初二数学 因式分解常用方法
- 格式:doc
- 大小:820.72 KB
- 文档页数:18
【初中数学】因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a -b =(a+b)(a-b)a +2ab+b =(a+b)a -2ab+b =(a-b)如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a -b =(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b) =a +2ab+b 和(a-b) =a -2ab+b 反过来,就可以得到: a +2ab+b =(a+b) 和a -2ab+b =(a-b) ,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a +2ab+b 和a -2ab+b 这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。
因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
西安乐童教育中心八年级数学 因式分解常见方法讲解和经典题型常见方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
初二数学因式分解的八种常见方法,你学会了就是学霸因式分解与整式乘法是互逆的运算,是学好代数的基础之一,希望同学给以足够的重视。
因式分解的每一步都必须是恒等变形,必须进行到每一个多项式因式都不能再分解为止。
常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。
在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。
下面通过例题一一介绍。
一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc 十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y 一3)][(x一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a²+2a十1)²=七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。
八年级数学因式分解12种常见方法整理1.提公因式法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
如,和的平方、差的平方3.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)4.十字相乘法(经常使用)对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
7.换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
8.求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )9.图像法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )10.主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
11.利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
12.待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
八年级因式分解法的四种方法在八年级数学课程中,因式分解是一个重要的内容。
下面我将介绍四种常见的因式分解方法,希望能够满足你的需求。
1. 公因式提取法:公因式提取法是最常见的因式分解方法之一。
它适用于多项式中存在公共因子的情况。
首先,找出多项式中的公因式,然后将这个公因式提取出来,剩下的部分进行简化。
例如,对于多项式2x^2 + 4x,可以提取公因式2x,得到2x(x + 2)。
2. 完全平方公式:完全平方公式是因式分解中常用的方法之一,适用于形如a^2 + 2ab + b^2或a^2 2ab + b^2的多项式。
利用完全平方公式,我们可以将这些多项式分解成两个平方的和或差。
