精品 2014年八年级数学上册整式乘除与因式分解08 因式分解--运用公式法
- 格式:doc
- 大小:394.15 KB
- 文档页数:7
整式是一个或多个代数式的和、差或积。
整式的乘除与因式分解是数学中非常重要的概念,是解决各种代数问题的基础。
本文将详细介绍八年级上数学中整式的乘除与因式分解的基本知识点。
一、整式的乘法1.1 单项式的乘法:单项式的乘法是指单项式与单项式之间的乘法。
例如:2x ×3y = 6xy,-4a^2 × 5b^3 = -20a^2b^31.2多项式的乘法:多项式的乘法是指多项式与多项式之间的乘法。
例如:(3x+2)(x-1)=3x^2+x-2二、整式的除法2.1 单项式的除法:单项式的除法是指单项式除以单项式。
例如:4x^2 ÷ x = 4x,10a^3b^2 ÷ 2ab = 5a^2b。
2.2多项式的除法:多项式的除法是指多项式除以多项式。
例如:(12x^3+9x^2+3x)÷3x=4x^2+3x+1三、整式的因式分解整式的因式分解是将一个整式写成几个整式的乘积的形式,其中每个整式都是原来整式的因式。
例如:12x^2+8xy,将其因式分解为4x(3x+2y)。
3.1 提取公因式:如果一个整式的每一项都能被同一个整式整除,那么这个公因式就是整式的一个因子。
例如:12x^2+8xy,公因式是4x。
3.2分解差的平方:差的平方是指形如"一个数的平方减另一个数的平方"的表达式。
例如:x^2-9,可因式分解为(x-3)(x+3)。
3.3 分解二次三项式:二次三项式是指形如"一个平方项加两个相同系数的次项"的表达式。
例如:x^2+2xy+y^2,可因式分解为(x+y)^2四、习题例析例1:将多项式4x^2+16x因式分解。
解:这个多项式2x的平方加4x的倍数,所以可以因式分解为4x(x+4)。
例2:将多项式a^2-9因式分解。
解:由差的平方公式可得,a^2-9=(a-3)(a+3)。
例3:将多项式4x^2y^2-8xy^2因式分解。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
八年级数学上册整式的乘法与因式分解整式的乘法和因式分解就像是数学世界里的一对魔法兄弟,一个负责把东西变多,一个负责把东西化简,玩得那叫一个不亦乐乎。
整式的乘法呢,就像是一个超级复制机。
你看啊,单项式乘以单项式的时候,就像是小细胞分裂。
比如说2x乘以3y,那就是把2和3相乘,x和y照抄,瞬间就得到6xy,就像一个细胞一下子变成了好几个,这速度比孙悟空拔毛变猴还快呢。
而单项式乘以多项式呢,就像是给一群小伙伴发礼物。
单项式是那个拿着礼物的人,多项式里的每一项都是一个等待礼物的小朋友。
例如a乘以(b + c),就等于ab+ac,把a这个礼物公平地分给b和c这两个小朋友。
多项式乘以多项式就更有趣啦,那简直是一场盛大的联欢派对。
(a + b)乘以(c + d),就像是a和b这两个小团体,分别去和c、d这两个小团体里的每个人握手拥抱,最后得到ac + ad+bc+bd,那场面,热闹非凡。
再说说因式分解,这家伙就像是一个神奇的收纳师。
它能把看起来乱糟糟的多项式变得整整齐齐。
提公因式法就像是从一堆东西里找出公共的部分先拎出来。
比如说2x+4y,2就是那个公共的小宝贝,提出来就变成2(x + 2y),一下子就清爽多了,就像把散落在房间里的同类型玩具都放在一个盒子里。
公式法更是厉害,完全平方公式(a±b)²=a²±2ab + b²就像是给多项式穿上了一件定制的漂亮衣服。
如果是a²+2ab + b²,你一眼就能看出来它是(a + b)²,就像你看到一个打扮得超级精致的小伙伴,马上能认出他是谁一样。
还有平方差公式a² - b²=(a + b)(a - b),这就像是把一个整体拆分成两个小部分,就像把一个大蛋糕切成两块一样简单又神奇。
这整式的乘法和因式分解啊,在数学的大舞台上可真是闪闪发光的明星。
有时候整式的乘法制造了一个超级复杂的式子,因式分解就像一个超级英雄一样,大喝一声“看我来收拾你”,然后就把式子变得简洁明了。
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
人教版八年级数学上册第十四章整式的乘法与因式分解知识点归纳14.1整式的乘法同底数幂相乘,底数不变,指数相加。
字母表示:a m·a n=a m+n(m,n都是正整数)例1、22×23=22+3=25同底数幂相除,底数不变,指数相减。
字母表示:a m÷a n=a m−n(a≠0,m,n都是正整数,且m>n)例2、28÷22=28−2=26规定:任何一个不等于0的数的零次幂都等于1 。
字母表示:a0=1(a≠0)例3、30=1,1000=1。
0的零次幂无意义。
一个数的负指数幂等于把幂指数变号后所得的幂的倒数。
字母表示:a−m=1a m(a≠0,m是正整数)例4、3−2=132=19,4−3=143=164。
幂的乘方,底数不变,指数相乘。
字母表示:(a m)n=a mn(m,n都是正整数)例5、(x2)3=x2×3=x6积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
字母表示:(ab)n=a n b n(n是正整数)例6、(xy)3=x3y3公式推广:(a m b n)p=a mp b np例7、(x3y5)4=x3×4y5×4=x12y20整式的乘法法则:①单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
例8、5a2b3×2a4b2=10a6b5②如果在单项式与单项式相乘过程中,对于只在一个单项式里含有的字母,就要连同它的指数作为积的一个因式。
例9、5a2b3×2c4=10a2b3c4③单项式与多项式相乘,就要用单项式分别乘多项式的每一项,再把所得的积相加。
例10、5a2b3×(3a5+4b2c3)=5a2b3×3a5+5a2b3×4b2c3=15a7b3+20a2b5c3④多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
