直接展开法求解非线性运动微分方程
- 格式:doc
- 大小:156.00 KB
- 文档页数:4
非线性振动系统的动力学模拟和分析一、引言非线性振动系统是实际工程中经常遇到的一种振动模式,其动力学行为与线性振动系统有很大不同。
为了解决实际问题,需要对非线性振动系统进行深入研究,进一步分析其动力学行为。
本文将着重介绍非线性振动系统的动力学模拟和分析方法,并结合具体实例进行讲解。
二、基本概念1. 非线性振动系统非线性振动系统是指其运动方程中含有非线性项的振动系统。
其动力学行为与线性振动系统有很大不同,例如出现分岔、混沌等现象。
2. 动力学模拟动力学模拟是通过计算机模拟的方法研究动力学系统的行为。
它可以帮助我们深入理解非线性系统的物理现象,预测系统的行为以及设计系统的参数。
三、非线性振动系统动力学模拟方法1. 常微分方程方法其基本思路是通过建立非线性振动系统的运动方程,并运用数值分析方法进行求解。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程,可以将其展开为泰勒级数的形式,如下:$$f(x)=a_1x+a_2x^2+a_3x^3+...$$将运动方程离散化后,可以利用数值分析方法,如欧拉法、隐式欧拉法等,进行求解。
2. 辛普森法辛普森法是一种常用的非线性振动系统动力学模拟方法。
其基本思路是利用曲面的形状来逼近曲线,进而求解非线性振动系统的运动方程。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。
将运动方程离散化后,可以利用辛普森法进行求解。
3. 傅里叶级数方法其基本思路是将一个非线性振动系统的运动方程分解为一系列线性微分方程的和,进而用傅里叶变换的方法求解。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。
将运动方程展开为傅里叶级数的形式后,可以用傅里叶变换求解。
非线性偏微分方程及其几种解法综述姓名:柏宝红学号:BY1004120目录1、绪论 (3)1.1背景 (3)1.2 现状 (7)2、非线性偏微分方程的几种解法 (10)2.1逆算符法 (10)2.2 齐次平衡法 (11)2.3 Jacobi椭圆函数方法 (12)2.4 辅助方程方法 (14)2.5 F-展开法 (15)2.6 双曲正切函数展开法 (17)1、绪论以应用为目的,或以物理、力学等其他学科问题为背景的微分方程的研究,不仅是传统应用数学中一个最主要的内容,也是当代数学的一个重要组成部分.它是数学理论与实际应用之间的一座重要桥梁,研究工作一直十分活跃,研究领域日益扩大。
目前微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程(NLPDE).很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究.现实生活的许多领域内数学模型都可以用NLPDE来描述,很多重要的物理、力学等学科的基本方程本身就是NLPDE,另外,随着研究的深入,有些原先可用线性微分方程近似处理的问题,也必须考虑非线性的影响,所以对NLPDE的研究,特别是NLPDE求解精确解的研究工作就显示出了很重要的理论和应用价值,但是数学研究的结果,在目前还未能提供一种普遍有效的求精确解的方法.20世纪50年代以来,人们对非线性现象的研究中提出了“孤子”的概念,进而使得对NLPDE求解的研究成为非线性科学中的热点。
下面介绍一下孤立子理论的研究背景、研究现状。
1.1背景孤立子理论己经成为应用数学和数学物理的一个重要组成部分,在流体力学,等离子物理,经典场论,量子论等领域有着广泛的应用。
随着近代物理学和数学的发展,早在1834年由英国科学家Russell发现的孤立波现象近二十多年来引起了人们的极大关注,对这一现象的兴趣与日俱增.这是因为一方面孤立子具有粒子和波的许多性能,在自然界中有一定的普遍性,利用孤立子理论也成功地解释了许多物理上长期用经典理论未能解答的现象;另一方面,随着孤立子物理问题的深入研究,孤立子的数学理论也应运而生,并已初步形成比较完善的理论体系。
非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方法非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程(一)主要研究内容非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。
利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。
本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。
1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。
