1.4.1正弦函数、余弦函数的图象(第一课时)
- 格式:ppt
- 大小:420.00 KB
- 文档页数:14
1.4.1 正弦函数、余弦函数的图象1.4.2 正弦函数、余弦函数的性质考试标准知识导图学法指导1.本节内容以三角函数的图象及其性质为主,因此在学习过程中应先学会作图,然后利用图象研究函数的性质.2.深刻理解五点的取法,特别是非正常周期的五点.3.注意所有的变换是图象上的点在移动,是x 或y 在变化而非ωx .4.运用整体代换的思想,令ωx +φ=t ,借助y =sin t ,y =cos t 的图象和性质研究函数y =sin(ωx +φ),y =cos(ωx +φ)的图象和性质.第1课时 正弦函数、余弦函数的图象正弦曲线与余弦曲线及其画法状元随笔 1.关于正弦函数y =sin x 的图象(1)正弦函数y =sin x ,x∈[2k π,2(k +1)π],k∈Z 的图象与x ∈[0,2π]上的图形一致,因为终边相同角的同名三角函数值相等.(2)正弦函数的图象向左、右无限延伸,可以由y =sin x ,x ∈[0,2π]图象向左右平移得到(每次平移2π个单位).2.“几何法”和“五点法”画正、余弦函数的比较(1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦函数图象的方法. 该方法作图较精确,但较为烦琐.(2)“五点法”是画三角函数图象的基本方法,在要求精度不高的情况下常用此法. 提醒:作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)“五点法”作正、余弦函数的图象时的“五点”是指图象上的任意五点.( )(2)正弦函数在⎣⎢⎡⎦⎥⎤-3π2,π2和⎣⎢⎡⎦⎥⎤π2,5π2上的图象相同.( )(3)正弦函数、余弦函数的图象分别向左、右无限延伸.( ) 答案:(1)× (2)√ (3)√2.以下对正弦函数y =sin x 的图象描述不正确的是( )A .在x ∈[2k π,2(k +1)π](k ∈Z )上的图象形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点解析:画出y =sin x 的图象,根据图象可知A ,B ,D 三项都正确. 答案:C3.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )解析:函数y =-sin x 的图象与函数y =sin x 的图象关于x 轴对称,故选D. 答案:D4.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是________________.解析:令2x =0,π2,π,3π2和2π,得x =0,π4,π2,34π,π.答案:0,π4,π2,34π,π类型一 用“五点法”作三角函数的图象例1 用“五点法”作出下列函数的简图: (1)y =sin x +12,x ∈[0,2π];(2)y =1-cos x ,x ∈[0,2π]. 【解析】 (1)按五个关键点列表:(2)列表:作函数图象需要先列表再描点,最后用平滑曲线连线. 方法归纳作形如y =a sin x +b (或y =a cos x +b ),x ∈[0,2π]的图象的三个步骤跟踪训练1 画出函数y =3+2cos x 的简图. 解析:(1)列表,如下表所示(2)利用五点作图法画简图.类型二 正、余弦函数曲线的简单应用 例2 根据正弦曲线求满足sin x ≥-32在[0,2π]上的x 的取值范围. 【解析】 在同一坐标系内作出函数y =sin x 与y =-32的图象,如图所示.观察在一个闭区间[0,2π]内的情形,满足sin x ≥-32的x ∈⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π,所以满足sin x ≥-32在[0,2π]上的x 的范围是{x 0≤x ≤43π或5π3≤x ≤2π}.或⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π在同一坐标系内作y =sin x 与y =-32的图象,利用图象求x 的范围. 方法归纳利用三角函数图象解sin x >a (或cos x >a )的三个步骤 (1)作出直线y =a ,y =sin x (或y =cos x )的图象. (2)确定sin x =a (或cos x =a )的x 值. (3)确定sin x >a (或cos x >a )的解集.[注意] 解三角不等式sin x >a ,如果不限定范围时,一般先利用图象求出x ∈[0,2π]范围内x 的取值范围,然后根据终边相同角的同名三角函数值相等,写出原不等式的解集.跟踪训练2 根据余弦曲线求满足cos x ≤12的x 的取值范围.解析:作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为[π3+2k π,5π3+2k π],k ∈Z .在同一坐标内作y =cos x 与y =12的图象,利用图象求x 的范围.1.4.1-2.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列对函数y =cos x 的图象描述错误的是( ) A .在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同 B .