例如,对于多项式x^2 + 6x + 9,可以将其分解为(x + 3)^2。
3. 分组分解法:分组分解法适用于四项式中存在两对互补的项的情况。
首先,将四项式中的项进行分组,然后在每个组内进行因式分解,最后再进行合并。
例如,对于多项式x^3 + 2x^2 + 3x + 6,可以将其分组为(x^3 + 2x^2) + (3x + 6),然后在每个组内进行因式分解,得到x^2(x + 2) + 3(x + 2),最后合并得到(x^2 + 3)(x + 2)。
4. 平方法:平方法适用于三项式中存在平方项和线性项的情况。
它的思路是将三项式中平方项的系数和线性项的系数相乘,然后找到一个数使得它的平方等于这个乘积,然后利用这个数进行分解。
例如,对于多项式x^2 + 5x + 6,我们可以将5乘以6得到30,找到一个数使得它的平方等于30,即5,然后将多项式分解为(x + 2)(x + 3)。
这些是八年级常见的因式分解方法,每种方法都适用于不同的多项式形式。
在实际应用中,可以根据多项式的特点选择合适的因式分解方法。
希望这些解释能够帮助你更好地理解因式分解的方法。
初二数学攻略因式分解的技巧与实例初二数学攻略:因式分解的技巧与实例在初二数学的学习中,因式分解是一个重要的知识点,也是许多同学感到头疼的部分。
但只要掌握了正确的技巧和方法,因式分解其实并不难。
接下来,就让我们一起深入探讨因式分解的技巧,并通过实例来加深理解。
一、什么是因式分解因式分解,简单来说,就是把一个多项式化成几个整式的积的形式。
例如,将多项式 x² 9 分解为(x + 3)(x 3) ,这就是因式分解。
二、因式分解的常用方法1、提公因式法这是因式分解的首要方法。
如果多项式的各项有公因式,那么先提取这个公因式,再进一步分解。
例如,对于多项式 6x + 9 ,公因式是 3 ,可以分解为 3(2x + 3) 。
2、公式法常用的公式有平方差公式:a² b²=(a + b)(a b) ;完全平方公式:(a ± b)²= a² ± 2ab + b²。
比如,对于 4x² 25 ,可以利用平方差公式分解为(2x + 5)(2x5) 。
对于 x²+ 6x + 9 ,可以利用完全平方公式分解为(x + 3)²。
3、十字相乘法对于二次三项式 ax²+ bx + c ,如果能找到两个数 p、q ,使得 p+ q = b , pq = ac ,那么就可以将原式分解为(x + p)(x + q) 。
例如,对于 x²+ 5x + 6 ,因为 2 + 3 = 5 , 2×3 = 6 ,所以可以分解为(x + 2)(x + 3) 。
4、分组分解法当多项式的项数较多时,可以将多项式适当分组,然后再用提公因式法或公式法进行分解。
比如,对于多项式 am + an + bm + bn ,可以先分组为(am +an) +(bm + bn) ,然后分别提取公因式得到 a(m + n) + b(m + n) ,最后再提取公因式(m + n) ,得到(m + n)(a + b) 。
因式分解的9种方法因式分解是代数学中的一项重要内容,可以将一个复杂的代数表达式分解成简单的乘积形式,从而便于计算和理解。
在因式分解过程中,根据不同的情况和不同的代数表达式,可以采用多种方法进行分解。
下面将介绍常见的九种因式分解方法。
一、公因式法公因式法是因式分解中最常用的方法之一、公因式法适用于含有公因式的多项式表达式。
它的基本思想是找出多项式表达式中所有项的最高次幂的公因式,然后将整个表达式除以这个公因式进行分解。
例如:4x^3+2x^2-6x可以分解为2x(2x^2+x-3)。
二、配方法配方法适用于含有二次项和一次项的多项式表达式。
它的基本思想是通过增加一个适当的常数因子,使得多项式表达式可以分解成两个完全平方的形式相加或相减。
例如:x^2+2x+1可以分解为(x+1)(x+1)。
三、平方差公式平方差公式适用于含有二次项且系数为1的多项式表达式。
它的基本思想是将多项式表达式表示为两个完全平方的差。
例如:x^2-4可以分解为(x+2)(x-2)。
四、差两个平方公式差两个平方公式适用于含有平方项的多项式表达式。
它的基本思想是利用两个完全平方的差进行分解。
例如:x^4-16可以分解为(x^2+4)(x^2-4)。
五、两项平方和公式两项平方和公式适用于含有平方项和常数项的多项式表达式。
它的基本思想是将多项式表达式表示为两个平方项的和。
例如:x^2+6x+9可以分解为(x+3)(x+3)。
六、组合法组合法适用于含有三项或三项以上的多项式表达式。