例11、(4x+2)(5x−3)=20x2−12x+10x−6=20x2−2x−6整式的除法法则:①两个单项式相除,把系数与同底数幂分别相除作为商的因式。
分解因式的常用方法一、本节学习指导本节较为复杂,因式分解大多讲究技巧,于是我们要多做练习,慢慢总结。
本节有配套二、知识要点1、因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.2、提公共因式法提公因式法.如:ab+ac=a(b+c)(2)、概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: ma+mb-mc=m(a+b-c) (3)、易错点:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.3、运用公式法运用公式法.(2)、主要公式:(1)平方差公式:))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)、易错点:))((222244y x y x y x -+=-就没有分解到底.4、怎样选择公式(1)、平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)、完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.5、 分组分解法:(1)、分组分解法:利用分组来分解因式的方法叫做分组分解法.如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++(2)、概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.(3)、 注意: 分组时要注意符号的变化.5、十字相乘法有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
八年级数学上册第十四章整式的乘法与因式分解14.2 乘法公式14.2.2 第2课时乘法公式的综合运用同步训练(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第十四章整式的乘法与因式分解14.2 乘法公式14.2.2 第2课时乘法公式的综合运用同步训练(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第十四章整式的乘法与因式分解14.2 乘法公式14.2.2 第2课时乘法公式的综合运用同步训练(新版)新人教版的全部内容。
第2课时乘法公式的综合运用[学生用书P85]1.(x+y+z)2=( )2+2y( )+y2,两个括号内应填( )A.x+y B.y+zC.x+z D.x+y+z2.为了应用平方差公式计算(2x+y+z)(y-2x-z),下列变形正确的是()A.[2x-(y+z)]2B.[2x+(y+z)][2x-(y+z)]C.[y+(2x+z)][y-(2x+z)]D.[z+(2x+y)][z-(2x+y)]3.整式A与m2-2mn+n2的和是(m+n)2,则A=__ _.4.[2016·荆州]将二次三项式x2+4x+5化成(x+p)2+q的形式应为__ __.5.利用乘法公式计算:(1)(2x-3y)2-(y+3x)(3x-y);(2)(x+y)(x2+y2)(x-y)(x4+y4);(3)(a-2b+3)(a+2b-3);(4)[(x-y)2+(x+y)2](x2-y2);(5)(m-n-3)2。
6.[2016·衡阳]先化简,再求值:(a+b)(a-b)+(a+b)2,其中a =-1,b=错误!。
整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数). 同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘. 例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 规定:10=a例如:________3=÷a a ;________210=÷a a ;________55=÷a a 6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅- 7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-()b a b a b a 232454520÷- c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m二、因式分解: 1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m 2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +- 22)2()2(b a b a --+(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a3、分组分解法:1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).x 2+7x +6 (2)、x 2-5x -6 (3)、x 2-5x +6整式的乘法[同底数幂的乘法]a m ·a n =a m+n (m 、n 都是正整数) [幂的乘方](a m )n =a mn (m ,n 都是正整数) [积的乘方](ab)n =a n b n (n 是正整数) [单项式乘以单项式]单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. [单项式乘以多项式]单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. [多项式乘以多项式]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.