八年级数学因式分解 公式法讲解与练习
- 格式:pdf
- 大小:131.90 KB
- 文档页数:11
八年数学公式法分解因式的解题方法与技巧数学公式法分解因式是一种常用且重要的解题方法。
以下是八年级数学公式法分解因式的解题方法与技巧:1. 常见因式分解公式:① (a+b)^2=a^2+2ab+b^2② (a-b)^2=a^2-2ab+b^2③ a^2-b^2=(a+b)(a-b)④ a^3+b^3=(a+b)(a^2-ab+b^2)⑤ a^3-b^3=(a-b)(a^2+ab+b^2)⑥ a^2+2ab+b^2=(a+b)^2⑦ a^2-2ab+b^2=(a-b)^2其中,(1)、(2)、(6)、(7) 属于平方公式,(3)、(4)、(5) 是关于立方的公式。
我们在解题时可以根据题目中的条件,选择合适的公式进行因式分解。
2. 把公因式提出来:对于如下式子:2a^2+4ab,我们可以先把公因式 2a 提出来,得到:2a^2+4ab=2a(a+2b)这样就完成了把公因式提出来的操作,接下来我们再根据不同的情况进行因式分解。
3. 进一步分解:有时候,我们需要进一步分解式子,来达到题目的要求。
例如,对于如下式子:9x^6-16y^4,我们可以根据公式 (5) 进行因式分解,得到:9x^6-16y^4=(3x^2)^3-(2y^2)^3=(3x^2-2y^2)(9x^4+6x^2y^2+4y^4)这个策略在解题时非常有用:先用一些基本公式进行初步因式分解,然后进一步分解,最后化简为一般式。
4. 通过多次转化得到结果:有时候,解题过程需要经过多次中间步骤,才能得出最终的结果。
这时候,我们需要耐心思考,灵活变通。
例如,对于如下式子:a^3+b^3+c^3-3abc,我们可以进行一下转化:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)这两步转化虽然看上去有些麻烦,但是却是得到正确答案所必需的。
5. 注意符号:在进行因式分解时,特别要注意符号的处理。
第11讲提公因式与公式法因式分解目标导航1.了解整式乘法与因式分解之间的互逆关系;2. 会用提公因式法、运用公式法分解因式.知识精讲知识点01 因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.【知识拓展1】(2021秋•莱阳市期末)若4a4﹣(b﹣c)2分解因式时有一个因式是2a2+b﹣c,则另一个因式是()A.2a2﹣b+c B.2a2﹣b﹣c C.2a2+b﹣c D.2a2+b+c【知识拓展2】(2022•沙坪坝区校级开学)下列从左到右的变形中,属于因式分解的是()A.x2﹣1=(x+1)(x﹣1)B.2xy2=2x•yC.(﹣x﹣1)2=x2+2x+1D.x2+2x+2=x(x+2)+2知识点02 公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【知识拓展1】(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c【知识拓展2】(2021秋•广饶县期中)n为正整数,若2a n﹣1﹣4a n+1的公因式是M,则M等于()A.a n﹣1B.2a n C.2a n﹣1D.2a n+1【即学即练1】(2021秋•莱阳市期末)多项式3x2y2﹣12x2y4﹣6x3y3的公因式是.【即学即练2】(2019春•邢台期末)已知:A=3x2﹣12,B=5x2y3+10xy3,C=(x+1)(x+3)+1,问多项式A、B、C是否有公因式?若有,求出其公因式;若没有,请说明理由.知识点03 因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【知识拓展1】(2021秋•淮阳区期末)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)【即学即练1】(2021秋•兴城市期末)多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)2【即学即练2】(2021秋•番禺区期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.【即学即练3】(2021秋•启东市期末)分解因式:2a(y﹣z)﹣3b(z﹣y)=.【知识拓展2】(2021秋•讷河市期末)因式分解:m(a﹣3)+2(3﹣a).【即学即练1】.(2021秋•海口期末)把下列多项式分解因式.(1)﹣2a+32ab2;(2)x(y2+9)﹣6xy.【即学即练2】(2021秋•梅里斯区期末)因式分解(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a).知识点04因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.【知识拓展1】(2021秋•铅山县期末)分解因式:(a+2b)(a+4b)+b2.【即学即练1】(2021秋•博兴县期末)分解因式:(1)(3x﹣2)2﹣(2x+7)2;(2)(x2+2)2﹣6(x2+2)+9.【即学即练2】(2021秋•沐川县期末)分解因式:(a+2)(a+4)+1.【即学即练3】(2022•德城区校级开学)把下列各式分解因式:(1)16﹣x4;(2)4x(y﹣x)﹣y2.【知识拓展2】(2021秋•虹口区校级期末)已知,求ab.【知识拓展3】(2021秋•虎林市校级期末)(1)20032﹣1999×2001(公式法);(2)16(a﹣b)2﹣9(a+b)2(分解因式).知识点05提公因式法与公式法的综合运用提公因式法与公式法的综合运用.【知识拓展1】(2021秋•大余县期末)因式分解:(1)a3b﹣ab3;(2)2a3+12a2+18a.【即学即练1】(2021秋•鱼台县期末)分解因式:(1)a3﹣2a2b+ab2.(2)a2(x﹣y)+4b2(y﹣x).【即学即练2】(2021秋•西平县期末)分解因式:(1)a3﹣10a2b+25ab2;(2)9a2(x﹣y)+4b2(y﹣x).例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213 (2)a a b a b a ab b a ()()()-+---32222例2. 把下列各式因式分解(1)324x xy - (2)3223288x y x y xy ++例3. 已知多项式232x x m -+有一个因式是21x +,求m 的值。
因式分解例题讲解及练习一、因式分解的定义1、计算=-)2(x x=-+)3)(3(x x=+2)(y x2、根据上面的式子填空()()⋅=-x x 22 ()()⋅=-92x()2222==++y xy x3、上面的两个过程是互逆的,第1题的变形是我们前面所学的整式乘法,第2题从左往右的变形我们叫做因式分解。
把一个多项式化成了几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
因式分解与整式乘法是相反方向的变形。
例题:下列各式从左到右的变形中,是因式分解的为( ) A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+-C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(练习1、下列变形是分解因式的是( )。
A x 2-4x +4=x(x -4)+4 ,B (x +3)2=x 2+6x +9C x 2+6x +9 = (x +3)2D (x +3)(x -3)=x 2-92、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是( )A 、46-b B 、64b -C 、46+bD 、46--b二、提公因式法 1、公因式定义:在多项式的各项中都含有的因式叫做这个多项式各项的公因式。
