伺服液压系统发展历程
- 格式:docx
- 大小:36.92 KB
- 文档页数:2
浅谈对液压系统的认识液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
液压系统(hydraulic system):定义:以油液作为工作介质,利用油液的压力能并通过控制阀门等附件操纵液压执行机构工作的整套装置。
液压系统的发展:20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使液压技术从军事上的应用很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛的发展和应用。
20世纪60年代以来,随着原子能、航空航天技术、微电子技术的发展,液压技术在更深、更广阔的领域得到了发展,60年代出现了板式、叠加式液压阀系列,发展了以比例电磁铁为电气-机械转换器的电液比例控制阀并被广泛用于工业控制中,提高了电液控制系统的抗污染能力和性能价格比。
随着科学技术的进步和人类环保、能源危机意识的提高,近20年来,人们重新认识和研究历史上以纯水作为工作介质的纯水液压传动技术,并在理论上和应用研究上,都得到了持续稳定的复苏与发展,正在逐渐成为现代液压传动技术中的热点技术和新的发展方向之一。
21世纪将是信息化、网络化、知识化和全球化的世纪,信息技术、生命科学、生物技术和纳米技术等新科技的日益进展将对液压传动与控制技术的研究、设计研究及方法、对包括液压阀在内的各类液压产品的结构与工艺、对其以其应用领域以及企业的经营管理模式产生深刻的影响并带来革命性变化。
我国近年来液压气动密封行业坚持技术进步,加快新产品开发,取得良好成效,也涌现出一批各具特色的高新技术产品。
北京机床所的直动式电液伺服阀、杭州精工液压机电公司的低噪声比例溢流阀(拥有专利)、宁波华液公司的电液比例压力流量阀(已申请专利),均为机电一体化的高新技术产品,并已投入批量生产,取得了较好的经济效应。
液压与气动的发展史及今后的发展分析一液压与气动的发展史液压传动和气压传动称为流体传动,是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
1795 年英国约瑟夫·布拉曼(Joseph Braman,1749 -- 1814) ,在伦敦用水作为工作介质, 以水压机的形式将其应用于工业上, 诞生了世界上第一台水压机。
1905 年将工作介质水改为油, 又进一步得到改善。
第一次世界大战(1914 -- 1918) 后液压传动广泛应用, 特别是1920 年以后, 发展更为迅速。
液压元件大约在19 世纪末20 世纪初的20 年间, 才开始进入正规的工业生产阶段。
1925 年维克斯(F.V ikers) 发明了压力平衡式叶片泵, 为近代液压元件工业或液压传动的逐步建立奠定了基础。
20 世纪初康斯坦丁·尼斯克(G ·Constantimsco) 对能量波动传递所进行的理论及实际研究;1910 年对液力传动( 液力联轴节、液力变矩器等) 方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941 -- 1945) 期间, 在美国机床中有30% 应用了液压传动。
应该指出, 日本液压传动的发展较欧美等国家晚了近20 多年。
在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。
近20~30 年间,日本液压传动发展之快,届世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。
业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压控制系统液压技术主要是由于武器装备对高质量控制装置的需要而发展起来的。
随着控制理论的出现和控制系统的发展,液压技术与待腻子技术的结合日趋完善,从而产生了广泛应用于武器装备的高质量电液控制系统。
同时,液压技术也广泛地应用于许多工业部门。
在这个发展过程中,控制装置的需要反过来迫使液压元器件、液压控制系统不断更新,不断发展提高。
本文结合课堂所学,简要讲述液压技术的发展和应用。
1.液压传动将源动力的能量按一定方式和规律传递给工作机构的作用叫传动。
在机器中起传动作用的机构叫传动机构。
目前传动有五种型式:机械传动、电气传动、气体传动、流体传动和复合传动。
在液体传动中,有一种以液体为传动介质,主要靠受压液体的压力能来实现运动和能量传递的叫液压才传动。