介于直线y =1与直线y =-1之间 C .关于x 轴对称 D .与y 轴只有一个交点解析:观察余弦函数的图象知:y =cos x 关于y 轴对称,故C 错误. 答案:C2.下列各点中,不在y =sin x 图象上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫π2,1C.⎝⎛⎭⎪⎫3π2,-1 D .(π,1) 解析:y =sin x 图象上的点是(π,0),而不是(π,1). 答案:D3.不等式sin x >0,x ∈[0,2π]的解集为( ) A .[0,π] B .(0,π)C.⎣⎢⎡⎦⎥⎤π2,3π2D.⎝ ⎛⎭⎪⎫π2,3π2解析:由y =sin x 在[0,2π]的图象可得. 答案:B 4.点M ⎝⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A .0B .1C .-1D .2解析:点M 在y =sin x 的图象上,代入得-m =sin π2=1,∴m =-1.答案:C5.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( )A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同解析:根据正弦曲线的作法过程,可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象位置不同,但形状相同.答案:B二、填空题(每小题5分,共15分) 6.下列叙述正确的有________.(1)y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; (2)y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称; (3)正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围.解析:分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象观察可知(1)(2)(3)均正确.答案:(1)(2)(3)7.关于三角函数的图象,有下列说法: (1)y =sin|x |与y =sin x 的图象关于y 轴对称; (2)y =cos(-x )与y =cos|x |的图象相同;(3)y =|sin x |与y =sin(-x )的图象关于x 轴对称; (4)y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的序号是________.解析:对(2),y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同; 对(4),y =cos(-x )=cos x ,故其图象关于y 轴对称,由作图可知(1)(3)均不正确. 答案:(2)(4)8.直线y =12与函数y =sin x ,x ∈[0,2π]的交点坐标是________.解析:令sin x =12,则x =2k π+π6或x =2k π+56π,又∵x ∈[0,2π],故x =π6或56π.答案:⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫56π,12三、解答题(每小题10分,共20分)9.利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解析:(1)取值列表:(2)10.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解析:函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3. [能力提升](20分钟,40分)11.已知函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2πD .4π解析:依题意,由余弦函数图象关于点⎝ ⎛⎭⎪⎫π2,0和点⎝ ⎛⎭⎪⎫3π2,0成中心对称,可得y =2cosx (0≤x ≤2π)的图象和直线y =2围成的封闭图形的面积为2π×2=4π.答案:D12.函数y =2cos x -2的定义域是________. 解析:要使函数有意义,只需2cos x -2≥0,即cos x ≥22.由余弦函数图象知(如图),所求定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z .答案:⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z 13.利用“五点法”作出y =sin ⎝⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤π2,52π的图象.解析:列表如下:14.利用图象变换作出下列函数的简图:(1)y=1-cos x,x∈[0,2π];(2)y=|sin x|,x∈[0,4π].解析:(1)首先用“五点法”作出函数y=cos x,x∈[0,2π]的简图,再作出y=cos x,x∈[0,2π]的简图关于x轴对称的简图,即y=-cos x,x∈[0,2π]的简图,将y=-cos x,x∈[0,2π]的简图向上平移1个单位即可得到y=1-cos x,x∈[0,2π]的简图,如图所示.(2)首先用“五点法”作出函数y=sin x,x∈[0,4π]的简图,再将该简图在x轴下方的部分翻折到x轴的上方,即得到y=|sin x|,x∈[0,4π]的简图,如图所示.。