例题:找出下列多项式的公因式:(1)3x+6 (2)7x2-21x;(3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.练习:1、写出下列多项式各项的公因式.(1)ma+mb(2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab2、下列各式公因式是a的是()A. ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma3、-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy2、运用提公因式法分解因式例题1:将下列各式分解因式:(1)3x+6 (2)7x2-21x (3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x练习:1、(1)8x-72= (2)a2b-5ab=(3)4m3-6m2= (4)a2b-5ab+9b=(5)-a2+ab-ac= (6)-2x3+4x2-2x=2、把多项式-4a3+4a2-16a分解因式()A.-a(4a2-4a+16)B.a(-4a2+4a-16)C.-4(a3-a2+4a)D.-4a(a2-a+4)3、用提取公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)4.如果b-a=-6,ab=7,那么a2b-ab2的值是( )A.42B.-42C.13D.-13例题2、将下列各式分解因式(1)a (x -3)+2b (x -3) (2)a (x -y )+b (y -x ) (3)6(m -n )3-12(n -m )2练习:1、请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a =__________(a -2) (2)y -x =__________(x -y ) (3)b +a =__________(a +b ) (4)(b -a )2=__________(a -b )2(5)-m -n =__________(m+n ) (6)-s 2+t 2=__________(s 2-t 2) 2、将下列各式分解因式(1)5x (a +b )+10y (a +b ) (2)x (x -y )-y (y -x )(3)()()222236q p m q p +-+ (4)mn (m -n )-m (n -m )2(5)(b -a )2+a (a -b )+b (b -a )3、把多项式(3a -4b )(7a -8b )+(11a -12b )(8b -7a )分解因式的结果是( )A .8(7a -8b )(a -b )B .2(7a -8b )2C .8(7a -8b )(b -a )D .-2(7a -8b )4、把(x -y )2-(y -x )分解因式为( ) A .(x -y )(x -y -1) B .(y -x )(x -y -1) C .(y -x )(y -x -1) D .(y -x )(y -x +1)三、用公式法因式分解;1、代数中常用的乘法公式有:平方差公式:(a+b)(a -b)=a 2-b 2完全平方公式:(a±b)2=a 2±2ab+b 22、因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a 2-b 2=(a+b)(a -b)完全平方公式:a 2±2ab+b 2=(a±b)2例1:分解因式:(1)4a 2-9b 2 (2)-25a 2y 4+16b 16注:要先将原式写成公式左边的形式,写成(4b 8)2-(5ay 2)2练习1:分解因式:(1)36b 4x 8-9c 6y 10 (2)(x+2y)2-(x -2y)2(3)81x 8-y 8 (4)(3a+2b)2-(2a+3b)22、分解因式: (2m -n)2-121(m+n)2 -4(m+n)2+25(m -2n)2例2、分解因式:(1)x 2+6ax+9a 2 (2)-x 2-4y 2+4xy(3)9(a -b )2+6(a -b )+1速效基础演练:1、下列各式从左到右的变形错误的是( )。
专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。
第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。
第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.大体运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每一个项后相加.⑶多项式⨯多项式:用一个多项式每一个项乘以另一个多项式每一个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每一个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方式:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2021·襄阳中考)下列运算正确的是( )A.4a-a=3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2021·烟台中考)下列运算中正确的是( )A.3a+2a=5a2B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2021·遵义中考)计算(−12ab2)3的结果是( )3 232518184.(2021·沈阳中考)下面的计算必然正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2021·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2021·长春中考)计算:7a2·5a3= .7.(2021·广州中考)分解因式:x2+xy= .8.(2021·东营中考)分解因式2a2-8b2= .9.(2021·无锡中考)分解因式:2x2-4x= .10.(2021·连云港中考)分解因式:4-x2= .11.(2021·盐城中考)分解因式a2-9= .12.(2021·长沙中考)x2+2x+1= .13.(2021·临沂中考)分解因式4x-x3= .14.(2021·安徽中考)分解因式:x2y-y= .15.(2021·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2021·遂宁中考)为庆贺“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,依照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2021·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形别离如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2021·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2021·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2021·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2021·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法肯定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部份拼成一个长方形(如图乙),按照两个图形中阴影部份的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b29.若x2+mx-15=(x-3)(x+n),则m,n的值别离是( )A.4,3 B.3,4 C.5,2 D.2,510.(2021·日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是( )A.36 B.45 C.55 D.6611.计算:(x-y)(x2+xy+y2)=.12.(2021·孝感)分解因式:(a-b)2-4b2=.13.