平方差公式[平方差公式] (a +b)(a -b)=a 2-b 21. 公式的结构特征:⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).2. 公式的应用:⑴公式中的字母a ,b 可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.⑵公式中的a b22是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数.如:(a+b)( a - b)= a2 -b2↓↓↓↓↓↓计算:(1+2x)(1-2x)= ( 1 )2-( 2x )2 =1-4x2[完全平方公式]两数和(或差)的平方,等于它们的平方和加(或减)它们的积的2倍.公式特征:左边是一个二项式的平方,右边是一个三项式(首平方,尾平方,二倍乘积在中央).公式变形:(a+b)2=(a-b)2+4ab a2 + b2 = (a+b)2-2ab(a-b)2=(a+b)2-4ab a2 + b2 = (a-b)2+2ab(a+b)2- (a-b)2=4ab[公式的推广] (a+b+c)2=a2+b2+c2+2ab+2bc+2ac[同底数幂的除法]a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).a0=1(a≠0)任何非零数的零次幂是1.[单项式除以单项式]单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.[多项式除以单项式]多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.[因式分解]把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解(或分解因式). [提公因式法]ac +bc=(a +b )c[公式法][十字相乘法]一、训练平台1.下列各式中,计算正确的是( ) ×27=28×22=210+26=27+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( )239 D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425 B.25 254.设n 为正整数,若a 2n =5,则2a 6n -4的值为( )D.不能确定5.(a +b)(a -2b)= .6.(2a +2= .7.(a +4b)(m+n)= . 8.计算.(1)(2a -b 2)(b 2+2a )= ;(2)(5a -b)(-5a +b)= .9.分解因式. (1)1-4m+4m 2;(2)7x 3-7x.10.先化简,再求值.[(x-y)2+(x+y)(x-y)]÷2x ,其中x=3,y=. 二、探究平台1.分解因式(a -b)(a 2-a b+b 2)-a b(b-a )为( ) A.(a -b)(a 2+b 2)B.(a -b)2(a +b)C.(a -b)3(a -b)32.下列计算正确的是( ) ÷a 2=a 4(a ≠0) ÷a 4=a (a ≠0) ÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( )=(-x+4)(-x-4) +x 3n =x n (2+x 3)41=41(1+2x)(1-2x) 4.分解因式:-a 2+4a b-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= . . 8.计算.(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-.9.分解因式.(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a=2,b=时的面积.2.已知多项式x3+kx+6有一个因式x+3,当k为何值时,能分解成三个一次因式的积?并将它分解.3.如果x+y=0,试求x3+x2y+xy2+y3的值.4.试说明无论m,n为任何有理数,多项式4m2+12m+25+9n2-24n的值为非负数.第十六章分式知识点和典型例习题【知识网络】【思想方法】1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2-b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根. 题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xbb x a a ≠+=+. 3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。
下面将对这些知识点进行详细讲解。
一.幂的运算性质幂的运算性质是代数中最基本的知识之一。
其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。
例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。
二.乘方的运算乘方的运算也是代数中的基本知识。
根据乘方的运算法则,积的乘方等于各因式乘方的积。
例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。
三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。
根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。
例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。
