动力学 质点运动微分方程
- 格式:ppt
- 大小:2.55 MB
- 文档页数:46
变质量动力学曾凡林哈尔滨工业大学理论力学教研组本讲主要内容1、变质量质点的运动微分方程2、变质量动力学在火箭发射中的应用3、变质量质点的动力学普遍定理1、变质量质点的运动微分方程(1) 变质量质点的运动微分方程m 在时刻t ,质点的质量为m ,速度为vv 1在时刻t+d t ,并入速度为v 1的微小质量d mm +d m v 并入后,系统质量变为m +d m ,速度变为v +质点系在t 瞬时的动量:11d m m =+×p v v t +d t 质点系在t+d t 瞬时的动量:2(d )(d )m m =++p v v 根据动量定理有:(e)21d d t=-=p p p F (e)1d d d d d d m m m m t+×+×-×=v v v v F 略去高阶微量d m ·d v ,并在等式两边同时除以d t , 得:(e)1d d ()d d m m t t --=v v v F 式中v 1-v=v r 为微小质量在并入前相对于质点m 的相对速度, 令d d r m t f =F v 则有:(e)d d m tf =+v F F —变质量质点的运动微分方程方程形式与常质量质点运动微分方程相似,仅在右端多了一项F ϕ,它具有力的量纲,常称为反推力。
当d m /d t >0 时,F ϕ与v r 同向;当d m /d t <0 时,F ϕ与v r 反向。
1、变质量质点的运动微分方程(2) 常用的几种质量变化规律i 质量按线性规律变化1)1(0<-=t t m m b b ,由知,其反推力为:b 0d d m t m-=r 0rd d mm t f b ==-F v v 当v r 为常量时,反推力也为常量,且与v r 方向相反。
ii 质量按指数规律变化tm m b -=e 0由知,其反推力为:0d d t m m e t b b -=-r 0rd d tmm e t b f b -==-F v v 令a ϕ表示仅在反推力F ϕ作用下变质量质点的加速度,则:0rrtt m e m m e b f f b b b ---===-F v a v 当v r 为常量时,a ϕ也为常量,即由反推力引起的加速度为常量。
质点运动微分方程
质点运动微分方程是描述质点在运动中位置、速度和加速度之间关系的微分方程。
根据牛顿第二定律,质点的加速度与作用在质点上的合力成正比,与质点的质量成反比。
因此,可以得到质点的运动微分方程为 F = ma,即 F(x(t), v(t), t) = m * v'(t),其中 F表示作用在质点上的合力,m表示质点的质量,v(t)表示质点的速度,x(t)表示质点的位移。
解决质点运动微分方程可以得到质点的速度和位移的函数表达式,从而可以进一步分析质点的运动规律和特性。
质点运动微分方程在物理学、工程学等领域中有广泛应用,例如在运动学、力学、电学、热学等方面,都需要使用微分方程来研究质点的运动。
- 1 -。
§1.5质点运动微分方程a m F = ),,(t rr F F = ⇒质点动力学内容⎩⎨⎧)已知力求运动规律()已知运动规律求力(21 或二者兼而有之1、自由质点运动微分方程自由质点 不受任何约束 三个自由度 三个独立变量 由r m F= 得⎪⎩⎪⎨⎧===),,,;,,(),,,;,,(),,,;,,(t z y xz y x F z m t z y x z y x F y m t z y x z y x F x m z y x(※) (※)是二阶微分方程组,给出所有可能的运动,经两次积分,存在六个积分常数,满足(※)式的解有若干个;任何质点的实际运动,在任意时刻都有确定的位置和速度,通过0=t 时的000000,,;,,z y x z y x 确定积分常数,定出唯一解(满足初始条件),给出特定条件下的运动规律。