若(2x+1)0=(3x-6)0,则x的取值范围是.14.已知a m=3,a n=2,则a2m-3n=.15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 知足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且知足a 2+b 2-6a -4b +13=0,则c 为 .18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为 .19.计算:(1)(2021·重庆)y(2x -y)+(x +y)2; (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.22.先化简,再求值:(1)(2021·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划部门计划将阴影部份进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值必然能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:讲义中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以够用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方式另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 概念2a b a b *=-,则(12)3**= .。
专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
因式分解的常见变形技巧专题讲解技巧一 符号变换有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。
体验题1 (m+n)(x-y)+(m-n)(y-x) 指点迷津 y-x= -(x-y)体验过程 原式=(m+n)(x-y)-(m-n)(x-y)=(x-y)(m+n-m+n)=2n(x-y)小结 符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。
实践题1 分解因式:-a 2-2ab-b 2实践详解 各项提出符号,可用平方和公式.原式=-a 2-2ab-b 2=-( a 2+2ab+b 2)= -(a+b)2技巧二 系数变换有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。
体验题2 分解因式 4x 2-12xy+9y 2体验过程 原式=(2x)2-2(2x)(3y)+(3y)2=(2x -3y)2小结 系数变化常用于可用公式,但用公式的条件不太清晰的情况下。
实践题2分解因式221439x y yx ++实践详解 原式=(2x )2+2.2x ∙3y ∙+(3y )2=(2x +3y )技巧三 指数变换有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。
体验题3 分解因式x 4-y 4指点迷津 把x 2看成(x 2)2,把y 4看成(y 2)2,然后用平方差公式。
体验过程 原式=(x 2)2-(y 2)2=(x 2+y 2)(x 2-y 2)=(x 2+y 2)(x+y)(x-y) 小结 指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。
实践题3 分解因式 a 4-2a 4b 4+b 4指点迷津 把a 4看成(a 2)2,b 4=(b 2)2实践详解 原式=(a 2-b 2)2=(a+b)2(a-b)2技巧四 展开变换有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。
初中数学因式分解-提公因式与公式法考试要求:知识点汇总:一、基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式十字相乘法分解,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.二、提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.三、公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定. 一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++ 33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+- 2222()222a b c a b c ab ac bc ++=+++++例题精讲:一、提公因式【例 1】判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴ 22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+⑶ 232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++【答案】⑴不是,此变形是整式乘法运算;⑵不是,此等式不成立;⑶不是,等式右边不是整式乘积的形式;⑷是.【例 2】分解因式:⑴ad bd d -+; ⑵4325286x y z x y -⑶322618m m m -+- ⑷23229632x y x y xy ++ 【解析】 ⑴1(1)ad bd d d a d b d d a b -+=⋅-⋅+⋅=⋅-+最后一项1d d =⋅,系数1一般可省略,但因式分解时提出“d ”后,“1”不能漏掉.提公因分解因式时,提完公因式的那个因式等于原多项式除以公因式的商,故那个因式的项数等于多项式的项数.⑵43252422862(43)x y z x y x y yz x -=-,按照系数、字母(或多项式因式)确定公因式 ⑶323222618(2618)2(39)m m m m m m m m m -+-=--+=--+或32232261862182(39)m m m m m m m m m -+-=--=--若多项式第一项为负,一般有两种处理方法:①首先将“-”提出,初学时不要省略此步,再对提取“-”后的多项式提取公因式;②若多项式中含有系数为正数的项,也可将这一项写在第一项,然后再提取公因式. ⑷23222322291363(1269)(423)222xy x y x y xy x y x y xy x x y y ++=++=++ 因式分解后,最好使多项式中的系数为整数,这样比较整洁.【巩固】 分解因式:22(1)1a b b b b -+-+-【解析】222(1)1(1)(1)a b b b b a b b -+-+-=--+【巩固】 ⑴23361412abc a b a b --+;⑵32461512a a a -+-【解析】⑴23322614122(376)abc a b a b ab c ab a --+=-+-⑵32422615123(425)a a a a a a -+-=-+-【例 3】(2009•台湾)已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、72【解析】首先要对原式正确因式分解,然后进行对号入座,即可得出字母的值.【答案】原式=(13x ﹣17)(19x ﹣31﹣11x+23)=(13x ﹣17)(8x ﹣8)∵可以分解成(ax+b )(8x+c ),∴a=13,b=﹣17,c=﹣8,∴a+b+c=﹣12.故选A .【点评】各项有公因式时,要先考虑提取公因式.