它的基本思想是根据多项式表达式中各项间的关系,将表达式分解为不同的组合。
例如:x^3+x^2+x+1可以分解为(x^2+1)(x+1)。
七、分组法分组法适用于含有四项或四项以上的多项式表达式。
它的基本思想是将多项式表达式进行适当的分组,然后在每一组内进行因式分解。
例如:x^3+2x^2+x+2可以分解为(x^3+x)+(2x^2+2)=x(x^2+1)+2(x^2+1)=(x+2)(x^2+1)。
因式分解8种方法有很多方法可以用来因式分解一个多项式或数字。
在这篇文章中,我将向您介绍8种常见的因式分解方法,并提供每种方法的详细解释和示例。
让我们开始吧!1.相同因式的提取这是因式分解的最基本方法之一、它适用于多项式,其中所有项都具有相同的因式。
为了因式分解,我们只需要将相同的因式从每个项中提取出来。
例如,考虑多项式6x^2+9x+3、该多项式的所有项都可以被3整除。
因此,我们可以将其因式分解为3(2x^2+3x+1)。
2.公因式的提取如果一个多项式的每个项都可以被一个公共因子整除,那么我们可以将该因子提取出来并进行因式分解。
例如,考虑多项式2x^3-6x^2+8x。
所有的项都可以被2x整除,因此我们可以将其因式分解为2x(x^2-3x+4)。
3.分组方法分组方法适用于多项式,其中有四个或更多的项。
它的思想是将多项式中的项进行分组,然后在每个组中找到一个公共因子,最后提取出这些因子。
例如,考虑多项式x^3-2x^2+3x-6、我们可以将其分为两个组:(x^3-2x^2)和(3x-6)。
在第一组中,我们可以提取出一个公因子x^2,得到x^2(x-2);在第二组中,我们可以提取出一个公因子3,得到3(x-2)。
因此,多项式的因式分解为(x^2+3)(x-2)。
4.凑整法凑整法适用于多项式,其中二次项的系数为1、它的核心思想是通过加减适当的数来凑成一个完全平方。
通过这种方法,我们可以将多项式因式分解为两个平方的差。
例如,考虑多项式x^2+4x+4、我们可以将其凑整为(x+2)^2、因此,多项式的因式分解为(x+2)(x+2)或简化为(x+2)^25.和差平方差公式如果一个多项式可以表示成两个完全平方的差,我们可以使用和差平方差公式进行因式分解。
公式如下:a^2-b^2=(a+b)(a-b)例如,考虑多项式x^2-4、可以将其因式分解为(x+2)(x-2)。
6.加法公式和减法公式加法公式和减法公式适用于三角函数等特定的函数形式。
因式分解的14种方法因式分解是数学中的一种重要运算方法。
它可以将一个数或一个多项式分解成若干个乘积的形式,从而可以更好地理解和研究数与代数表达式的性质。
根据因式分解的对象和方法的不同,可以总结出以下14种因式分解的方法。
1.因数法:当一个数或一个多项式可以被一个常数因式整除时,可以使用因数法进行分解。
例如,对于多项式3x^2+6x,可以因式分解为3x(x+2)。
2.公因式法:当一个多项式中的每一项都有一个共同的因式时,可以使用公因式法进行分解。
例如,对于多项式6x^3+9x^2+15x,可以因式分解为3x(2x^2+3x+5)。
3.完全平方式:对于一个完全平方数,可以使用完全平方式进行分解。
例如,对于数16,可以因式分解为4^24.平方差公式:根据平方差公式,可以将两个平方差形式分解为两个因式的乘积。
例如,a^2-b^2可以分解为(a+b)(a-b)。
5. 二次三项式因式分解:对于一个二次三项式(ax^2 + bx + c),可以使用二次三项式因式分解法进行分解。
例如,对于多项式 x^2 + 4x+ 4,可以因式分解为(x + 2)^26.分组因式法:当多项式中存在多个项,但无法直接应用其他因式分解法时,可以使用分组因式法进行分解。
例如,对于多项式x^3+x^2+2x+2,可以因式分解为(x^3+x^2)+(2x+2),然后再进行进一步的分解。
7.因式分解与除法结合:当一个多项式无法直接因式分解时,可以先进行除法运算,将其分解为两个因式相乘的形式。
例如,对于多项式x^4-1,可以使用除法运算将其分解为(x^2+1)(x^2-1)。
8.差两个平方公式:根据差两个平方公式,可以将两个平方和形式分解为两个因式相乘的形式。
例如,a^2+b^2可以分解为(a+b)(a-b)。
9. 三次和三项式因式分解:对于一个三次和三项式(ax^3 + bx^2 + cx + d),可以使用三次和三项式因式分解法进行分解。
因式分解的16种方法
因式分解是将一个多项式或整数表达式分解为不可再分的乘积的过程。