图1为一个简单的连通器,可以用来传递能量。
图1.连通器简图当右边小活塞在外力Fo作用下,向下推压右边腔室的液体时,该处的液体通过两腔室间连通的通道被挤压到左边大腔室中,使重物G运动,这样就起到了传动能量的作用。
但这种简单的连通器不能连续工作,下面以一个简单的例子来分析液压传动系统。
如图2所示,小活塞及其活塞缸为主动缸,在单向阀配合下不断从邮箱吸油,排左边大缸腔,被称为液压泵。
左边大活塞及其缸腔为工作缸,不断得到压力油,不断推举重物做功,被称为液压缸。
从图中知道,液压泵、液动机(液压缸和液压马达)和控制阀为组成液压系统的三个主要部分,加上辅助装置和液压油,这五个部分是实际液压机构所必须的。
图2.千斤顶的原理图2.液压元件根据各个元件在液压系统中的作用,主要分为动力元件(液压能源)—液压泵,执行元件(液动机)—液压马达(输出旋转运动)和液压缸(输出直线运动),以及各种控制阀。
2.1.液压控制元件液压阀是液压系统的控制元件,通过它改变系统中流体的运动方向、压力和流量。
在节流式伺服系统中,它直接控制执行元件动作;在容积式伺服系统中,它直接控制着泵的变量机构,改变其输出流量,从而间接的对执行元件的动作进行控制。
电液伺服阀的发展历史、研究现状及发展趋势一、电液伺服阀的发展历史电液伺服阀是电气信号控制液压执行元件的一种装置,它的历史可以追溯到20世纪50年代。
起初,电液伺服阀主要应用于导弹制导系统、火箭发动机控制系统等高端军事领域,其功用是将电信号转换为液压信号,驱动液压执行元件执行动作。
随着工业自动化和现代工程技术的不断发展,电液伺服阀已经广泛应用于各类液压传动系统中,成为自动化系统控制领域重要的元器件之一。
二、电液伺服阀的研究现状在广泛应用的同时,电液伺服阀的研究也在不断发展。
当前,主要研究方向包括电磁阀技术、增量式数字伺服技术、膜片式伺服技术、高动态特性伺服技术以及基于智能算法的控制策略等。
电磁阀技术是当前电液伺服阀的核心技术之一,它的改进可以有效提高该类产品的性能和可靠性。
增量式数字伺服技术是新近出现的伺服技术,具有高精度、高速度的特点,性能更为优越。
另外,基于智能算法的控制策略运用较广泛,它可以优化电液伺服阀的控制性能,提高系统的自适应能力等。
三、电液伺服阀的发展趋势未来,电液伺服阀仍将朝着更加高端、多样化的方向发展。
首先,随着制造业的不断升级和发展,对工业自动化设备的要求也将越来越高,即对电液伺服阀的性能要求也越来越高。
其次,综合应用多种新技术,如高速差动式伺服阀,普通增量式伺服阀和高速可变式数字伺服阀等结合,可以实现多静态特性、高动态性能的电液伺服阀技术。
再次,现如今智能化制造飞速发展,电液伺服阀也将随之演进,如引入新型材料、新型工艺,使其具备更高的智能化水平,以适应不断变化的市场需求。
以上是电液伺服阀的发展历史、研究现状及发展趋势的相关内容。
液压控制发展历程及趋势液压控制技术是一门新兴的科学技术,它是液压技术的一个重要分支,也是自动控制技术的一个重要分支。
目前,液压控制技术已成为一项重要的机电液一体化技术,它融合了控制理论、液压技术、电子技术、计算机技术、仿真技术、机械技术等等,不同领域的设计理论与技术在液压控制技术中汇集、衔接、交融、综合成一项技术。
1.4.1 发展历程液压控制技术的发展历程中可以看到液压技术的发展影像,也可看到控制技术等的发展痕迹,更重要的是液压控制技术发展过程自然地体现了多学科多领域技术融合的过程。
下面列举液压控制技术发展过程中的一些重要历史事件,它们可以描绘出液压控制技术的发展历程。
公元前240年,在古埃及出现了人类历史上第一个液压反馈系统——水钟。
换个角度看,公元前200多年阿基米德(Archimedes)关于浮力的论述实际上是液体压强(压力)的理论研究成果。
1650年,帕斯卡提出了帕斯卡原理。
它描绘了静态液体中的压力传播规律。
1686年,牛顿揭示了粘性液体的内摩擦定律。
18世纪,流体力学的连续性方程被建立起来。
1795年,英国出现了世界上第一台水压机,液压传动开始进入工程领域。
1873年,伺服马达(servo motor)一词出现,它指用曲柄连杆反馈轮船舵机运动自动关闭舵机操纵助力蒸汽装置的反馈控制机构。
1877年,Edward John Routh 提出了线性定常系统稳定性判据。
1895年,Adolf Hurwitz 发表了线性定常系统稳定性判据。
1906年前,液压传动与控制技术应用于海军战舰炮塔的俯仰控制。
1914年前,液压伺服控制技术出现在海军舰艇舵机的操控装置上。
1932年,Harry Nyquist 发表了关于奈奎斯特判据的论文。