【例 4】分解因式⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+-⑵346()12()m n n m -+-【解析】 ⑴原式22323224()(652)x y z a b yz x x y z =--+ ⑵原式[]34336()12()6()12()6()(122)m n m n m n m n m n m n =-+-=-+-=-+-【巩固】 分解因式:⑴55()()m m n n n m -+-⑵()()()2a a b a b a a b +--+ 【解析】 ⑴555556()()()()()()()m m n n n m m m n n m n m n m n m n -+-=---=--=-⑵()()()2a a b a b a a b +--+()()()()()()22a a b a b a b a a b b ab a b =+--+=+-=-+⎡⎤⎣⎦【巩固】 分解因式:1. 2316()56()m m n n m -+- ⑵(23)(2)(32)(2)a b a b a b b a +--+-【解析】⑴原式[]232216()56()8()27()8()(75)m n m n m n m m n m n m n m =-+-=-+-=--⑵原式(23)(2)(32)(2)(2)(55)5(2)()a b a b a b a b a b a b a b a b =+-++-=-+=-+【例 5】分解因式:⑴()()2121510n n a a b ab b a +---(n 为正整数) ⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)【解析】 ⑴原式()()()()()()212221510532535n n n n a a b ab a b a a b a b b a a b a b +=---=---=--⎡⎤⎣⎦注意整体思想的运用!⑵(21)(2)10n n n +-+=->,(21)(2)n n +>+,2121211462(23)n m n m n m n a b a b a b a b ++-+---=-【例 6】已知:2b c a +-=-,求22221()()(222)33333a abc b c a b c b c a --+-+++-的值. 【解析】原式22228()(2)333b c a =--=⨯-=【巩固】 分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.【解析】观察原式,我们发现公因式为2()x z x y --,故原式[]2()()()x z x y x y z a z y x z a =---+-++-- 2()()x z x y ax z xz yz ay =--+---.【例 7】(2008•宁夏)下列分解因式正确的是( )A 、2x 2﹣xy ﹣x=2x (x ﹣y ﹣1)B 、﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x ﹣3)C 、x (x ﹣y )﹣y (x ﹣y )=(x ﹣y )2D 、x 2﹣x ﹣3=x (x ﹣1)﹣3【解析】根据提公因式法和公式法进行判断求解.【答案】A 、公因式是x ,应为2x 2﹣xy ﹣x=x (2x ﹣y ﹣1),错误;B 、符号错误,应为﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x+3),错误;C 、提公因式法,正确;D 、右边不是积的形式,错误;故选C .【点评】本题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.【例 8】若a*b=a 2+2ab ,则x 2*y 所表示的代数式分解因式的结果是( )A 、x 2(x 2+2y )B 、x (x+2)C 、y 2(y 2+2x )D 、x 2(x 2﹣2y )【解析】把x 2*y 表示成一般形式,分解因式即可.【答案】x 2*y=x 4+2x 2y=x 2(x 2+2y ).故选A .【点评】正确理解题意,是解决本题的关键.【例 9】若(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2E ,则E 是( )A 、1﹣q ﹣pB 、q ﹣pC 、1+p ﹣qD 、1+q ﹣p【解析】观察等式的右边,提取的是(q ﹣p )2,故可把(p ﹣q )2变成(q ﹣p )2,即左边=(q ﹣p )2(1﹣q+p ).【解答】(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2(1﹣q+p ).故选C .【点评】注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.【例 10】利用因式分解计算:2100﹣2101=()A、﹣2B、2C、2100D、﹣2100【解析】提取公因式2100,整理并计算即可.【答案】2100﹣2101=2100﹣2100•2=2100(1﹣2)=﹣2100.故选D.【点评】主要考查提公因式法分解因式,要注意符号.【例 11】观察下列各式:①abx﹣adx;②2x2y+6xy2;③8m3﹣4m2+2m+1;④a3+a2b+ab2﹣b3;⑤(p+q)x2y﹣5x2(p+q)+6(p+q)2;⑥a2(x+y)(x﹣y)﹣4b(y+x).其中可以用提公因式法分解因式的有()A、①②⑤B、②④⑤C、②④⑥D、①②⑤⑥【解析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.【答案】①abx﹣adx=ax(b﹣d);②2x2y+6xy2=2xy(x+3y);③8m3﹣4m2+2m+1,不能用提公因式法分解因式;④a3+a2b+ab2﹣b3,不能用提公因式法分解因式;⑤(p+q)x2y﹣5x2(p+q)+6(p+q)2=(p+q)[x2y﹣5x2+6(p+q)];⑥a2(x+y)(x﹣y)﹣4b(y+x)=(x+y)[a2(x﹣y)﹣4b].所以可以用提公因式法分解因式的有①②⑤⑥.故选D.【点评】当一个多项式有公因式,将其分解因式时应先提取公因式,提取公因式后剩下的因式是用原多项式除以公因式所得的商得到的.【例 12】如果ax(3x﹣4x2y+by2)=6x2﹣8x3y+6xy2成立,则a、b的值为()A、a=3,b=2B、a=2,b=3C、a=﹣3,b=2D、a=﹣2,b=3【解析】先将6x2﹣8x3y+6xy2提取公因式2x,再根据对应项的系数相等即可求出a、b的值.【答案】∵6x2﹣8x3y+6xy2=2x(3x﹣4x2y+3y2)=ax(3x﹣4x2y+by2),∴a=2,b=3.故选B.【点评】本题考查了提公因式法分解因式,根据对应项系数相等求解是解本题的关键.【例 13】下列哪项是x4+x3+x2的因式分解的结果()A、x2(x2+x)B、x(x3+x2+x)C、x3(x+1)+x2D、x2(x2+x+1)【解析】确定公因式为x2,然后提取公因式即可.【解答】x4+x3+x2=x2(x2+x+1).故选D.【点评】考查了对一个多项式因式分解的能力.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式.【例 14】某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:﹣12xy 2+6x 2y+3xy=﹣3xy•(4y ﹣______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A 、2xB 、﹣2xC 、2x ﹣1D 、﹣2x ﹣l【解析】根据题意,提取公因式﹣3xy ,再根据原式对余下的多项式续继分解.【答案】原式=﹣3xy×(4y ﹣2x ﹣1),空格中填2x ﹣1.故选C .【点评】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.【例 15】﹣6x n ﹣3x 2n 分解因式正确的是( )A 、3(﹣2x n ﹣x 2n )B 、﹣3x n (2﹣x n )C 、﹣3(2x n +x 2n )D 、﹣3x n (2+x n )【解析】根据公因式的定义,确定出公因式是﹣3x n ,然后提取公因式整理即可选取答案.【答案】﹣6x n ﹣3x 2n =﹣3x n (2+x n ).故选D .【点评】本题考查提公因式法分解因式,准确找出公因式是解题的关键,要注意符号的处理.