高中物理选修3-2 第四章法拉第电磁感应定律专项训练(含详细解析)
- 格式:doc
- 大小:308.55 KB
- 文档页数:9
教材习题点拨教材问题全解思考与讨论感应电动势消弱了电源产生的电流,阻碍线圈的转动。
根据楞次定律,感应电流的磁场要阻碍线圈的转动。
教材习题全解1.关于电磁感应,下述说法正确的是什么?A .穿过线圈的磁通量越大,感应电动势越大。
B .穿过线圈的磁通量为0,感应电动势一定为0。
C .穿过线圈的磁通量的变化越大,感应电动势越大。
D .穿过线圈的磁通量变化越快,感应电动势越大。
答案:D点拨:感应电动势的大小由磁通量的变化率ΔΦΔt决定,与磁通量的大小及磁通量变化量的大小无关。
2.有一个1 000匝的线圈,在0.4 s 内通过它的磁通量从0.02 Wb 增加到0.09 Wb ,求线圈中的感应电动势。
如果线圈的电阻是10 Ω,把一个电阻为990 Ω的电热器连接在它的两端,通过电热器的电流是多大?答案:175 V 0.175 A点拨:感应电动势E =n ΔΦΔt=175 V 感应电流I =E R +r=0.175 A 。
3.当航天飞机在环绕地球的轨道上飞行时,从中释放一颗卫星,卫星与航天飞机保持相对静止,两者用导电缆绳相连,这种卫星称为绳系卫星,利用它可以进行多种科学实验。
现有一颗绳系卫星在地球赤道上空沿东西方向运行。
卫星位于航天飞机正上方,它与航天飞机间的距离是20.5 km ,卫星所在位置的地磁场为B =4.6×10-5T ,沿水平方向由南向北。
如果航天飞机和卫星的运行速度是7.6 km/s ,求缆绳中的感应电动势。
答案:7 200 V点拨:电动势E =BLv =7 200 V 。
4.动圈式扬声器的结构如图所示。
线圈圆筒安放在永磁体磁极间的空隙中,能够自由运动。
按音频规律变化的电流通进线圈,安培力使线圈运动。
纸盆与线圈连接,随着线圈振动而发声。
这样的扬声器能不能当做话筒使用?也就是说,如果我们对着纸盆说话,扬声器能不能把声音变成相应的电流?为什么?动圈式扬声器答案:当对着纸盆说话时,引起锥形纸盆的振动,纸盆带动线圈振动,产生感应电流,因此可以当话筒使用。
第四章电磁感应一、单选题1.如图所示,一个有弹性的金属圆环被一根橡皮绳吊于通电直导线的正下方,直导线与圆环在同一竖直面内,当通电直导线中电流增大时,弹性圆环的面积S和橡皮绳的长度l将()A.S增大,l变长B.S减小,l变短C.S增大,l变短D.S减小,l变长2.关于涡流,下列说法中不正确的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁灶锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.铁芯用相互绝缘的硅钢片叠成能减小涡流3.如图中画出的是穿过一个闭合线圈的磁通量随时间的变化规律,以下哪些认识是正确的()A.第0.6 s末线圈中的感应电动势是4 VB.第0.9 s末线圈中的瞬时电动势比0.2 s末的小C.第1 s末线圈的瞬时电动势为零D.第0.2 s末和0.4 s末的瞬时电动势的方向相同4.如图所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无场区进入匀强磁场区,磁场宽度大于矩形线圈的宽度da,然后出来,若取逆时针方向的电流为正方向,那么下列图中的哪一个图能正确地表示回路中的电流与时间的函数关系()A.B.C.D.5.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增大C.减少D.以上情况都有可能6.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.7.如下图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流也为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动8.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为()A.B. 1C. 2D. 49.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小()A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁感应强度成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁通量的变化量成正比10.某线圈中产生了恒定不变的感应电流,关于穿过该线圈的磁通量Φ随时间t变化的规律,可能是下面四幅图中的()A.B.C.D.二、多选题11.(多选)如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为l,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计,其上端所接定值电阻为R.