but they’re not always taking notes. Some might have two screens open -- Facebook and their notes.”36. The majority of the students think that using smartphones _________ .A. helps to improve their grades.B. contributed to their poor grades.C. has a bad effect on their studies.D. determines their jobs in the future.37. How many students surveyed used digital devices for “non-classroom pur poses” about 30 times during a day?A. About 518B. About 116C. About 427D. Less than 38838. _________ was the most popular form of distraction.A. TextingB. playing gamesC. surfing the webD. Checking personal emails39. Which of the following is true?A. Barney McCoy surveyed 777 students at the university he works in.B. A minority of the students said they used digital devices for classwork.C. Around two thirds admitted they used digital devices because lessons are boring.D. Barney McCoy thinks students’ using digital devices is not a big problem.40. The text is most likely to be found in a section about _________ .A. successful peopleB. political systemsC. science and technologyD. historical eventsDEngineers David Sheffield and Doug Watt volunteer for a charity group called Remap. It designs technology to help disabled people.The two engineers are designing a wheelchair for Shot Put thrower Shaun Sewell. He lost the use of his legs thirteen years ago in a motorcycle accident. David Sheffield predicts the new wheelchair design will be used as a model for future athletes. He says, “We were asked to make a chair which was totally adjustable in every way so that we could then use it not only just for Shaun but for other athletes. And then we could find the exact correct positions for the way they sit, the way they hold the pole, the way they lean back and so on.”The engineers took all of Shaun Sewell’s measurements so that the chair was perfectly designed for his body. They also spent time watching him throw, to see how his body moves and where extra support was needed.Shaun Sewell almost went to the Paralympic Games(残奥会)in Beijing in 2008. But he was unable to compete because of a life-threatening infection(感染). He hopes to attend the 2016 games in Rio de Janiero. And he says the new wheelchair could help him get there. He says, “I believe it's going to make a huge difference. I'm throwing really well with the frame that I have now, which is not right for me. So to have something right is only going to help improve my distance.”Peter Parry, chairman of the trustees at Remap, says its volunteers built devices for three of the athletes at the Paralympic Games in London. He says there are many rules about what technology is permitted. He says, “We can help them support themselves. We can provide them with the pole to help them balance their body. But what we can’t do is to have things like springs or hydraulics(液压装置), which would give them an unfair advantage,because then it becomes a battle of who can make the best device rather than who is the best athlete.”41. The Engineers make the wheelchair adjustable in order that_______ .A. it could be used easily by Shaun Sewell.B. it could also be used by other disabled athletesC. they could take all of Shaun Sewell’s measurementsD. Shaun Sewell could compete in the Paralympic Games42. Which of the following is true about Shaun Sewell?A. He became disabled in a traffic accident. ks5uB. He is one of the designers of the wheelchair.C. He won a prize in the Beijing Paralympic Games.D. He is recognized as a model for future athletes43. What does the underlined part “to have something right” (in Paragraph 4) mean?A. To have a good shot.B. To have a better coach.C. To own a suitable wheelchair.D. To attend the 2016 games in Rio de Janiero.44. We can learn from the last paragraph that _______ .A. Designing devices is a battle of who can make the best deviceB. the designers must consider the fairness of the competitionC. using the new wheelchair means winning the Paralympic GamesD. the designers can use any technology to ensure p aralympians’ success.45. Which of the following titles best summarizes the main idea of the passage?A. A Magic Wheelchair Designed for Disabled Athletes.B. A Wheelchair Designed to Develop the Best Athletes.C. Two Engineers Working as V olunteers for Charity Group.D. Technology Designed to Take Disabled Athletes to New Levels.第二节信息匹配(共5小题;每小题2分,满分10分)首先请阅读下列鲜花及相关介绍:以下是一些人的相关信息,请把他们情况与他们应该所购买的鲜花匹配起来。