2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。
3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。
首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。
引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。
(二)研究方向的特色1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。
第三章 非线性微分方程动力系统的简化在非线性微分方程动力系统研究中,很自然地期望有一些有效的方法使原系统降阶或简化,井能保持原系统的动态特性。
目前,现有的知识主要有中心流形、范式、奇异摄动与精确线性化等。
本章将简要地叙述相关方面的基本内容3.1中心流形3.1.1中心流形的基本定理本节考虑以下形式非线性微分方程系统(,)(,)x Ax f x y y By g x y '=+⎧⎨'=+⎩Equation Section 3(3.1) 其中,m n x R y R ∈∈,假定A 和B 是具有相应维数的常数矩阵,并且A 的所有特征值具有零实部,B 的所有特征值具有负实部。
函数f 和g 关于其变元皆二阶连续可微,且(0,0)0,(0,0)0f g ==;(0,0)0,(0,0)0f g ''==(注: f '和g '是它们各自的雅可比矩阵)。
定义3.1 一个集合(流形)m n S R R ⊂⨯被称为系统(3.1)的局部不变流形(Local invariant manifold)是指,对任何的00(,)x y S ∈系统(3.1)的初值为00((0),(0))(,)x y x y =的解()x t 始终在集合S 内,其中||t T <,T 为某正数。
进而,如果,T =∞,那么S 就称为不变流形(invariant manifold)。
定义3.2 如果()y h x =是系统(3.1)的一个不变流形,并且()h x 为光滑函数,(0)0h =,(0)0h '=,那么它被称为中心流形(centre manifold )。
对于系统(3.1),我们有,定理3.1 对系统(3.1)而言,若A ,B ,和g 满足假设条件,那么存在一个中心流形()y h x =,其中||x δ< (δ为某一个正数),且2h C ∈。
证今:[0,1]n R ψ→为C ∞函数,取值为1,||1,0,|| 2.x x ψ≤⎧=⎨≥⎩又设(,)((),),(,)((),)x xF x y f x yG x y g x y εεψψ==其中0ε>。
8 非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。
本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。
8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图8-1 伺服电动机特性8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。
例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。
实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。
单项选择题1、短路电流最大有效值出现在〔1〕。
A 、短路发生后约半个周期时;2、利用对称分量法分析计算电力系统不对称故障时,应选〔2〕相作为分析计算的基本相。
B 、特殊相3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的选项是〔3〕。
C 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减到其稳态值。
4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在〔2〕。
B 、正序分量和负序分量; 5、在简单电力系统中,如某点的三序阻抗021∑∑∑==Z Z Z ,则在该地点发生不同类型短路故障时,按对发电机并列运行暂态稳定性影响从大到小排序,应为〔2〕。
B 、三相短路、两相短路接地、两相短路、单相接地短路;6、发电机-变压器单元接线,变压器高压侧母线上短路时,短路电流冲击系数应取〔2〕。
B 、1.8;7、电力系统在事故后运行方式下,对并列运行静态稳定储备系数(%)P K 的要求是〔3〕。
C 、(%)P K ≧10。
8、下述各组中,完全能够提高电力系统并列运行暂态稳定性的一组是〔2〕。