给金属棒ab一沿斜面向上的初速度v0,并与两导轨始终保持垂直且接触良好,ab棒接入电路的电阻为r,当ab棒沿导轨上滑距离x时,速度减小为零.则下列说法不正确的是()A.在该过程中,导体棒所受合外力做功为mvB.在该过程中,通过电阻R的电荷量为C.在该过程中,电阻R产生的焦耳热为D.在导体棒获得初速度时,整个电路消耗的电功率为v012.(多选)在如图所示的各图中,闭合线框中能产生感应电流的是()A.B.C.D.13.如图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨上的金属棒ab的运动情况(两线圈共面放置)是()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动三、实验题14.如图是做探究电磁感应的产生条件实验的器材.(1)在图中用实线代替导线把它们连成实验电路.(2)由哪些操作可以使灵敏电流计的指针发生偏转()A.闭合开关B.断开开关C.保持开关一直闭合D.将线圈A从B中拔出(3)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,灵敏电流计的指针向______(填“左”或“右”)偏转.15.英国物理学家法拉第在1831年发现了“磁生电”现象.现在某一课外活动小组的同学想模仿一下法拉第实验,于是他们从实验室里找来了两个线圈A、B,两节干电池、电键、电流计、滑动变阻器等器材,如图所示.请同学们帮助该活动小组,用笔画线代替导线,将图中的器材连接成实验电路.四、计算题16.如图所示,长为L=0.2 m、电阻为r=0.3 Ω、质量为m=0.1 kg的金属棒CD垂直放在位于水平面上的两条平行光滑金属导轨上,两导轨间距也为L,棒与导轨接触良好,导轨电阻不计,导轨左端接有R =0.5 Ω的电阻,量程为0~3.0 A的电流表串联在一条导轨上,量程为0~1.0 V的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定的外力F使金属棒右移,当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一电表未满偏.问:(1)此时满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F多大?(3)导轨处的磁感应强度多大?17.如图所示,ef、gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1 m,导轨左端连接一个R =3 Ω的电阻,一根电阻为1 Ω的金属棒cd垂直地放置在导轨上,与导轨接触良好,导轨的电阻不计,整个装置放在磁感应强度为B=2 T的匀强磁场中,磁场方向垂直于导轨平面向上.现对金属棒施加4 N的水平向右的拉力F,使棒从静止开始向右运动,试解答以下问题:(1)金属棒达到的最大速度v是多少?(2)金属棒达到最大速度后,R上的发热功率为多大?18.如图所示,两根足够长的光滑金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时金属棒的运动速率.五、填空题19.如图所示,线圈ABCO面积为0.4 m2,匀强磁场的磁感应强度B=0.1 T,方向为x轴正方向,通过线圈的磁通量为________Wb.在线圈由图示位置绕z轴向下转过60°的过程中,通过线圈的磁通量改变了________Wb.(可以用根式表示)20.图甲为“探究电磁感应现象”实验中所用器材的示意图.现将电池组、滑动变阻器、带铁芯的线圈A、B、电流计及开关连接成如图所示的电路.(1)开关闭合后,下列说法中正确的是________.A.只要将线圈A放在线圈B中就会引起电流计指针偏转B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大C.滑动变阻器的滑片P滑动越快,电流计指针偏转的角度越大D.滑动变阻器的滑片P匀速滑动时,电流计指针不会发生偏转(2)在实验中,如果线圈A置于线圈B中不动,因某种原因,电流计指针发生了偏转.这时,线圈B相当于产生感应电流的“电源”.这个“电源”内的非静电力是________.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时,是________转化为电能.(3)上述实验中,线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计简化如图乙所示.当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转.则乙图中灵敏电流计指针向其________接线柱方向偏转(填“正”或“负”).21.