【例 16】分解因式:(x+3y )2﹣(x+3y )= ,(a ﹣b )2﹣(b ﹣a )3=【解析】(x+3y )2﹣(x+3y )可提取公因式(x+3y ),(a ﹣b )2﹣(b ﹣a )3可提取公因式(a﹣b )2,然后整理即可.【答案】(x+3y )2﹣(x+3y )=(x+3y )(x+3y ﹣1),(a ﹣b )2﹣(b ﹣a )3=(a ﹣b )2(a ﹣b+1).【点评】本题考查了提公因式法分解因式,找出公因式是解题的关键,注意整体思想的利用.【例 17】分解因式:x (a ﹣y )﹣y (y ﹣a )= .【解析】直接提取公因式(a ﹣y )即可.【答案】x (a ﹣y )﹣y (y ﹣a ),=(x+y )(a ﹣y ).【点评】本题考查了提公因式法分解因式,解答此题的关键把(a ﹣y )看作一个整体,利用整体思想进行因式分解.二、公式法【例 18】分解因式:⑴44a b -⑵2249()16()m n m n +-- ⑶22()()a b c d a b c d +++--+-⑷(2007年十堰中考题)34xy xy -; ⑷ 22()()a x y b y x -+-【解析】⑴44222222()()()()()a b a b a b a b a b a b -=-+=-++⑵原式[][]7()4()7()4()m n m n m n m n =++-+--(113)(311)m n m n =++⑶22()()(22)(22)4()()a b c d a b c d a c b d a c b d +++--+-=++=++⑷324(4)(2)(2)xy xy xy y xy y y -=-=-+⑸ 2222()()()()()()()a x y b x y x y a b x y a b a b ---=--=--+【例 19】分解因式:⑴(深圳市中考题)2242x x -+= ;⑵(泸州市中考题)244ax ax a -+= ;⑶2844a a --= ;⑷2292416x xy y -+=【解析】 ⑴2222422(21)2(1)x x x x x -+=-+=-⑵22244(44)(2)ax ax a a x x a x -+=-+=-⑶解首先把原式“理顺”,也就是将它的各项按字母a 降幂(或升幂)排列,从而有2844a a --2484a a =-+-24(21)a a =--+24(1)a =--按某个字母降幂排列是一个简单而有用的措施(简单的往往是有用的),值得注意. ⑹ 2292416x xy y -+2(34)x y =-【巩固】 分解因式:44222()4p q p q +-【解析】4424444224422222222()4(2)(2)()()p q p q p q p q p q p q p q p q +-=+++-=+-22222()()()p q p q p q =+-+【巩固】 分解因式:⑴222()4()4x x x x +-++;⑵24()520(1)x y x y ++-+-【解析】 ⑴2222222()4()4(2)(1)(2)x x x x x x x x +-++=+-=-+;⑵2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+-【巩固】 分解因式:()()222248416x x x x ++++ 【解析】 (24x +)相当于公式中的a ,4x 相当于公式中的b .()()222248416xx x x ++++=()()()()2242222424416442x x x x x x x ++⋅+⋅+=++=+【例 20】(2009•台湾)已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、72【解析】首先要对原式正确因式分解,然后进行对号入座,即可得出字母的值.【答案】原式=(13x ﹣17)(19x ﹣31﹣11x+23)=(13x ﹣17)(8x ﹣8),∵可以分解成(ax+b )(8x+c )∴a=13,b=﹣17,c=﹣8∴a+b+c=﹣12.故选A .【点评】各项有公因式时,要先考虑提取公因式.【例 21】(2010•铁岭)若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是()A、4B、﹣4C、±2D、±4【解析】利用完全平方公式(a+b)2=(a﹣b)2+4ab、(a﹣b)2=(a+b)2﹣4ab计算即可.【答案】∵x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+2,∴m=±4.故选D.【点评】本题要熟记有关完全平方的几个变形公式,本题考查对完全平方公式的变形应用能力.【例 22】直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为()A、182B、180C、32D、30【解析】设另一条直角边的长度为x,斜边的长度为z,则z2﹣x2=132,然后根据三角形的三边关系及数的整除的知识即可解答.【答案】设另一条直角边的长度为x,斜边的长度z,则z2﹣x2=132,且z>x,∴(z+x)(z ﹣x)=169×1,∴,∴三角形的周长=z+x+13=169+13=182.故选A.【点评】本题考查数的整除的知识及直角三角形的特点,难度不大,注意得出z2﹣x2=132是解答本题的关键.【例 23】(2007•江苏)若a+b=4,则a2+2ab+b2的值是()A、8B、16C、2D、4【解析】首先将a2+2ab+b2运用完全平方公式进行因式分解,再代入求值.【答案】∵a+b=4,∴a2+2ab+b2=(a+b)2=42=16.故选B.【点评】本题考查用公式法进行因式分解,能用公式法进行因式分解的式子结构特征需记熟记牢.【例 24】(2005•玉林)因式分解4﹣4a+a2,正确的是()A、4(1﹣a)+a2B、(2﹣a)2C、(2﹣a)(2+a)D、(2+a)2【解析】根据多项式的结构特点,可用完全平方公式进行因式分解.【答案】4﹣4a+a2=(2﹣a)2.故选B.【点评】本题考查利用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.【例 25】(2004•四川)下列各式正确的是()A、a﹣(b+c)=a﹣b+cB、x2﹣1=(x﹣1)2C、a2﹣ab+ac﹣bc=(a﹣b)(a+c)D、(﹣x)2÷x3=x(x≠0)【解析】根据因式分解,去括号法则及单项式的除法法则,对各选项分析判断后利用排除法求解.A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为x2﹣1=(x+1)(x﹣1),故本选项错误;C、a2﹣ab+ac﹣bc=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c),正确;D、应为(﹣x)2÷x3=x﹣1,故本选项错误.【答案】故选C.【点评】本题主要考查了因式分解及去括号法则及单项式的除法.注意(﹣x)2=x2.【例 26】小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A、2种B、3种C、4种D、5种【分析】能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.【答案】该指数可能是2、4、6、8、10五个数.故选D.【点评】能熟练掌握平方差公式的特点,是解答这道题的关键,还要知道不大于就是小于或等于.【例 27】在多项式①x2+2xy﹣y2;①﹣x2﹣y2+2xy;①x2+xy+y2;①4x2+1+4x中,能用完全平方公式分解因式的有()A、①②B、②③C、①④D、②④【分析】用完全平方公式分解因式应具备以下特点:首先是三项式,还要其中有两项同号且均为一个整的平方,另一项是前两项幂的底数的积的2倍,符号可“正”也可“负.【答案】①x2+2xy﹣y2不符合完全平方公式的特点,不能用完全平方公式进行因式分解;②﹣x2﹣y2+2xy符合完全平方公式的特点,能用完全平方公式进行因式分解;③x2+xy+y2不符合完全平方公式的特点,不能用完全平方公式进行因式分解;④4x2+1+4x符合完全平方公式的特点,能用完全平方公式进行因式分解.所以②④选项能用完全平方公式分解因式.故选D.【点评】本题考查的是用完全平方公式进行因式分解的能力.