1934年,伺服机构(servomechanism)一词出现,Harold Locke Hanzen给出了定义:“一个功率放大装置,其放大部件是根据系统输入与输出的差来驱动输出的。
我国液压技术发展现状分析及展望近代液压技术在上个世纪的石油工业中发展,舰船炮塔转位器最早出现液压产品,随后车床及磨床上也得到应用。
上个世纪30年代,普通车床上开始应用液压传动。
二战期间,伺服液压元件及控制系统得到广泛应用,致使液压技术获得极速发展。
1、液压系统应用领域20世纪50年代,伴随经济复苏,加工过程自动化水平逐渐提高,使液压技术可能转向民用领域,在机械、船舶、航空、航天等领域获得广泛应用。
上世纪60年代至今,因航天、航空、电子等技术发展,液压技术得到推广,在机械行业、机床、自动化生产线等方面得以使用。
总体而言,液压系统在以下7个领域有广泛应用。
(1)机械行业。
机械行业的液压系统为其重要组成部分。
例如挖掘机、混凝土搅拌车等设备的液压件。
(2)冶金行业。
冶金行业液压产品大约占设备总费用11%,其行业改造为液压产品提供了广阔市场。
此外,大量泵、阀、油缸也为液压系统必不可少的液压元件。
(3)武器设备。
当代武器设备上的液压元件的维护已成为重要研究方向,成为提高战斗力和武器寿命的重要因素。
(4)机床设备。
目前数控机床已为精密加工提供了可能,机床的液压系统所须大量泵阀液、气压元件。
(5)汽车产业。
汽车产业所需的变向助力泵,汽车制造设备上的各种泵阀、气源以及气缸等液压元件。
(6)液压测试台。
液压新产品投产前均需相应试验台进行测试其性能好坏,液压测试台成为液压技术的应用场合之一。
(7)游乐场所。
随着人们生活水平提高,娱乐设施逐渐成为人们生活一部分。
游乐设备上液压产品的使用极为普遍。
2、我国液压技术发展现状液压传动以流体为工作介质对能量进行传动及控制的传动方式。
相对其它传动形式,其具有输入力量大,结构紧凑,体积小,调速便利及便于控制等优点,从而被广泛应用。
目前我国制造业快速发展,正经历从制造大国向制造强国的转变,但因液压元件基础研究水平不高,严重制约其核心技术提升,正处于困难和机遇并存阶段。
液压技术对于我国机械制造业来说,具有极其重要作用,为一个十分重要的基础研究领域。
电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。
多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。
特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。
目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。
关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。
在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。
液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。
一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
液压伺服系统液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
一、液压伺服系统的基本组成液压伺服系统无论多么复杂,都是由一些基本元件组成的。
如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。
(1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。
外界能源可以是机械的、电气的、液压的或它们的组合形式。
(2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。
它具有放大、比较等几种功能,如滑阀等。
(3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。
(4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。
(5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。
二、液压伺服系统的分类液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。