如下图所示,半径为r的金属圆环绕通过直径的轴OO′以角速度ω匀速转动,匀强磁场的磁感应强度为B,以金属环的环面与磁场方向重合时开始计时,求在转动30°角的过程中,环中产生的平均感应电动势为________.22.如图所示,金属环直径为d、总电阻为2R,匀强磁场磁感应强度为B,垂直穿过环所在平面.电阻为的导体杆AB沿环表面以速度v向右滑至环中央时,杆两端的电压为________.23.如下图甲所示,环形线圈的匝数n=1000,它的两个端点a和b间接有一理想电压表,线圈内磁感应强度B的变化规律如图乙所示,线圈面积S=100 cm2,则Uab=________,电压表示数为________V.答案解析1.【答案】D【解析】当通电直导线中电流增大时,穿过金属圆环的磁通量增大,金属圆环中产生感应电流,根据楞次定律,感应电流要阻碍磁通量的增大:一是用缩小面积的方式进行阻碍;二是用远离直导线的方法进行阻碍,故D正确.2.【答案】B【解析】高频感应炉是用涡流来熔化金属对其进行冶炼的,炉内放入被冶炼的金属,线圈内通入高频交变电流,这时被冶炼的金属中产生涡流就能被熔化.故A正确;电磁炉利用高频电流在电磁炉内部线圈中产生磁场,当含铁质锅具放置炉面时,铁磁性锅体被磁化,锅具即切割交变磁感线而在锅具底部产生交变的涡流,恒定磁场不会产生涡流,故B错误;阻尼摆摆动时产生的涡流总是阻碍其运动,当金属板从磁场中穿过时,金属板板内感应出的涡流会对金属板的运动产生阻碍作用.故C正确;在整块导体内部发生电磁感应而产生感应电流的现象称为涡流现象,要损耗能量,不用整块的硅钢铁芯,其目的是为了减小涡流,故D正确.本题选择错误的,故选B.3.【答案】A【解析】由法拉第电磁感应定律知:感应电动势E=可知:0.3~0.8 s:E===-4 V,负号表示方向与正方向相反,A正确;图象的斜率表示电动势的大小,由图象知第0.9 s末线圈中的瞬时电动势比0.2 s末的大,B错误;第1 s末线圈的磁感强度为零,但磁通量的变化率不为零,电动势不为零,C错误;第0.2 s末和0.4 s末的图象斜率一正一负,瞬时电动势的方向相反,D错误.4.【答案】C【解析】根据楞次定律,线圈进入磁场的过程,穿过线圈的磁通量向里的增加,产生逆时针方向的感应电流,因为速度恒定,所以电流恒定,故A、D错误;离开磁场时,穿过线圈的向里的磁通量减少,所以产生顺时针方向的电流,B错误,C正确.5.【答案】B【解析】当垂直纸面向里的磁场增强时,产生逆时针的涡旋电场,带正电的粒子将受到这个电场对它的电场力作用,而使动能增加,故B正确.6.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.7.【答案】A【解析】根据右手螺旋定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强.所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当增大到A点与导线重合时,达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向内,再向外,最后向内,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B错误;根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零.C、D错误.8.【答案】B【解析】设原磁感应强度是B,线框面积是S.第1 s内ΔΦ1=2BS-BS=BS,第2 s内ΔΦ2=2B·-2B·S=-BS.因为E=n,所以两次电动势大小相等,B正确.9.【答案】C【解析】由法拉第电磁感应定律可知,闭合电路中产生的感应电动势的大小与磁通量的变化率成正比,与磁通量及磁通量的变化量无关.故A、B、D错误,C正确.10.【答案】B【解析】要想该线圈中产生恒定不变的感应电流,则要求该线圈中产生的感应电动势是恒定不变的,要想线圈中产生恒定不变的感应电动势,由法拉第电磁感应定律可知,穿过线圈的磁通量的变化率应是恒定的,即在Φ-t图象中,其图线是一条倾斜的直线.11.【答案】ABC【解析】在该过程中,导体棒和金属导轨组成的系统所受合外力做功为mv,A错误;由q=IΔt,I=,E==,通过电阻R的电荷量为q=,B错误;由于不知摩擦力是否存在,所以C错误;在导体棒获得初速度时,电路中电动势为E=Blv0,I=,P=I2(r+R)=v0,D正确.12.【答案】AB【解析】感应电流产生的条件是:只要穿过闭合线框的磁通量变化,闭合线框中就有感应电流产生.A图中,线框转动过程中,通过线框的磁通量发生变化,线框中有感应电流产生;B图中离直导线越远磁场越弱,所以当线框远离导线时,线框中磁通量不断变小,所以B图中有感应电流产生;C图中一定要把条形磁铁周围的磁感线空间分布图弄清楚,在图示位置,线框中的磁通量为零,在向下移动过程中,线框的磁通量一直为零,磁通量不变,线框中无感应电流产生;D图中,线框中的磁通量一直不变,无感应电流产生.故选A、B.13.【答案】BC【解析】14.