解此类题要注意掌握完全平方公式的结构特征,并能灵活变形整理,如﹣x2﹣y2+2xy从形式上看也许不是,但从式中提出一个负号得:﹣(x2+y2﹣2xy),符合完全平方公式结构特征,可分解.【例 28】4x2﹣(y﹣z)2的一个因式是()A、2x﹣y﹣zB、2x+y﹣zC、2x+y+zD、4x﹣y+z【解析】根据平方差公式进行因式分解,然后选取答案即可.平方差公式:a2﹣b2=(a+b)(a﹣b).【答案】4x2﹣(y﹣z)2,=(2x+y﹣z)(2x﹣y+z).故选B.【点评】本题考查了公式法分解因式,注意把y﹣z看作一个整体,在运用平方差公式时,注意符号的变化.【例 29】(2010•新疆)利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式.【解析】根据提示可知1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形,利用面积和列出等式即可求解.【答案】两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.【点评】本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.【例 30】若(x+y)2﹣6(x+y)+9=0,则x+y=.【解析】方程的左边刚好是完全平方式,可以利用完全平方公式分解,得到一个式子的平方是0,所以底数是0,从而求出要求的解.【答案】原方程化为(x+y﹣3)2=0,所以x+y﹣3=0,解得x+y=3.【点评】本题考查了完全平方式,完全平方式是两数的平方和与这两个数积的两倍的和或差,这两数中一个是式子(x+y).【例 31】若x2﹣y2=30,且x﹣y=﹣5,则x+y的值是()A、5B、6C、﹣6D、﹣5【解析】运用平方差公式先把x2﹣y2分解因式,再代入数据计算即可求出x+y的值.【答案】∵x2﹣y2=(x+y)(x﹣y)=30,x﹣y=﹣5∴x+y=﹣6.故选C.【点评】本题考查了公式法分解因式,运用平方差公式先分解因式,再结合题意求出代数式的值,解决本题的关键是熟练掌握平方差公式.【例 32】已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是、.【解析】先利用平方差公式分解因式,再找出范围内的解即可.【答案】248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.【点评】本题考查了利用平方差公式分解因式,先分解因式,然后再找出范围内的解是本题解题的思路【例 33】若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【解析】 这是一道因式分解与等腰三角形联系的综合性问题.应先对等式进行化简,再利用等腰三角形的定义进行判断.在化简过程中,如果几个因式的乘积为0,则每一个因式都有可能为0,即若0ab =,则等价于0a =或0b =或0a b ==,所以由()()0a b b c --=,得到a b =或b c =或a b c ==,若第三个成立则ABC ∆是等边三角形,但等边三角形是特殊的等腰三角形,所以结论是等腰三角形.∵()()()()a b b a b a a c a b a c -+-=-+-∴()()()()a b b a a b a c a b c a ---=---∴()()()()0a b b a c a a b -----=,即()()0a b b c --=∴0a b -=或0b c -=,即a b =或b c =,∴ABC ∆是等腰三角形课后作业:1.已知y=2x ,则4x 2﹣y 2的值是 .【分析】首先运用平方差公式将所求的代数式因式分解,然后再代值计算即可.【答案】∵y=2x ,∴2x ﹣y=0,∴4x 2﹣y 2=4x 2﹣y 2=(2x+y )(2x ﹣y )=(2x+y )×0,=0.【点评】本题考查了公式法分解因式,熟记平方差公式结构,整理出(2x ﹣y )形式的多项式是解题的关键.2.分解因式:x (x ﹣1)﹣3x+4= .【解析】首先去括号、合并同类项,再运用完全平方公式分解因式.【答案】x (x ﹣1)﹣3x+4=x 2﹣x ﹣3x+4=x 2﹣4x+4=(x ﹣2)2.【点评】此题考查的是运用公式法进行因式分解,需注意本题应先对所求的代数式进行整理,然后再运用完全平方公式因式分解.3.化简:(a+1)2﹣(a ﹣1)2= .【解析】运用平方差公式即可解答.【答案】(a+1)2﹣(a ﹣1)2=(a+1+a ﹣1)(a+1﹣a+1)=4a .【点评】本题考查了公式法分解因式,熟记平方差公式的结构并灵活运用是解题的关键.4.分解因式x (x+4)+4的结果 .【解析】先将多项式展开,再利用完全平方公式进行因式分解.【答案】x (x+4)+4=x 2+4x+4=(x+2)2.【点评】本题主要考查利用完全平方公式分解因式,先利用单项式乘多项式的法则整理成多项式一般形式是解题的关键.5.如果x+y=﹣1,x﹣y=﹣2008,那么x2﹣y2=.【解析】首先把x2﹣y2利用平方差公式进行因式分解,然后代入已知数值即可求出结果.【答案】x2﹣y2=(x+y)(x﹣y)∵x+y=﹣1,x﹣y=﹣2008∴x2﹣y2=1×2008=2008.故填空2008.【点评】本题考查了公式法分解因式,利用平方差公式把多项式分解,然后整体代入数据计算即可.6.下列各式中,不能用平方差公式分解因式的是()A、﹣a2+b2B、﹣x2﹣y2C、49x2y2﹣z2D、16m4﹣25n2p2【解析】只要符合“两项、异号、平方形式”,就能用平方差公式分解因式.【答案】A、符合“两项、异号、平方形式”,能用平方差公式分解因式;B、不符合异号,﹣x2和﹣y2是同号的;C、符合“两项、异号、平方形式”,能用平方差公式分解因式;D、符合“两项、异号、平方形式”,能用平方差公式分解因式.故选B.【点评】本题考查了公式法分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.7.一次课堂练习,小明做了如下4道因式分解题,你认为小明做得不够完整的一题是()A、x2﹣2xy+y2=(x﹣y)2B、x2y﹣xy2=xy(x﹣y)C、x3﹣x=x(x2﹣1)D、x2﹣y2=(x﹣y)(x+y)【解析】根据提公因式法和公式法分解因式,对各选项分析判断后利用排除法求解.【答案】A、B、D都正确;C、分解结果x2﹣1可以继续分解为:(x+1)(x﹣1).故选C.【点评】本题考查了提公因式法、公式法分解因式,关键在于检查分解因式是否已经彻底.8.x2﹣y2=48,x+y=6,则x=,y=.【解析】因为x2﹣y2=(x+y)(x﹣y)=48,将x+y=6代入可得x﹣y的值,联立解方程组得x、y的值.【答案】∵x2﹣y2=(x+y)(x﹣y)=48,x+y=6∴x﹣y=8联立,解得.【点评】本题考查了多项式的因式分解与解方程组的综合运用,需要熟练掌握.9.把下列各式因式分解(1)﹣5a2+25a;(2)a2﹣9b2;(3)2x(a﹣3)﹣y(3﹣a);(4)3x3﹣12x2y+12xy2.【解析】(1)可直接提公因式;(2)可直接按公式法因式分解;(3)先整理符号,再提公因式因式分解;(4)先提公因式,再按公式法因式分解.【答案】(1)﹣5a2+25a=﹣5a(a﹣5);(2)a2﹣9b2=(a﹣3b)(a+3b);(3)2x(a﹣3)﹣y(3﹣a)=2x(a﹣3)+y(a﹣3)=(a﹣3)(2x+y);(4)原式=3x(x2﹣4xy+4y2)=3x(x﹣2y)2.【点评】此题考查因式分解,注意采取什么方法要根据多项式的特点而定,所以要认真观察式子的特点.。
14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。
平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。
基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。
二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。
(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。