在因式分解的方法中,常见的有以下16种方法:
1.公因式法:根据多项式的各项之间的最大公因式进行因式分解。
2.差平方公式:利用两个完全平方数的差可以分解成两个因数的平方差。
3.完全平方公式:利用两个因数的平方和可以分解成两个完全平方数
的和。
4.配方法:将多项式按照公式进行配方分解,然后进行因式分解。
5.一元两次方程法:对于一元二次方程,可以通过二次方程的解,将
方程进行因式分解。
6.和差化积:将多项式中的和差进行化积,然后进行因式分解。
7.分组法:将多项式中的项进行分组,然后进行因式分解。
8.提公因式法:将多项式的各项提取公因式,然后进行因式分解。
9.代入法:将因式分解的结果代入方程,通过求方程的解,验证因式
分解的正确性。
10.根式法:将多项式转化为根式表达式,然后进行因式分解。
11.差因式公式:利用一个完全平方数与一个差的因式的乘积可以表
示为两个因数的差的平方。
12.和因式公式:利用一个完全平方数与一个和的因式的乘积可以表
示为两个因数的和的平方。
13.二次齐次因式分解:对于二次齐次方程,可以通过齐次方程的解,将方程进行因式分解。
14.辗转相除法:对于整数表达式,可以利用辗转相除法,将整数进
行因式分解。
15.因数分解法:将整数进行因数分解,找出所有的因数,然后进行
因式分解。
16.文氏因式分解法:将多项式的各项按照文氏图进行排列,然后进
行因式分解。
因式分解法的12种方法一、公式因式分解法公式因式分解法是一种基于公式的因式分解方法。
通过运用一些常见的代数公式,将多项式进行因式分解。
例如,对于二次多项式a^2 + 2ab + b^2,可以利用平方差公式因式分解为(a + b)^2。
二、因式提取法因式提取法是一种通过提取多项式中的公因子来进行因式分解的方法。
通过寻找多项式中的最大公因子并将其提取出来,可以将多项式进行因式分解。
例如,对于多项式2x^2 + 4x,可以提取公因子2x,得到2x(x + 2)。
三、分组法分组法是一种将多项式中的项进行分组,并利用分组后的特点进行因式分解的方法。
通常是将多项式中的项进行适当的分组,然后利用分组后的项之间的关系进行因式分解。
例如,对于多项式x^3 + x^2 + x + 1,可以分组为(x^3 + x^2) + (x + 1),然后利用分组后的特点进行因式分解。
四、平方差公式平方差公式是一种通过平方差的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个平方差的形式。
例如,对于二次多项式x^2 - 4,可以利用平方差公式因式分解为(x + 2)(x - 2)。
五、差平方公式差平方公式是一种通过差平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个差平方的形式。
例如,对于二次多项式x^2 - 9,可以利用差平方公式因式分解为(x + 3)(x - 3)。
六、完全平方公式完全平方公式是一种通过完全平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为完全平方的形式。
例如,对于二次多项式x^2 + 6x + 9,可以利用完全平方公式因式分解为(x + 3)^2。
七、三项立方和公式三项立方和公式是一种通过三项立方和的形式进行因式分解的方法。
该方法适用于一些特定的立方多项式,可以将其因式分解为三项立方和的形式。
例如,对于立方多项式x^3 + 3x^2 + 3x + 1,可以利用三项立方和公式因式分解为(x + 1)^3。
因式分解的14种方法因式分解是代数学中的一种重要概念,它用于将一个多项式分解成几个较为简单的因子的乘积形式。
在代数学中,有多种方法用于进行因式分解,下面将介绍其中的14种常见的因式分解方法。
1.提取公因式法:从多项式中提取出公共因子,例如将2x^2+4x分解为2x(x+2)。
2.平方差公式:通过平方差公式将两个平方差表达式相加或相减,例如将x^2-4分解为(x-2)(x+2)。
3.平方和公式:通过平方和公式将两个平方和表达式相加或相减,例如将x^2+4分解为(x+2i)(x-2i)。
4. 公式法:根据一些特定公式进行因式分解,例如(x + a)(x + b) = x^2 + (a + b)x + ab。
5.组合方法:将多项式拆分成两个或多个较小的多项式,例如将x^3+8拆分为(x+2)(x^2-2x+4)。
6.凑项法:通过增减一些合适的项来凑出因子,例如将x^2+3x+2分解为(x+2)(x+1)。