【答案】(1)见解析(2)ABD(3)右【解析】(1)将灵敏电流计与大线圈B组成闭合回路,电源、开关、小线圈A组成闭合回路,电路图如图所示.(2)将开关闭合或断开,导致穿过线圈的磁通量变化,产生感应电流,灵敏电流计指针偏转,故A、B正确;保持开关一直闭合,则穿过线圈B的磁通量不变,没有感应电流产生,灵敏电流计指针偏转,故C错误;将螺线管A插入(或拔出)螺线管B时穿过线圈B的磁通量发生变化,线圈B中产生感应电流,灵敏电流计指针偏转,故D正确.(3)在开关闭合的瞬间,穿过线圈B的磁通量增大,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,穿过线圈B的磁通量减小,灵敏电流计的指针向右偏转.15.【答案】【解析】线圈A与带电池的电路相连,线圈B与电流计相连,当滑动滑动变阻器时,线圈A中的电流变化,从而引起B中产生感应电流,也可以保持滑动器划片不动,线圈A插入或者拔出时,都可以引起B中产生感应电流.16.【答案】(1)见解析(2)1.6 N(3)4 T【解析】(1)假设电流表满偏,则I=3.0 A,R两端电压U=IR=3.0×0.5 V=1.5 V,将大于电压表的量程,不符合题意,故满偏电表应该是电压表.(2)由能量关系知,电路中的电能是外力做功转化来的,所以有Fv=I2(R+r),I=,两式联立得F==1.6 N.(3)磁场是恒定的,且不发生变化,由于CD运动而产生感应电动势,因此是动生电动势.根据法拉第电磁感应定律有E=BLv,根据闭合电路欧姆定律得E=U+Ir以及I=,联立三式得B=+=4 T.17.【答案】(1)4 m/s(2)12 W【解析】(1)当金属棒速度最大时,拉力与安培力相等.=F,v m==4 m/s(2)回路中电流为I==2 A,电阻上的发热功率为P=I2R=12 W.18.【答案】(1)(2)【解析】(1)设小灯泡的额定电流为I0,有P=I R,①由题意,在金属棒沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为I=2I0,②此时金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有mg=BLI,③联立①②③式得B=(2)设灯泡正常发光时,金属棒的速率为v,由电磁感应定律与闭合电路欧姆定律得E=BLv,⑤E=RI0,⑥联立①②④⑤⑥式得v=.⑦19.【答案】00.02或3.46×10-2【解析】线圈ABCO与x轴正方向的匀强磁场平行,没有一条磁感线穿过平面,所以磁通量等于0.在线圈由图示位置绕z轴向下转过60°时,线圈在中性面上面的投影面积为0.4×sin 60°,磁通量Φ=0.1×0.4×sin 60°=0.02Wb,磁通量变化量ΔΦ=0.1×0.4×sin 60°-0=0.02Wb.20.【答案】(1)BC(2)感应电场的电场力机械能(3)负【解析】(1)将线圈A放在线圈B中,由于磁通量不变化,故不会产生感应电流,也不会引起电流计指针偏转,选项A错误;线圈A插入或拔出线圈B的速度越大,则磁通量的变化率越大,产生的感应电流越大,电流计指针偏转的角度越大,选项B正确;滑动变阻器的滑片P滑动越快,电流的变化率越大,磁通量的变化率越大,则感应电流越大,电流计指针偏转的角度越大,选项C正确;滑动变阻器的滑片P 匀速滑动时,电流发生变化,磁通量变化,也会产生感应电流,故电流计指针也会发生偏转,选项D错误.故选BC.(2)这个“电源”内的非静电力是感应电场的电场力.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时是机械能转化为电能.(3)根据楞次定律可知,通过电流计的电流从负极流入,故灵敏电流计指针向其负接线柱方向偏转.21.【答案】3Bωr2【解析】ΔΦ=Φ2-Φ1=BS sin 30°-0=Bπr2.又Δt===所以===3Bωr2.22.【答案】【解析】杆切割产生的感应电动势:E=Bdv.两个电阻为R的半金属圆环并联,并联电阻R并=R,电路电流(总电流):I==,杆两端的电压:U=IR并=Bdv.23.【答案】50 V50【解析】由B-t图象可知=5 T/s由E=n S得:E=1 000×5×100×10-4V=50 V.。