2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。
知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。
达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。
三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。
学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。
因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。
四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。
2013组卷1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________ 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________ .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________ .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________ .(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________ ,由②到③这一步的根据是_________ ;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________ ;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的 C .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.x=时多项式的值为×6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.。
初中数学因式分解技巧及练习题附答案解析(1)一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .3.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.4.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.5.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.6.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .11.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.12.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.13.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.14.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.15.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.16.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.计算(-2)2015+(-2)2016的结果是 ( )A .-2B .2C .22015D .-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。
初中因式分解的常用方法(例题详解)一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-写出结果.三、分组分解法.(一)分组后能直接提公因式练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-注意这两个例题的区别!练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、主元法.例11、分解因式:2910322-++--y x y xy x解法一:以x 为主元解法二:以y 为主元练习11、分解因式(1)56422-++-y x y x (2)67222-+--+y x y xy x(3)613622-++-+y x y xy x (4)36355622-++-+b a b ab a七、换元法。
第二章 分解因式【知识要点】1.分解因式(1)概念:把一个________化成几个___________的形式,这种变形叫做把这个多项式分解因式。
(2)注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2.分解因式与整式乘法的关系整式乘法是____________________________________________________; 分解因式是____________________________________________________; 所以,分解因式和整式乘法为_______关系。
3.提公因式法分解因式(1)公因式:几个多项式__________的因式。
(2)步骤:①先确定__________,②后__________________。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“-”号。
4.运用公式法分解因式(1)平方差公式:_________________________ (2)完全平方公式:_________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用 【例1】分解因式:(1)3241626m m m -+- (2)2()3()x y z y z +-+(3)2()()()x x y x y x x y +--+ (4)(34)(78)(1112)(78)a b a b a b a b --+--解析:(1)题先提一个“-”号,再提公因式2m ;(2)题的公因式为y z +;(3)题的公因式为()x x y +; (4)题的公因式为78a b -。
答案:(1)22(2813)m m m --+; (2)()(23)y z x +-;(3)2()xy x y -+; (4)22(78)a b -。
八年级数学因式分解公式法讲解与练习
一:课前纠错与课前回顾
1、作业检查与知识回顾
2、错题分析讲解
二、课程内容讲解与课堂练习
【题模1】:公式法
一、选择题
1,下列各式中不能用平方差公式分解的是()
A.-a2+b2
B.-x2-y2
C.49x2y2-z2
D.16m4-25n2
2.下列各式中能用完全平方公式分解的是()
①x2-4x+4; ②6x2+3x+1; ③4x2-4x+1; ④x2+4xy+2y2 ; ⑤9x2-20xy+16y2
A.①②
B.①③
C.②③
D.①⑤
3.在多项式:①16x5-x;②(x-1)2-4(x-1)+4; ③(x+1)4-4x(x+1)2+4x2;④-4x2-1+4x中,分解因式的结果中含有相同因式的是()
A.①②
B.③④
C.①④
D.②③
4.分解因式3x2-3x4的结果是()
A.3(x+y2)(x-y2)
B.3(x+y2)(x+y)(x-y)
C.3(x-y2)2
D.3(x-y)2(x+y) 2
5.若k-12xy+9x2是一个完全平方式,那么k应为()
A.2
B.4
C.2y2
D.4y2
6.若x 2+2(m-3)x+16, 是一个完全平方式,那么m 应为(
) A.-5 B.3 C.7 D.7或-1
7.若n 为正整数,(n+11)2-n 2 的值总可以被k 整除,则k 等于(
)A.11 B.22 C.11或22 D.11的倍数.