直线运动 ),,(t x x F xm = 平面运动 ⎩⎨⎧==),,;,(),,;,(t y x y x F y m t y x y x F x m y x ⎩⎨⎧=+=-),,;,()2(),,;,()(2t r r F rr m t rr F r r m r θθθθθθθθ2、非自由质点的运动微分方程(1)约束 质点运动所受的限制 受约束质点为非自由质点约束的数学表达式⇒约束方程 ,如0),,,(=t z y x f ;质点受到约束后自由度减少一般一个约束减少一个自由度;约束的数学意义是几何曲线或曲面,物理意义为约束反作用力;约束⇒约束反作用力 非自由质点⇒自由质点约束反作用力为未知量,不完全由约束而定,与质点所受的其它力和运动状态有关 例如 曲面约束⎩⎪⎨⎧+=+=+=z z y y x x R t z y x z y x F z m R t z y x z y x F y m R t z y x z y x F x m ),,,;,,(),,,;,,(),,,;,,(0),,,(=t z y x f (约束方程) 两个自由度 四个方程(2)内禀方程约束力处于法向平面内(,29p 图1.5.1),这时0=b a ,()n b⨯=τa 在密切平面内 选用自然坐标系 对理性约束 0=τR ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+==)3(0)2()1(2b b n n R F R F vm F dt dv m ρτ注意:在理想约束情况下,运动规律和约束反作用力可以分开求!由(1)式求出运动规律 (),,,z y x v ⇒将v 代入(2)式,利用232)1(1y y '+''=ρnR ⇒;由(3)b R ⇒ 运动规律和约束反作用力全部求出! 〖以平面约束为例证明232)1(1y y '+''=ρ)(x f y = dxy dydxds 2221'+=+=αtg y =' dxy y d '''+=232)1(1α ∴232)1(1y y '+''=ρ〗对非理想约束,即有摩擦存在时,切向方程中增加R f μ=一项,这时运动规律和约束反作用力不能分开求了! 3、运动微分方程的解理论力学中,常见变力,)t ,r,r (F形式复杂;求解二阶微分方程组,则 (1)隔离物体,具体分析(受力,已知,未知);(2)选取坐标系,建立微分方程组(力学问题⇒数学问题); (3)根据初始条件求解方程组; (4)分析结果,阐明物理意义。
应用质点系运动微分方程的研究技术一、质点系运动微分方程的定义质点系运动微分方程是一种描述物体在特定的空间内的运动轨迹的数学方程。
它是一种描述物体运动的微分方程,可以用来求解物体在特定条件下的运动轨迹。
它是一种描述物体运动轨迹的一般微分方程,可以用来解决质点系的运动问题,它可以用来求解物体在特定条件下的运动轨迹。
质点系运动微分方程的定义是:当物体处于一定的空间中,它的运动轨迹可以用一个特殊的微分方程来描述,这个微分方程就是质点系运动微分方程。
它由一个或多个未知函数的求导与一个或多个已知函数的乘积组成,这些函数可以是时间函数、位置函数或速度函数等,只要它们满足物体运动的物理规律。
例如,用质点系运动微分方程来描述一个抛物运动的物体,可以得到一个如下的微分方程:\frac{d^2x}{dt^2}=-g,其中,g表示重力加速度。
又如,用质点系运动微分方程来描述一个摆动运动的物体,可以得到一个如下的微分方程:\frac{d^2x}{dt^2}=-\frac{g}{l}sin(x),其中,g表示重力加速度,l表示摆的长度。
总之,质点系运动微分方程是一种描述物体在特定的空间内的运动轨迹的数学方程,它由一个或多个未知函数的求导与一个或多个已知函数的乘积组成,它可以用来求解物体在特定条件下的运动轨迹。
二、质点系运动微分方程的常见形式质点系运动微分方程是一组常见的微分方程,它们描述了质点系的运动。
它们的形式是一般的欧拉方程,也就是一阶微分方程组,其中有n个未知函数,每个函数有m个变量。
它们的具体形式是:$$\frac{d \mathbf{x}}{dt} = \mathbf{f}(\mathbf{x},t)$$其中,$\mathbf{x}$ 是质点系的状态变量,$\mathbf{f}$ 是质点系的动力学方程,描述了质点系的运动规律。
质点系运动微分方程有许多不同的形式,比如牛顿运动方程,描述了质点受到外力时的运动规律:$$m \frac{d^2 \mathbf{x}}{dt^2} = \mathbf{F}(\mathbf{x}, t)$$这里,$m$ 是质量,$\mathbf{F}$ 是外力。