4法拉第电磁感觉定律A 级抓基础1.穿过一个单匝闭合线圈的磁通量一直为每秒均匀增添 2 Wb,则 ()A .线圈中感觉电动势每秒增添 2 VB.线圈中感觉电动势每秒减少 2 VC.线圈中感觉电动势一直为 2 VD.线圈中感觉电动势一直为一个确立值,但因为线圈有电阻,电动势小于 2 V分析:由E= n Φ知:tΔΦ恒定,tn= 1,因此E=2V.答案: C2.以下说法中正确的选项是()A.导体相对磁场运动,导体内必定会产生感觉电流B.导体做切割磁感线运动,导体内必定会产生感觉电流C.闭合电路在磁场内做切割磁感线运动,电路内必定会产生感觉电流D.穿过闭合线圈的磁通量发生变化,电路中必定有感觉电流分析:只需穿过电路的磁通量发生变化,导体中就产生感觉电动势,若电路闭合则有感应电流,故 D 正确;因为线圈能否闭归其实不确立,故 A、 B 错误;闭合电路在磁场内做切割磁感线运动时,假如穿过电路的磁通量不发生变化,就不产生感觉电动势,也就不产生感觉电流,故C 错.答案: D3.如图,在磁感觉强度为 B、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动, MN 中产生的感觉电动势为E1;若磁感觉强度增为 2B,其余条件不变,MN 中产生的感觉电动势变成E2.则经过电阻R 的电流方向及E1与 E2之比E1∶ E2分别为 ()A . c→ a, 2∶1B . a→ c, 2∶1C.a→ c, 1∶ 2 D .c→ a, 1∶2分析:由右手定章判断可知,MN中产生的感觉电流方向为N→ M,则经过电阻R 的电流方向为a→ c.MN 产生的感觉电动势公式为E=BLv ,其余条件不变, E 与 B 成正比,则得E1∶ E2= 1∶2.答案: C4. (多项选择 )单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律以下图,则O→D 过程中 ()A .线圈在 O 时辰感觉电动势最大B.线圈在 D 时辰感觉电动势为零C.线圈在 D 时辰感觉电动势最大D.线圈在 O 至 D 时间内均匀感觉电动势为 0.4 VO 至 D 时间内的均匀感觉电动势E=Φ分析:由法拉第电磁感觉定律知线圈从t=- 32× 100.01÷2 V = 0.4 V.由感觉电动势的物理意义知,感觉电动势的大小与磁通量的大小Φ 和磁通量的改变量ΔΦ 均无必定联系,仅由磁通量的变化率ΔΦ决定,而任何时辰磁通量的变化率tΦ就是Φ-tt图象上该时辰切线的斜率,不难看出O 点处切线斜率最大, D 点处切线斜率最小,为零,故 A、B、D选项正确.答案: ABD5.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感觉强度在 1 s 时间内均匀地增大到本来的两倍.接着保持增大后的磁感觉强度不变,在 1 s 时间内,再将线框的面积均匀地减小到本来的一半.先后两个过程中,线框中感觉电动势的比值为 ()1A. 2 B . 1C.2 D .4分析:设原磁感觉强度为B,线框面积为 S,第一次在 1 s 内将磁感觉强度增大为本来2B,感觉电动势为E1=BS( 2B-B) S BS1 s 内将线框面的两倍,即变成t =t=t;第二次在1积均匀的减小到本来的一半,即变成12B S2B S-2SBS S,感觉电动势大小为E2==t=,2t tE1因此有E2= 1,选项 B 正确.答案: BB 级提能力6.一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里( 如图甲所示),磁感觉强度 B 随时间t 变化的规律如图乙所示.以I 表示线圈中的感觉电流( 图甲中线圈上箭头方向为电流的正方向),则能正确表示线圈中电流I 随时间t 变化规律的是 ()分析: 0~ 1 s 内磁感觉强度均匀增大,依据楞次定律和法拉第电磁感觉定律可判断,感应电流为逆时针(为负值 ) 、大小为定值,A、B 错误;4~ 5 s 内磁感觉强度恒定,穿过线圈abcd 的磁通量不变化,无感觉电流, D 错误.答案: C7.(多项选择 )以下图,矩形金属框架三个竖直边ab、cd、ef 的长都是L ,电阻都是R,其余电阻不计,框架以速度v 匀速平移,穿过磁感觉强度为 B 的匀强磁场,设ab、cd、 ef三条边先后进入磁场时ab 边两头电压分别为U1、U 2、 U3,则以下判断结果正确的选项是()1B .U 2= 2U1A . U1=3BLvC.U 3= 0D.U1=U2= U3分析:当 ab 进入磁场时, I=E=2BLv,则 U1= E- IR=1BLv.当 cd 也进入磁场时,R 3R3R+2I =2BLv R2BLv .三边都进入磁场时,U 3= BLv.应选项 A 、B 正确.3R, U2= E- I·=23答案: AB8.面积 S 为 0.2 m2、匝数 n 为 100 的圆形线圈,处在以下图所示的磁场内,磁感觉强度随时间 t 变化的规律 B 为 0.02t T, R 为 3 Ω,C 为 30 μ F,线圈电阻r 为 1 Ω,求:(1)经过 R 的电流大小和方向;(2)电容器所带的电荷量.分析: (1)由楞次定律知,Φ变大,线圈的感觉电流方向为逆时针方向,因此经过 R 的电流方向为 b→ a,ΦB感觉电动势 E= n= nS= 100×0.2 ×0.02 V =t t0.4 V,则感觉电流 I=E= 0.4A=0.1 A. R+ r3+ 1(2)电容器两头电压U C= U R= IR= 0.1 ×3 V= 0.3 V ,电容器所带的电荷量Q= CU C= 30×10-6×0.3 C =9×10-6 C.9.