二、填空题
8.( )2+20pq+25q 2= ( )2
9.分解因式x 2-4y 2= ___________ ;
10.分解因式ma 2+2ma+m= _______ ;
11.分解因式2x 3y+8x 2y 2+8xy 3 __________ .
12.运用平方差公式可以可到:两个偶数的平方差一定能被
_____ 整除。
三、解答题:
13.分解多项式:
(1)16x 2y 2z 2-9; (2)81(a+b)2-4(a-b)2
14.试用简便方法计算:1982-396+2022
202
15.已知x=40,y=50,试求x 4-2x 2y 2+y 4的值。
【讲透例题】
1.B
2.B
3.C
4.A
5.D
6.D
7.A
8.2p 2p+5q
9.(x+2y)(x-2y)10.m(a+1)2 11. 2xy(x+2y)2 12. 4
13. (1)(4xyz+3)(4xyz-3)
(2) 原式=[][])
711)(711()(2)(9)(2)(9a b b a b a b a b a b a ++=--+⋅-++14. 原式=1982-2×198×202+2022=(198-202)2=(-4)2=16
15.由x 4-2x 2y 2+y 4=(x 2-y 2)2=(1600-2500)=(-900)2=810000.
【讲透考点】
公式法
※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用
公式法.
※2. 主要公式:(1)平方差公式: )
)((22b a b a b a -+=-(2)完全平方公式: 2
22)(2b a b ab a +=++2
22)(2b a b ab a -=+-¤3. 易错点点评:因式分解要分解到底.如就没有分解到底.
))((222244y x y x y x -+=-※4. 运用公式法:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.
(2)完全平方公式:
①应是三项式;②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍.
【相似题练习】
一、选择题
1、多项式(3a+2b)2-(a-b)2分解因式的结果是( )
A.(4a+b)(2a+b)
B.(4a+b)(2a+3b)
C.(2a+3b)2
D.(2a+b)2
2、下列多项式,能用完全平方公式分解因式的是( )
A.x2+xy+y2
B.x2-2x-1
C.-x2-2x-1
D.x2+4y2
3、多项式4a2+ma+25是完全平方式,那么m的值是( )
A.10
B.20
C.-20
D.±20
4、在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于( )
A.100 cm2
B.105 cm2
C.108 cm2
D.110 cm2
二、填空题
1、多项式a2-2ab+b2,a2-b2,a2b-ab2的公因式是________.
2、-x2+2xy-y2的一个因式是x-y,则另一个因式是________.
3、若x2-4xy+4y2=0,则x∶y的值为________.
4、若x2+2(a+4)x+25是完全平方式,则a的值是________.
5、已知a+b=1,ab=-12,则a2+b2的值为________.
三、解答题
1、分解因式
(1)3x4-12x2
(2)9(x-y)2-4(x+y)2
(3)1-6mn+9m2n2
(4)a2-14ab+49b2
(5)9(a+b)2+12(a+b)+4
(6)(a-b)2+4ab
2、(1)已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
1
(2)已知a(a-1)-(a2-b)=1,求(a2+b2)-ab的值.
2
3、利用简便方法计算:
(1)2001×1999
(2)8002-2×800×799+7992
4、对于任意整数,(n+11)2-n2能被11整除吗?为什么?
学生:年级科目:数学课次:第课
教师:上课时段:2018.08.11 8:00-10:00 教导主任签字:
课后作业时间:分数:
一、选择题
1.-(2a-b)(2a+b)是下列哪一个多项式的分解结果()
A.4a2-b2
B.4a2+b2
C.-4a2-b2
D.-4a2+b2
2.多项式(3a+2b)2-(a-b)2分解因式的结果是()
A.(4a+b)(2a+b)
B.(4a+b)(2a+3b)
C.(2a+3b)2
D.(2a+b)2
3.下列多项式,能用完全平方公式分解因式的是()
A.x2+xy+y2
B.x2-2x-1
C.-x2-2x-1
D.x2+4y2
4.多项式4a2+ma+25是完全平方式,那么m的值是()
A.10
B.20
C.-20
D.±20
5.在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于()
A.100 cm2
B.105 cm2
C.108 cm2
D.110 cm2
二、填空题
6.多项式a2-2ab+b2,a2-b2,a2b-ab2的公因式是________.
7.-x2+2xy-y2的一个因式是x-y,则另一个因式是________.
8.若x2-4xy+4y2=0,则x∶y的值为________.
9.若x2+2(a+4)x+25是完全平方式,则a的值是________.
10.已知a+b=1,ab=-12,则a2+b2的值为________.
三、解答题
11.分解因式
(1)3x4-12x2
(2)9(x-y)2-4(x+y)2
(3)1-6mn+9m2n2
(4)a2-14ab+49b2
(5)9(a+b)2+12(a+b)+4
(6)(a-b)2+4ab
12.(1)已知x -y =1,xy =2,求x 3y -2x 2y 2+xy 3的值.
(2)已知a (a -1)-(a 2-b )=1,求 (a 2+b 2)-ab 的值.2
113.利用简便方法计算:
(1)2001×1999
(2)8002-2×800×799+7992
14.如图,在一块边长为a 厘米的正方形纸板的四角,各剪去一个边长为b (b <厘米的2
a )正方形,利用因式分解计算当a =13.2,
b =3.4时剩余部分的面积.
15.对于任意整数,(n +11)2-n 2能被11整除吗?为什么?。