电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。
如图是一个典型的电液位置伺服控制系统。
图中反馈电位器与指令电位器接成桥式电路。
反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。
反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。
当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。
电液伺服阀的发展过程及研究现状分析一概述电液伺服阀是电液伺服控制中的关键元件,它是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀。
电液伺服阀具有动态响应快、控制精度高、使用寿命长等优点,已广泛应用于航空、航天、舰船、冶金、化工等领域的电液伺服控制系统中。
二发展过程液压控制技术的历史最早可追溯到公元前240年,当时一位古埃及人发明了人类历史上第一个液压伺服系统——水钟。
然而在随后漫长的历史阶段,液压控制技术一直裹足不前,直到18世纪末19世纪初,才有一些重大进展。
在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物。
如:Askania调节器公司及Askania-Werke发明及申请了射流管阀原理的专利。
同样,Foxboro发明了喷嘴挡板阀原理的专利。
而德国Siemens公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域。
在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀。
然随着控制理论的成熟及军事应用的需要,伺服阀的研制和发展取得了巨大成就。
1946年,英国Tinsiey获得了两级阀的专利;Raytheon和Bell航空发明了带反馈的两级阀;MIT用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好。
1950年,W.C.Moog第一个发明了单喷嘴两级伺服阀。
1953年至1955年间,T.H.Ca rson 发明了机械反馈式两级伺服阀;W.C.Moog发明了双喷嘴两级伺服阀;Wol pin发明了干式力矩马达,消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题。
1957年R.Atchley利用Askania射流管原理研制了两级射流管伺服阀。
并于1959年研制了三级电反馈伺服阀。
1959年2月国外某液压与气动杂志对当时的伺服阀情况作了12页的报道,显示了当时伺服阀蓬勃发展的状况。
第11章液压伺服系统概述液压伺服控制技术是液压技术中的一个分支,又是控制领域中的一个重要组成部分。
一、液压伺服系统的发展历史在第一次世界大战前,液压伺服系统作为海军舰船的操舵装置已开始应用。
在第二次世界大战期间及以后,由于军事需要,特别是武器和飞行器控制系统的需要,以及液压伺服系统本身具有响应快、精度高、功率一重量比大等优点,液压伺服系统的理论研究和实际应用取得了很大的进展,40年代开始了滑阀特性和液压伺服理论的研究,1940年底,首先在飞机上出现了电液伺服系统。
但该系统中的滑阀由伺服电机驱动,只作为电液转换器。
由于伺服电机惯量大,使电液转换器成为系统中耗时最大的环节,限制了电液伺服系统的响应速度。
到50年代初,出现了快速响应的永磁力矩马达,形成了电液伺服阀的雏形。
到50年代末,又出现了以喷嘴挡板阀作为第一级的电液伺服阀,进一步提高了伺服阀的快速性。
60年代,各种结构的电液伺服阀相继出现,特别是干式力矩马达的出现,使得电液伺服阀的性能日趋完善。
由于电液伺服阀和电子技术的发展,使电液伺服系统得到了迅速的发展。
随着加工能力的提高和液压伺服阀工艺性的改善,使液压伺服阀性能提高、价格降低。
使液压伺服系统由军事向一般工业领域推广。
目前,液压伺服控制系统,特别是电液伺服系统已成了武器自动化和工业自动化的一个重要方面。
二、液压伺服系统的工作原理液压伺服控制系统是以液压伺服阀和液压执行元件为主要元件组成的控制系统,是一种高精度的自动控制系统。
如图所示,系统由滑阀1和液压缸2组成,阀体与缸体固定,液压泵以恒定的压力P向系统供油。
当阀心处于中间时,阀口关闭,缸不动,系统静止。