任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。
例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。
五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。
对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。
对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。
1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。
初二数学上册:因式分解常见八种解题方法常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。
在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。
下面通过例题一一介绍。
一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂。
注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc 十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a²+2a十1)²=、七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如: 14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。
第08课 因式分解--运用公式法
知识点:
平方差公式: 完全平方公式:
平方差公式基础练习:
(1)x 2
-4=x 2
-22
= ( )( ) (2)x 2
-16 =( )2
-( )2
= ( )( ) (3)9-y 2
=( )2
-( )2
= ( )( ) (4)1-a 2
=( )2
-( )2
= ( )( ) 完全平方公式基础练习:
(1)a 2
+6a+9=a 2
+2× × +( )2
=( )2
(2)a 2
-6a+9=a 2
-2× × +( )2
=( )2
辨析,下面那些多项式可以使用公式法。
平方差: (1)x 2-y 2 (2)x 2+y 2 (3)-x 2-y 2 (4)-x 2+y 2 (5)64-a 2 (6)4x 2-9y 2
完全平方:(1)a 2-4a +4 (2)x 2+4x +4y 2 (3)4a 2+2ab +1
4b 2
(4)a 2-ab +b 2 (5)x 2-6x -9 (6)a 2+a +0.25 例1.把下列各式分解因式.
(1)11002-x (2)92+-x (3)2225
401.0y x - (4)x x -5
(5)m m 43-
(6)2633x x - (7)33ab b a -
(8)222)21()2(y y x ---
例2.把下列各式分解因式. (1)122++m m
(2)41292+-x x (3)110252+-x x
(4)9)(6)(2++-+n m n m (5)1)4(2)4(222++-+x x (6))1(4)(2-+-+y x y x
例3.用公式法计算下列各题.
(1)22)4
12()435(- (2)1198992++ (3)22201420144026-2013+⨯
(4)11435-1156522⨯⨯
例4.把下列各式分解因式.
(1))()(22x y y y x x -+- (2))()(22y x b y x a --- (3)814-x
(4)4416y x - (5)2232ab b a a +- (6)x x x +-232
(7)xy y x 4)(2+- (8)22216)4(x x -+ (9)42242b b a a +-
例5.已知3
1
2=-y x ,2=xy ,求43342y x y x -. 例6.已知3,5==+ab b a ,求32232ab b a b a ++.
例7.对于任意自然数n ,22)5()7(--+n n 都能被动24整除。
课堂练习:
1.下列各式从左到右的变形中,因式分解正确的是( )
A.224)2)(2(b a b a b a -=-+
B.1)(12222--=-+-y x y xy x
C.)1)(4(4322+-=--x x y xy x
D.)23)(23(492x x x +-=-
2.在实数范围内,下列多项式不能因式分解的有( )
①4x 2-25;②x 3+64x ;③x 2+64;④x 4
-64
A.②和③
B.③和④
C.①和③
D.仅③
3.多项式2
4414a a -
分解因式正确的是( ) A.)414(22-a a B.)4116(22-a a C.)14)(14(412+-a a a D.)12)(12(2
1
2+-a a a
4.若)32)(32)(94(81)2(2-++=-x x x x n ,则n 的值是( )
A.2
B.4
C.6
D.8
5.若多项式)3)(3(22y x y x qy pxy x +-=++,则p,q 的值依次为( )
A.-12,-9
B.-6,9
C.-9,-9
D.0,-9
6.若22169y mxy x ++是完全平方式,则m =( )
A.12
B.24
C.±12
D.±24 7.多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A.-a
B.))((b x x a a ---
C.)(x a a -
D.)(a x a -- 8.填空:把下列各式进行因式分解: (1)49
1
22-
b a =______________ (2)81)(2--y x =(x-y-9)( ).