7.换元法:通过引入新的变量来进行因式分解,例如将x^2+y^2分解为(x+y)(x-y)。
8.分组法:将多项式分成两组,然后进行公因式提取,最后再进行合并,例如将3x^3-3x^2+2x-2分解为3x^2(x-1)+2(x-1)=(x-1)(3x^2+2)。
9.公因式分解法:将多项式中的每一项提取出公共因子,例如将3x^2+6x+9分解为3(x^2+2x+3)。
10.因式分解公式法:根据一些特定的因式分解公式进行分解,例如(x+a)^2-b^2=(x+a+b)(x+a-b)。
11. 完全平方差公式:将完全平方差公式应用到多项式中,例如将x^2 + 2xy + y^2分解为(x + y)^212.构造法:通过构造合适的项来分解多项式,例如将x^3-64分解为(x-4)(x^2+4x+16)。
13.分解因子法:将多项式因子化,并检查是否存在相同的因子,例如将x^2-4x+4分解为(x-2)^214.复数法:使用复数进行因式分解,例如将x^2+2x+2分解为(x+(1+i))(x+(1-i))。
初中八年级因式分解常用方法因式分解是初中数学中的一个重要概念,对于解决一些数学问题非常有帮助。
以下是初中八年级因式分解的一些常用方法:1. 提公因式法:如果一个多项式的各项都含有公因式,那么可以把这个公因式提出来,从而将多项式化成积的形式。
例如:$3x^2 - 6x = 3x(x - 2)$2. 公式法:利用平方差公式 $a^2 - b^2 = (a + b)(a - b)$ 和完全平方公式$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$ 进行因式分解。
例如:$a^2 - b^2 = (a + b)(a - b)$3. 十字相乘法:对于形如 $ax^2 + bx + c = 0$ 的二次方程,如果 $ac <0$,则该方程有两个不相等的实根。
此时,可以将二次项和常数项的乘积与一次项的系数进行十字相乘,从而得到两个一次因式的乘积。
例如:$x^2 + 5x - 6 = (x + 6)(x - 1)$4. 分组分解法:对于一些比较复杂的多项式,可以先分组,然后分别提取各组中的公因式。
例如:$x^2 + 5x + 6 = (x + 2)(x + 3)$5. 双十字相乘法:对于形如 $ax^4 + bx^2 + c = 0$ 的四次方程,如果$ac < 0$,则该方程有两个不相等的实根。
此时,可以将四次项和常数项的乘积与二次项的系数进行双十字相乘,从而得到两个二次因式的乘积。
例如:$x^4 + x^2 - 6 = (x^2 - 3)(x^2 + 2)$以上是初中八年级因式分解的一些常用方法。
通过这些方法,可以有效地将多项式化简,从而更好地解决一些数学问题。
八年级分解因式技巧
在八年级的数学学习中,分解因式是一个重要的内容。
掌握分解因式的技巧可以帮助同学们更好地解决数学问题。
以下是一些分解因式的技巧:
1. 公因式法:如果一个多项式中各项都有一个相同的因子,那
么可以先将这个公因式提取出来,然后将剩余部分分解因式。
例如,对于多项式 6x+9y,可以将其分解为3(2x+3y)。
2. 平方差公式:对于形如a-b的多项式,可以使用平方差公式
进行因式分解,其中a和b为任意实数。
具体公式为:a-b=(a+b)(a-b)。
例如,对于多项式 4x-9,可以将其分解为(2x+3)(2x-3)。
3. 公式法:对于一些常见的多项式形式,可以使用公式进行因
式分解。
例如,对于多项式 a+2ab+b,可以使用二次完全平方公式进行因式分解,即(a+b)。
对于多项式 a-2ab+b,可以使用二次完全平
方公式进行因式分解,即(a-b)。
4. 分组法:对于一些难以直接因式分解的多项式,可以使用分
组法进行因式分解。
具体方法是将多项式中的项按照某种规则进行分组,使得每组都可以进行因式分解,然后将各组的因式提取出来,组合成一个新的多项式即可。
例如,对于多项式 x+3xy+2y+4x+12y,可以将其分组为(x+3xy+4x)+(2y+12y),然后分别因式分解为
x(x+3y+4)+2y( y+6),组合起来即可得到原式的因式分解。
掌握以上分解因式的技巧,同学们可以更加灵活地解决数学问题,提高数学成绩。
因式分解8种方法因式分解是数学中常见的一种运算方法,用于将一个多项式分解成其乘法因子的乘积形式。
以下介绍了8种常见的因式分解方法:1. 公因式提取法(公式法)公因式提取法是最常用的因式分解方法之一。