当阀心右移x,则a、b处有开口x v=x,压力油进入缸右腔,左腔回油,缸体右移。
由于缸体与阀体刚性固连,阀体也随缸体一起右移,结果使阀的开口x v减小。
当缸体位移y等于阀心位移x时,缸不动。
如果阀心不断右移,缸拖动负载不停右移。
如果阀心反向运动,液压缸也反向运动。
伺服液压系统发展现状伺服液压系统是指通过控制液压元件的工作状态来控制液压系统的工作。
伺服液压系统的发展可以追溯到上世纪50年代,随着科技的不断进步和工业自动化的大发展,伺服液压系统的应用范围不断扩大,技术水平也在不断提高。
目前,伺服液压系统已经广泛应用于各个领域,尤其在机械制造、冶金、船舶、航空航天等行业中得到了广泛应用。
伺服液压系统的功能不断增强,可以实现更加复杂的运动控制。
这一切离不开科技的发展,特别是计算机技术和油路控制技术的进步。
现在的伺服液压系统已经实现了数字化、网络化和智能化的发展,可以通过计算机控制和监控系统实现对伺服液压系统的智能化管理。
在液压系统控制方面,伺服阀的应用也越来越广泛。
伺服阀通过改变液压透平内部的阻尼或者阻力,实现对液压系统的精确控制。
目前,国内外已经有多种类型的伺服阀问世,如电液伺服阀、比例式伺服阀、先导式伺服阀等。
这些伺服阀不仅具有高精度、高速响应的特点,还具有节能、环保、可靠性好等特点。
此外,随着液压马达技术的进步,伺服液压系统在传动和运动控制方面已经取得了很大的突破。
液压马达通过改变油液进出的方式,可以控制机械设备的转速和转向。
近年来,液压马达在机械加工、农业机械等领域的应用越来越广泛,已经成为国内外伺服液压系统的重要组成部分。
总体来说,伺服液压系统的发展现状是不断创新和完善,在技术和应用上取得了显著的进展。
伺服液压系统的应用范围和功能越来越广泛,已经成为现代制造业中不可或缺的一部分。
然而,随着技术的进步,伺服液压系统还面临一些挑战,例如能效提升、噪声控制、可靠性和安全性等方面的改进。
因此,在未来的发展中,伺服液压系统仍然需要不断创新和完善,以满足不同领域和行业的需求。
伺服液压系统发展历程
液压系统是一种通过液体传递能量的动力传动系统。
它以流体力学原理为基础,利用液体的压力来实现力的传递和工作的执行。
伺服液压系统在工程领域具有广泛的应用,例如机械、汽车、建筑、航空航天等行业。
伺服液压系统的发展经历了多个阶段。
起初,液压系统主要用于工程机械领域,如挖掘机、铲车等,在这些应用中,液压系统主要用于完成一些简单的运动控制,如提升、转动等。
随着科学技术的发展和需求的增加,液压系统逐渐被应用于更为复杂的机械装置。
为了满足这些应用的需求,伺服液压系统开始引入了更加精确的控制技术,提高了系统的响应速度和控制精度。
这一阶段的液压系统主要应用于一些高精度、高速度的设备,如数控机床、飞机起落架等。
随着自动化技术的快速发展和工业生产的需求,伺服液压系统开始发展成为一种智能化的控制系统。
通过引入传感器、计算机等技术,液压系统可以实现更加精确的控制和自动化操作。
这一阶段的伺服液压系统应用于各个领域,如汽车制造、机械加工、工业生产线等。
近年来,伺服液压系统也开始向绿色与节能方向发展。
随着环境保护意识的增强,液压系统不仅要满足性能要求,还要具备低噪音、低污染、高效节能等特点。
为了实现这些目标,伺服液压系统引入了新的材料、设计理念和控制算法,以提高系统的能效和环保性能。
总结起来,伺服液压系统发展历程经历了从简单控制到精确控制,再到智能化控制的阶段,并逐渐朝着绿色与节能方向发展。
随着科技的进步和需求的变化,伺服液压系统将继续发展,为各个领域提供更加高效、可靠和环保的控制解决方案。
液压传动技术历史作者:若夕静学号:201179250218摘要:结合电子信息技术1.传动技术的历史液压技术从1795年英国制成世界上第一台水压机算起,已有二百多年的历史了,然而在工业上的真正推广使用却是20世纪中叶的事。
第二次世界大战期间,在一些武器装备上用上了功率大、反应快、动作准的液压传动和控制装置,大大提高了武器装备的性能,也大大促进了液压技术本身的发展。
战后,液压技术迅速由军事转入民用,在机械制造、工程机械、锻压机械、冶金机械、汽车、船舶等行业中得到了广泛的应用和发展。
20世纪60年代以后,原子能技术、空间技术、电子技术等的迅速发展,再次将液压技术向前推进,并在各个工业领域得到了更加广泛的应用【1】。
1.1早期-发展缓慢1650年帕斯卡提出了静止液体中的压力传播规律——帕斯卡原理,1686年牛顿揭示了粘性液体的内摩擦定律,18世纪流体力学的两个重要原理——连续性方程和伯努利能量方程相继建立,为液压技术的发展奠定了基础。