以下图,两足够长的圆滑金属导轨竖直搁置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R 的导体棒在距磁场上界限h 处静止开释.导体棒进入磁场后,流经电流表的电流渐渐减小,最后稳固为I.整个运动过程中,导体棒与导轨接触优秀,且一直保持水平,不计导轨的电阻.求:(1)磁感觉强度的大小B;(2)电流稳固后,导体棒运动速度的大小v;(3)流经电流表电流的最大值I m.分析: (1)电流稳固后,导体棒做匀速运动:BIL =mg,①mg解得: B=IL .②(2)感觉电动势E= BLv,③感觉电流 I =ER,④2I R(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m.机械能守恒12mv2m= mgh,感觉电动势的最大值E m= BLv m,感觉电流的最大值I m=E m,R解得: I m=mg 2gh.IR10.如图甲所示,不计电阻的平行金属导轨与水平面成37°夹角搁置,导轨间距为L =1m,上端接有电阻R= 3 Ω,虚线 OO′下方是垂直于导轨平面的匀强磁场.现将质量m =0.1 kg 、电阻 r= 1 Ω的金属杆 ab 从 OO′上方某处垂直导轨由静止开释,杆下滑过程中始终与导轨垂直并保持优秀接触,杆下滑过程中的2vt 图象如图乙所示. (g 取 10 m/s )求:图甲图乙(1)磁感觉强度 B;(2)杆在磁场中下滑0.1 s 过程中电阻 R 产生的热量.分析: (1)由图乙得a=v=0.5m/s2=5 m/s2 t 0.10. 1 s 前,由牛顿第二定律有mgsin θ- f =ma 代入数据得 f= 0.1 N0. 1 s 后匀速运动,有mgsinθ - f- F A= 0而 F A= BIL = B BLvL =B2L 2v.R+ r R+r(m gsin θ - f)( R+ r )由①②得 B=L2v(0.6- 0.1)×( 3+ 1)=T= 2T.12×0.5Blv = 2×1× 0.5(2)I =R+r3+ 1 A = 0.25A223Q R= I Rt= 0.25×3× 0.1 J=160J.11.匀强磁场的磁感觉强度B= 0.2T,磁场宽度l = 3 m,一正方形金属框边长ad= l′=1 m,每边的电阻 r = 0.2 Ω,金属框以 v= 10 m/s 的速度匀速穿过磁场区,其平面一直保持与磁感线方向垂直,以以下图所示.求:(1)画出金属框穿过磁场地区的过程中,金属框内感觉电流的I - t 图线;(2)画出ab 两头电压的U -t图线.分析:线框的运动过程分为三个阶段:第一阶段二阶段 cd 和 ab 相当于开路时两并联的电源;第三阶段cd 相当于电源,ab 为等效外电路;第ab 相当于电源, cd 相当于外电路,以以下图所示.E Bl ′ v在第一阶段,有 I 1=r+3r=4r= 2.5 A.感觉电流方向沿逆时针方向,连续时间为:t1=l′=1s= 0.1 s. v10ab 两头的电压为:U1= I1· r= 2.5 ×0.2 V = 0.5 V ,在第二阶段,有:I2= 0, U2= E= Bl ′v= 2 V , t2= 0.2 s.在第三阶段,有I3= E =2.5 A.4r感觉电流方向为顺时针方向.U3= I3× 3r = 1.5 V , t3= 0.1 s.规定逆时针方向为电流正方向,故I -t 图象和 ab 两头的 U- t 图象分别以以下图所示.。
高中物理学习材料桑水制作1.关于感应电动势的大小,下列说法正确的是( )A.穿过闭合回路的磁通量最大时,其感应电动势一定最大B.穿过闭合回路的磁通量为零时,其感应电动势一定为零C.穿过闭合回路的磁通量由不为零变为零时,其感应电动势一定为零D.穿过闭合回路的磁通量由不为零变为零时,其感应电动势一定不为零答案:D解析:磁通量的大小与感应电动势的大小不存在内在的联系,故A、B错误;当磁通量由不为零变为零时,闭合回路的磁通量一定改变,一定有感应电流产生,有感应电流就一定有感应电动势,故C错,D对.2.穿过一个单匝线圈的磁通量始终保持每秒均匀地减少2 Wb,则( )A.线圈中感应电动势每秒增加2 V B.线圈中感应电动势每秒减少2 VC.线圈中无感应电动势D.线圈中感应电动势大小不变答案:D解析:因穿过线圈的磁通量均匀变化,所以磁通量的变化率ΔΦ/Δt为一定值,又因为是单匝线圈,据E=ΔΦ/Δt可知选项D正确.3.穿过某线圈的磁通量随时间变化的关系如图所示,在下列几段时间内,线圈中感应电动势最小的是( )A.0~2 s B.2 s~4 sC.4 s~5 s D.5 s~10 s答案:D解析:图象斜率越小,表明磁通量的变化率越小,感应电动势也就越小.4.材料、粗细相同,长度不同的电阻丝做成ab、cd、ef三种形状的导线,分别放在电阻可忽略的光滑金属导轨上,并与导轨垂直,如图所示,匀强磁场方向垂直导轨平面向内.外力使导线水平向右做匀速运动,且每次外力所做功的功率相同,已知三根导线在导轨间的长度关系是L ab <L cd <L ef ,则( )A .ab 运动速度最大B .ef 运动速度最大C .