它适用于多项式中存在公共因子的情况。
我们需要找出多个项中共同的因子,并将其提取出来。
例如,对于多项式 `2x^2 + 4x`,我们可以提取出公因式 `2x`,然后将原多项式分解为 `2x(x + 2)`。
2. 平方差公式法平方差公式法适用于多项式形式为两个平方差的情况。
平方差公式包括两种情况,即二次平方差公式和三角平方差公式。
对于二次平方差公式 `(a-b)^2 = a^2 - 2ab + b^2`,我们可以通过使用该公式将多项式分解成平方的差。
对于三角平方差公式 `(a+b)(a-b) = a^2 - b^2`,我们可以通过将多项式形式转化为平方差形式进行分解。
3. 完全平方公式法完全平方公式法适用于多项式形式为一个完全平方的情况。
完全平方公式是 `(a + b)^2 = a^2 + 2ab + b^2`。
我们可以将多项式应用完全平方公式,然后利用该公式将其分解成平方的和。
4. 分组法分组法适用于多项式中存在相同的组合项的情况。
我们将多项式中的项进行分组,并在每个组内寻找公共因子。
例如,对于多项式 `ax + ay + bx + by`,我们可以将其分组为`(ax + ay) + (bx + by)`,然后提取每个组的公因式,即 `a(x + y) + b(x + y)`,最后再提取出公因式 `x + y`,将多项式分解为 `(x + y)(a + b)`。
5. 双线相乘法双线相乘法适用于多项式形式为两个二次型(一次项之积)相乘的情况。
我们需要寻找两个二次型,并将其相乘。
例如,对于多项式 `(ax + b)(cx + d)`,我们可以使用双线相乘法将其分解为 `acx^2 + (ad + bc)x + bd`。
八年级分解因式技巧在八年级的数学学习中,分解因式是一个非常重要的知识点。
分解因式是指将一个多项式拆分成两个或多个因式的乘积的过程。
掌握分解因式的技巧,不仅可以帮助我们更好地理解数学知识,还可以在解决实际问题时提高效率。
下面,我们来介绍一些八年级分解因式的技巧。
1. 提取公因式提取公因式是分解因式的最基本方法。
它的原理是将多项式中的公因式提取出来,然后将剩余部分分解成更简单的因式。
例如,对于多项式3x+6y,我们可以提取公因式3,得到3(x+2y)。
2. 分组分解分组分解是一种常用的分解因式方法。
它的原理是将多项式中的项按照某种规律分成两组,然后将每组中的项提取公因式,最后将两组中的公因式相乘。
例如,对于多项式x^2+3xy+2x+6y,我们可以将其分成两组,即x^2+2x和3xy+6y,然后分别提取公因式x和3y,得到x(x+2)+3y(x+2),最后将两组中的公因式(x+2)相乘,得到(x+2)(x+3y)。
3. 平方差公式平方差公式是分解二次多项式的常用方法。
它的原理是将二次多项式表示成两个平方数的差的形式,然后利用平方差公式将其分解成两个一次因式的乘积。
例如,对于二次多项式x^2-4,我们可以将其表示成x^2-2^2的形式,然后利用平方差公式(x+2)(x-2)将其分解成两个一次因式的乘积。
4. 和差化积公式和差化积公式是分解二次多项式的另一种常用方法。
它的原理是将二次多项式表示成两个一次多项式的和或差的形式,然后利用和差化积公式将其分解成两个一次因式的乘积。
例如,对于二次多项式x^2+6x+9,我们可以将其表示成(x+3)^2的形式,然后利用和差化积公式(x+3)(x+3)将其分解成两个一次因式的乘积。
以上是八年级分解因式的一些常用技巧。
在实际应用中,我们需要根据具体情况选择合适的方法进行分解因式。
通过不断练习和总结,相信大家一定可以掌握分解因式的技巧,提高数学解题的能力。
因式分解的12种方法因式分解是将一个多项式分解成两个或多个乘法因子的过程。
它在数学中有着广泛的应用,特别是在代数和数论中。
下面将介绍12种常见的因式分解方法。
1.相异二次因式法:当一个二次多项式的两个根分别为a和-b时,可以使用相异二次因式法进行因式分解。
例如,对于多项式x^2-4x+4,可以使用相异二次因式法将其分解为(x-2)^22.平方差公式:平方差公式可以将一个二次或更高次幂的多项式分解成两个平方差相减的形式。
例如,对于多项式x^2-9,可以使用平方差公式将其分解为(x-3)(x+3)。
3.割项公式:割项公式用于将一个高次多项式分解成两个低次多项式的乘积。
例如,对于多项式x^3+3x^2-4x-12,可以使用割项公式将其分解为(x+4)(x-1)(x+3)。
4.公因式提取法:公因式提取法是将一个多项式中的公因式提取出来,并将其余部分用括号括起来。