1795年英国约瑟夫·布拉曼(JosephRaman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生布莱士·帕斯卡(Blasé Pascal ,1623-1662)了世界上第一台水压机。
1905年将工作介质水改为油,又进一步得到改善。
1.2中期-迅猛发展第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段【2】。
1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20 世纪初康斯坦丁•尼斯克(G•Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展【3】。
液压机文献综述液压机文献综述液压机是一种以液体压力为动力来源的机械设备,广泛应用于工业生产的各个领域。
通过对液压机的发展历程、工作原理、性能特点、应用领域等方面的文献进行综述,可以更好地了解液压机的应用和发展趋势。
一、液压机的发展历程液压机最早出现于18世纪中叶,由英国的约瑟夫·布拉曼发明。
早期的液压机主要应用于船舶和机床等设备的液压传动系统。
随着工业技术的发展,液压机的应用范围逐渐扩大,成为现代工业生产中不可或缺的重要设备之一。
20世纪60年代以来,液压机的技术不断得到改进和完善,出现了许多新型的液压机,如数控液压机、电液伺服液压机等。
这些新型液压机的出现,使得液压机的控制精度、生产效率和可靠性得到了极大的提高。
二、液压机的工作原理液压机的工作原理是以液体压力为动力来源,通过液压缸将液体的压力转化为活塞的直线运动。
活塞的运动速度和压力可以根据需要进行调整。
在液压机的工作过程中,液体压力的大小和方向可以通过液压阀进行控制,从而实现对于液压机的精确控制。
三、液压机的性能特点1.高压力:液压机可以产生很高的压力,从而可以实现对于材料的深层次加工。
2.高精度:通过数控技术的应用,可以实现对于液压机的精确控制,从而提高了加工精度。
3.高效率:液压机的传动效率较高,可以减少能源的消耗。
4.广泛适用性:液压机可以应用于各种不同的行业和领域,如机械制造、航空航天、汽车制造等。
四、液压机的应用领域1.机械制造:在机械制造领域中,液压机被广泛应用于各种零件的加工和制造过程中,如铸件、锻件、钣金件等。
2.航空航天:在航空航天领域中,液压机被广泛应用于各种飞行器的制造和维修过程中,如飞机、火箭、卫星等。
3.汽车制造:在汽车制造领域中,液压机被广泛应用于汽车的制造和维修过程中,如发动机的装配、车身的焊接等。
4.石油化工:在石油化工领域中,液压机被广泛应用于各种设备的制造和维修过程中,如石油钻井平台、化工反应器等。
伺服液压系统发展历程
伺服液压系统是一种利用液压技术控制机械运动的系统,具有精度高、动作平稳等特点。
随着科技的不断进步,伺服液压系统经历了几个主要的发展阶段。
20世纪60年代初,伺服液压系统开始出现。
当时,由于电子
技术还不够发达,控制系统主要以液压传动为主。
伺服液压系统主要应用于钢铁、化工、石油等行业的生产和加工中。
然而,由于传统液压系统的性能限制,伺服液压系统的应用较为有限。
20世纪70年代,随着电子技术的进一步发展,伺服液压系统
逐渐走向工业化。
这一时期,控制系统开始引入电子元件,实现了对液压机械运动的精确控制。
伺服液压系统在航空、航天、汽车等领域的应用逐步增加,并且在精密加工等行业起到了至关重要的作用。
20世纪80年代末和90年代初,伺服液压系统迎来了一个重
要的发展阶段。
这个时期,随着计算机技术的飞速发展,伺服液压系统开始引入数字控制技术。
数字控制技术能够提高系统的精度和稳定性,实现更为复杂的运动轨迹控制。
同时,通过与计算机网络的结合,伺服液压系统的远程监控和维护也得到了极大的便利。
21世纪初,伺服液压系统进一步与先进的控制技术和智能化
技术相结合,形成了新一代的智能伺服液压系统。
这些系统采用了更加先进的传感器和执行器,能够实时监测系统的状态,并进行自我调节和优化。
此外,智能伺服液压系统还具有自诊
断和故障预测等功能,能够提前发现并解决潜在的问题,避免停机和损失。
总的来说,伺服液压系统经历了从传统液压到电控液压再到智能液压的发展历程。
随着科技的进步和应用领域的拓展,伺服液压系统不断提高精度和稳定性,推动了工业自动化的进一步发展,并在航空、航天、汽车等领域发挥着越来越重要的作用。
未来,随着人工智能、大数据等新技术的广泛应用,伺服液压系统有望进一步提升性能和智能化水平,为社会的发展做出更大的贡献。