三根导线每秒产生的热量相同D .因三根导线切割磁感线的有效长度相同,故它们产生的感应电动势相同答案:BC解析:三根导线长度不同,故它们连入电路的阻值不同,有R ab <R cd <R ef .但它们切割磁感线的有效长度相同,根据P =Fv ,I =Blv R ,F =BIl ,可得v 2=PR B 2l2,所以三根导线的速度关系为v ab <v cd <v ef ,A 错,B 对.根据E =Blv ,可知三者产生的电动势不同,D 错.运动过程中外力做功全部转化为内能,故C 对.5.如图所示,半径为r 的n 匝线圈套在边长为L 的正方形abcd 之外,匀强磁场局限在正方形区域内且垂直穿过正方形,当磁感应强度以ΔB Δt的变化率均匀变化时,线圈中产生感应电动势大小为( )A .πr 2ΔB ΔtB .L 2ΔB ΔtC .n πr 2ΔB ΔtD .nL 2ΔB Δt答案:D解析:根据法拉第电磁感应定律,线圈中产生的感应电动势的大小E =n ΔΦΔt =nL 2ΔB Δt. 6.用相同导线绕制的边长为L 或2L 的四个闭合导线框,以相同的速度匀速进入右侧匀强磁场,如下图所示.在每个导线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是( )A .U a <U b <U c <U dB .U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c答案:B 解析:导线框进入磁场时,M 、N 切割磁感线产生感应电动势,M 、N 两点间的电压为以MN 为电源、其他三边电阻为外电路电阻的路端电压.则U a =34BLv ,U b =56BLv ,U c =34B ·2Lv ,U d =46B ·2Lv ,故U a <U b <U d <U c ,选项B 正确.7.如图所示的几种情况,金属导体中产生的感应电动势为Blv 的是( )答案:ABD解析:公式E =Blv 中的l 应指导体的有效切割长度,A 、B 、D 中的有效切割长度均为l ,电动势E =Blv ,而C 中的有效切割长度为l sin θ,电动势E =Blv sin θ,故ABD 项正确.8.如图所示,导体AB 的长度为2R ,绕O 点以角速度ω匀速转动,OB 为R ,且OBA 三点在一条直线上,有一磁感应强度为B 的匀强磁场充满转动平面且与转动平面垂直,那么AB 两端的电势差为( )A.12B ωR 2 B .2B ωR 2C .4B ωR 2D .6B ωR 2 答案:C解析:A 点线速度v A =ω·3R ,B 点线速度v B =ω·R ,AB 棒切割磁感线的平均速度v =v A +v B2=2ω·R ,由E =Blv 得A 、B 两端的电势差为4B ωR 2,C 项正确.9.如右图所示,一个“∠”形光滑导轨垂直于磁场固定在磁感应强度为B 的匀强磁场中,ab 是与导轨材料相同的导体棒,导体棒与导轨接触良好.在外力作用下,导体棒以恒定速度v 向右运动,以导体棒在图中所示位置的时刻作为计时起点,则回路中的感应电流I .导体棒所受外力的功率P 随时间t 变化的图象为( )答案:AC解析:任一时刻,回路中产生的电动势E =Bl有效v ,又l 有效∝l 周长,由电阻定律有R 总=ρl 周长S 截,故E ∝R 总,因此回路的感应电流I =E R 总保持恒定,选项A 正确.导体棒所受外力的功率P =P 安=I 2R ∝l 周长∝t ,故选项C 正确.10.如图甲所示,一个电阻为R 、面积为S 的矩形导线框abcd ,水平放置在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成45°角,o 、o ′分别是ab 边和cd 边的中点.现将线框右半边obco ′绕oo ′逆时针旋转90°到图乙所示位置.在这一过程中,导线中通过的电荷量是( )A.2BS 2R B.2BS R C.BS R D .0答案:A解析:对线框的右半边(obco ′)未旋转时整个回路的磁通量Φ1=BS sin45°=22BS 线框的右半边(obco ′)旋转90°后,穿进跟穿出的磁通量相等,如图整个回路的磁通量Φ2=0,ΔΦ=|Φ2-Φ1|=22BS .根据公式q =ΔΦR =2BS 2R.选A.11.如图所示,半径为a 的圆形区域内有匀强磁场,磁感应强度B =0.2T ,磁场方向垂直纸面向里.半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直.其中a =0.4 m ,b =0.6 m .金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω.一金属棒MN 与金属环接触良好,棒与环的电阻均不计.