例如,对于多项式2x^2+6x,可以提取出公因式2x,得到2x(x+3)。
5.分组因式法:分组因式法是将一个多项式分成两组,并在每一组中找到一个公因式。
然后,将公因式提取出来,并将其余部分用括号括起来。
例如,对于多项式x^3+x^2+x+1,可以将其分成两组x^3+x和x^2+1,并分别提取出公因式x(x^2+1),得到(x^2+1)(x+1)。
6.组合因式法:组合因式法是将一个多项式分成若干个互补的因子,并将其进行组合。
例如,对于多项式x^2-5x+6,可以将其分解为(x-2)(x-3)。
7.差平方公式:差平方公式可以将一个多项式分解为两个平方差的形式。
例如,对于多项式x^2-4,可以使用差平方公式将其分解为(x-2)(x+2)。
8.完全平方公式:完全平方公式可以将一个二次多项式分解为两个平方和的形式。
例如,对于多项式x^2+6x+9,可以使用完全平方公式将其分解为(x+3)^29.配方法:配方法用于将一个二次多项式分解为两个一次多项式的乘积。
以下是一些初二因式分解的方法与技巧:
1.提取公因数:将一个多项式中的每一项因式分解后,如果有公共因子,可以提取出来,从
而得到更简单的表达式·
2.利用乘法公式:常见的乘法公式包括两个一次多项式相乘的公式和一个平方差公式,这些
公式可以帮助我们更快速地进行因式分解。
3.利用配方法:当多项式中出现两个一次项相加或相减时,可以使用配方法将其转化为一个
二次项,从而更方便进行因式分解。
4.利用特殊因式:有些多项式具有特殊的形式,例如平方差公式、完全平方公式、立方差公
式等,可以直接利用这些公式进行因式分解。
5.利用综合除法:当一个多项式除以一个一次多项式得到余数为0时,可以利用综合除法进
行因式分解,找到除式和余式的因式,从而得到原多项式的因式。
需要注意的是,因式分解需要不断练习和巩固,掌握一定的基础数学知识和技能,才能更加
熟练地进行因式分解。
同时,我们还需要注意化简过程中的细节问题,例如符号的运算、常
数项的处理等,避免出现错误。
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1 ) (a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2 ) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3 ) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4 ) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a . 解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 21 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析:解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法。
例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。
原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x (3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
方法:提中间项的字母和它的次数,保留系数,然后再用换元法。
解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x x x x 设t x x =+1,则21222-=+t x x∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x=)2)(12()1(2--+x x x(2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x设y x x =-1,则21222+=+y x x∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----x x x x x =()()13122----x x x x练习14、(1)673676234+--+x x x x (2))(2122234x x x x x +++++六、添项、拆项、配方法。