§1.4.1正弦函数、余弦函数的图象(1)班级: 姓名:【学习目标】:1.了解用单位圆中的正弦线画出正弦函数的图象。
2.掌握五点法画正(余)弦函数图象的方法。
3.会利用正弦、余弦函数的图像用简单的变换法(平移变换、对称变换)画出相关函 数的图像.【重点难点】:重点:利用“五点法”画出正弦函数﹑余弦函数的简图.难点:利用正弦线画出正弦函数的图像﹑余弦曲线和正弦曲线的联系.【学习流程】:一、回顾与思考:1、作函数图像的基本方法有哪些?( 、 、 等)2、诱导公式:回顾公式一﹑公式五﹑公式六的内容3、设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,足为M,则正弦线:==y αsin ;余弦线:==x αcos ;有向线段 叫做角α的正弦线,有向线段 叫做角α的余弦线.尝试作出下列各角的正弦线、余弦线:πππ,2,43 阅读课本P30至P33,思考并解决下列问题:一.正弦函数sin y x =的定义域.二.正弦函数sin y x =的图像的大致形状。
画法: 首先,考虑正弦函数x y sin =在]2,0[π∈x 的图象利用正弦线作出比较精确的正弦函数图象(其中]2,0[π∈x ) 第一步:先作单位圆,把⊙O 1十二等分;第二步:十二等分后得0,6π, 3π,2π,…2π等角,作出相应的正弦线;第三步:将x 轴上从0到2π一段分成12等份(2π≈6.28); 第四步:取点,平移正弦线,使起点与x 轴上的点重合;第五步:用光滑的曲线把上述正弦线的终点连接起来,得x y sin =,x ∈[0,2π]的图象;Poxy11 MA T其次:利用终边相同角有相同的的三角函数值作出x y sin =,在R x ∈的图象.说明:正弦函数的图象称为 .二、深入学习:(一)怎样用“五点法”画正弦函数sin y x =在区间[0, 2π]内的图像? 观察]2,0[,sin π∈=x x y 的图象上,起关键作用的点有以下五点:描出这五个点确定后图象的形状基本就确定了.在精确度要求不是太高时,要作出]2,0[,sin π∈=x x y 的图象,只需先找出五个关键点)0,0(,)1,2(π,)0,(π,)1,23(-π,)0,2(π,然后用光滑曲线将它们连接起来,就得到函数的简图,这种方法称为“五点作图法”.“五点法”是一种特殊的“描点法”。
第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
1.4.1 正弦函数、余弦函数的图象知识点一 正弦函数、余弦函数的概念实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值.这样,任意给定一个实数x ,有唯一确定的值sin x (或cos x )与之对应.由这个对应法则所确定的函数y =sin x (或y =cos x )叫做正弦函数(或余弦函数),其定义域是R .知识点二 几何法作正弦函数、余弦函数的图象利用正弦线,这种作图方法称为“几何法” 正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.知识点三 “五点法”作正弦函数、余弦函数的图象描点法作函数图象步骤:列表、描点、连线.类型一 “五点法”作图的应用1.用“五点法”作y =2sin2x 的图象时,首先描出的五个点的横坐标是( )A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π32、利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图.3、利用正弦或余弦函数图象作出y =⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +3π2的图象.类型二 利用正、余弦函数图象解不等式 命题角度1 利用正、余弦函数图象解不等式用三角函数图象解三角不等式的方法(1)作出相应正弦函数或余弦函数在[0,2π]上的图象; (2)写出适合不等式在区间[0,2π]上的解集; (3)根据公式一写出不等式的解集.1.不等式cos x <0,x ∈[0,2π]的解集为________.2、利用正弦曲线,求满足12<sin x ≤32的x 的集合.3、使不等式2-2sin x ≥0成立的x 的取值集合是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+3π4,k ∈Z B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+7π4,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-5π4≤x ≤2k π+π4,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+5π4≤x ≤2k π+7π4,k ∈Z命题角度2 利用正、余弦函数图象求定义域1、求函数f (x )=lgsin x +16-x 2的定义域. 2、求函数y =log 21sin x-1的定义域.3.若函数f (x )=sin x -2m -1,x ∈[0,2π]有两个零点,求m 的取值范围.。