B 、变压器中性点经小电阻接地、线路装设重合闸装置、快速切除线路故障; 9、对于三相三柱式变压器,其正序参数、负序参数和零序参数的关系是〔2〕。
B 、正序参数与负序参数相同,与零序参数不同;10、分析计算电力系统并列运行静态稳定性的小干扰法和分析计算电力系统并列运行暂态稳定性的分段计算法,就其实质 而言都是为了求〔1〕。
A 、t -δ曲线1、计算12MW 以上机组机端短路冲击电流时,短路电流冲击系数应取〔2〕。
B 、1.9;2、发电机三相电压为:)sin(αω+=t U u m a、)120sin(0-+=αωt U u m b ,)120sin(0++=αωt U u m c ,如将短路发生时刻作为时间的起点〔0=t〕,当短路前空载、短路回路阻抗角为800〔感性〕时,B 相短路电流中非周期分量取得最大值的条件是〔2〕 B 、0110=α;3、具有阻尼绕组的凸极式同步发电机,机端发生三相短路时,电磁暂态过程中定子绕组中存在〔1〕。
非线性振动系统的分析和应用非线性振动系统是指其中至少包含一个非线性元件的振动系统。
非线性元件能够使得系统的振动特性发生较大的改变,如产生新的共振频率、引起失稳现象等。
因此,非线性振动系统的研究具有重要的理论和实际意义。
一、非线性振动系统的形式化描述非线性振动系统的数学模型通常可以表示为:$$\ddot{x}+f(x)\dot{x}+g(x)=0$$其中,$x$是系统的位移或角位移,$\dot{x}$是$x$的一阶导数,$\ddot{x}$是$x$的二阶导数。
函数$f(x)$和$g(x)$分别表示阻尼和弹性的非线性作用。
通常采用微分方程的数值解法,如欧拉法、龙格-库塔法等来进行求解。
二、非线性振动系统的稳定性及分析方法对于非线性振动系统,通常需要考虑系统的稳定性。
由线性振动系统的经验可知,系统的随机性通常较小,因此通常采用非线性分析方法来进行稳定性的分析。
主要的分析方法有:1.浅层非线性方法:包括哈摩因方法、平均法、福克方法等,能够快速地预测系统稳定性。
但是,这些方法通常需要对系统的非线性特性有一定的了解,且适用于一类特定的非线性系统。
2.深层非线性方法:包括留数方法、行波展开法、多尺度方法等,能够精确地分析具有较强非线性特性的系统。
但是,这些方法相对复杂,对数学知识和物理背景要求较高。
3.数值仿真方法:主要包括有限元法、有限差分法等,能够直接计算非线性振动系统的响应。
这些方法通常适用于求解较大、较复杂的非线性振动系统。
三、非线性振动系统的应用非线性振动系统的研究在物理、工程、数学等领域均有广泛应用。
以下列举部分应用领域:1.结构振动分析:对于大跨度、高层建筑、大型膜结构等复杂结构,通常需要考虑结构的非线性特性。
非线性振动系统的研究能够提高结构的安全性、经济性和绿色性。
2.摆钟:摆钟是一种常见的非线性振动系统,其运动特点由复杂的非线性微分方程描述。
摆钟系统的研究不仅有助于物理原理的深入理解,同时还能够应用于时间标准、导航、地震监测等领域。
电力系统分析考试题一、判断题1、分析电力系统机电暂态过程时,通常认为电磁暂态过程已经结束,即不再考虑发电机内部的电磁暂态过程。
(√)2、短路冲击电流出现在短路发生后约半个周期。
(√)3、不管发电机的各个绕组是由超导体还是非超导体构成,短路电流中的非周期分量都将逐渐衰减到零。
(×)4、当发电机定子绕组之间的互感系数为常数时,发电机为隐极机。
(√)5、电力系统发生不对称短路时,不仅短路点三相参数不对称,电力系统其他部分三相参数也将成为三相不对称的。
(×)6、不管架空输电线路是否假设避雷线,其负序电抗都是一样的。
(√)7、电力系统发生不对称接地短路时,故障处三相电压不对称分解出的零序电压是电力系统中出现零序电流的原因。
(√)8、小干扰法既可用于电力系统静态稳定性的分析,也可用于电力系统暂态稳定性的分析. (×)9、线路串联电容器可以提高电力系统并列运行的静态稳定性。
(√)10、从严格的意义上讲,电力系统总是处于暂态过程之中。
(√)11、无限大电源的频率保持不变,而电压却随着负荷的变化而变化,负荷越大,电源的端电压越低。
(×)12、不管同步发电机的类型如何,定子绕组与转子绕组之间互感系数都是变化的。
(√)13、对称分量法只能用于线性电力系统不对称故障的分析计算。
(叠加)(√)14、派克变换前后,发电机气隙中的磁场保持不变. (√)15、具有架空地线的输电线路,架空地线的导电性能越强,输电线路的零序阻抗越大。
(×)16、不对称短路时,发电机机端的零序电压最高。
(×)17、同步发电机转子的惯性时间常数JT反映了转子惯性的大小。
(√) 18、短路计算时的计算电抗是以发电机的额定容量为基准的电抗标幺值。
(√)19、切除部分负荷是在电力系统静态稳定性有被破坏的危机情况下,采取的临时措施。
(√)20、变压器中性点经小电阻接地可以提高接地短路情况下电力系统并列运行的暂态稳定性(√)21、对称分量法不能用于非线性电力网的不对称短路分析。