(3)22)(9)(16y x y x +--=(_________)×(__________)=(_________)×(__________) (4))()(3b a b a +-+=(a +b)×[__________]=(a +b)×(_________) 9.利用因式分解计算:
2
224825210000-=
10.计算:20152014)125.0()8(-⋅-= ,2014201522-= 11.当m=______时,25)3(22+-+x m x 是完全平方式.
12.(1)2232232104b a b a b a =-(________) ;(2)x 2
-(_______)+16y 2
=( )2
13.若442-+x x 的值为0,则51232-+x x 的值是________ 14.已知x+y=1,那么
2211
22
x xy y ++的值为________
15.将下列多项式进行因式分解。
(1)22536x - (2)22916b a - (3)2201.09
4n m -
(4)1642-a (5)3
5a a -
(6)4
4y x -
(7)22)()(q x p x +-+ (8)25102++x x (9)ab b a 8)2(2+-
(10)2244y x xy ---
(11)2
269n mn m +-
(12)
2294y x -
(13)223612b ab a +- (14)1222+-ab b a (15)()()b a b a +-+43
(16)4
16x -
(17)2
1222+
-x x (18)22363y axy ax ++
16.已知x+y=4,xy=2 求2x 3y +4x 2y 2+2xy 3的值.
17.正方形1的周长比正方形2的周长长96厘米,其面积相差960平方厘米求这两个正方形的边长。
课堂测试题08
日期: 月 日 满分:100分 姓名: 得分:
1.下列各式从左到右的变形中,不是多项式因式分解的是( ) A.(x+1)(x-1)=x 2-1 B.x 2-2x+1=(x-1)2
C.x 2+x+xy+y=(x+y)(x+1)
D.α(x+1)2+b(1+x)2=(x+1)2(α+b) 2.在下列多项式中不是完全平方式的是( )
A.x 2+4x+4
B.9x 2+6x+1
C.x 2-3x+9
D.x 2-10x+25 3.下列两个多项式相乘,不能用平方差公式的是( )
A.)32)(32(b a b a ++-
B.)32)(32(b a b a --+-
C.)32)(32(b a b a --+
D.)32)(32(b a b a --- 4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )
A.3
B.-5
C.7
D.7或-1
5.下列各式中不能用平方差公式分解的是( )
A.-16a 2+b 2
B.–a 4-b 2
C.4225
1
m - D.x 2-81y 2 6.下列多项式不能用完全平方公式分解的是( )
A.x 2+4x+4
B.y 4-8y 2+16
C.x 2-2x+4
D.4y 2-12y+9 7.分解因式:(1)x 2-(_______)2=(x+5y)( x-5y);(2)1-(2x-3y )2=(1+2x-3y)( ). 8.分解因式:2294y x -= 9.分解因式:xy y x 222-+= 10.已知4)1(2+-+x m x 是完全平方式,则m=______ 11.分解因式:x xy x 2422--= )12(--y x 12.若8.6,2.3==y x ,则xy y x 222++= 13.分解因式.
(1)2
24
1y x +
- (2)42-x (3)(x+y)2-9y 2
(4)229)(16a y x -- (5)22)1()1(+-+a ab (6)22)()(z y x z y x +--++
(7)962+-x x (8)xy y x 222+-- (9)y y y 36323+-
14.用因式分解计算:
(1)225.345.65- (2)1110121012++⨯- (3)22455555⨯-⨯
15.已知2,1==-xy y x ,求32232xy y x y x +-的值.
16.已知)2)(1(522n x x mx x +-=--,求m 、n 的值.
17.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值。