(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′的瞬时,MN中的感应电动势和流过灯L 1的电流;(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°后,若此时磁感应强度随时间均匀变化,其变化率为ΔB Δt =(4π)T/s ,求L 1的功率. 答案:(1)0.8 V 0.4 A (2)1.28×10-2W解析:(1)棒滑过圆环直径OO ′的瞬时,垂直切割磁感线的有效长度为2a ,故在MN 中产生的感应电动势为:E 1=B ·2a ·v 0=0.2×2×0.4×5 V =0.8 V ,通过灯L 1的电流I 1=E 1R 0=0.82A =0.4 A ; (2)撤去金属棒MN ,半圆环O L 2O ′以OO ′为轴向上翻转90°后,根据法拉第电磁感应定律,E 2=ΔΦΔt =ΔB Δt ·πa 22=4π×πa 22=2×0.42 V =0.32 V , 则L 1的功率P 1=(E 22R 0)2R 0=E 224R 0=0.3224×2W =1.28×10-2W. 12.如图所示,两条处于同一水平面内的平行滑轨MN 、PQ 相距30 cm ,上面垂直于滑轨放置着质量均为0.1 kg 、相距50 cm 的ab 和cd 两平行可动的金属棒,棒与滑轨间的动摩擦因数为0.45.回路abcd 的电阻为0.5 Ω,整个装置处于竖直向下的匀强磁场中,若磁感应强度从零开始以0.1T/s 的变化率均匀增加,则经过多长时间棒将会发生滑动?(g 取10 m/s 2)答案:500 s解析:依题意知,回路中的电流 I =E R =S ΔB R Δt =0.3×0.5×0.10.5A =0.03 A金属棒刚要发生滑动时,安培力等于最大静摩擦力,即BIl =F m =μmg解得:B =50 T .又B =ΔB Δt t =0.1t , 所以t =500 s.13.如图所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M ′N ′的过程中,棒上感应电动势E 随时间t 变化的图示,可能正确的是( )答案:A解析:金属棒PQ 在进磁场前和出磁场后,不产生感应电动势,而在磁场中,由于匀速运动所以产生的感应电动势不变,故正确选项为A.14.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )A.12B .1C .2D .4答案:B解析:设原磁感应强度为B ,线框面积为S ,第一次在1s 内将磁感应强度增大为原来的两倍,即变为2B ,感应电动势为E 1=ΔBS Δt =(2B -B )S t =BS t ;第二次在1s 内将线框面积均匀的减小到原来的一半,即变为12S ,感应电动势大小为E 2=2B ΔS Δt =2B ⎝ ⎛⎭⎪⎫S -12S t =BS t ,所以有E 1E 2=1,选项B 正确.。
一课一练电磁感应中的图像问题11、如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc 的ab 边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab 边垂直.则下列各图中哪一个可以定性地表示线框在进入磁场的过程中感应电流随时间变化的规律 ( )2、如图a 所示,虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O 以角速度ω匀速转动。
设线框中感应电流方向以逆时针为正,那么在图b 中能正确描述线框从图a 中所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是 ( )3、如图甲所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L ,磁场方向垂直纸面向外,磁感应强度大小为B 。
一边长为L 、总电阻为R 的正方形导线框abcd ,从图示位置开始沿x 轴正方向以速度v 匀速穿过磁场区域。
取沿a d c b a→→→→的感应电流为正,则图乙中表示线框中电流i 随bc 边的位置坐标x 变化的图象正确的是( )4、如图甲所示,正三角形导线框abc 放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B 随时间t 的变化关系如图乙所示,t =0时刻,磁感应强度的方向垂直纸面向里.图丙中能表示线框的ab 边受到的磁场力F 随时间t 的变化关系的是(力的方向规定规定向左为正方向) (5、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,F -F -2FF -F -2F -F -2F F -F -2 ABD2F图甲图乙ABCDa-2-a b ⨯ ⨯ ⨯ ⨯ ⨯ ⨯tB 图a图b规定 磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。
若规定顺时针方向为感应电流i 的正方向,下列i-t 图中正确的是()6、如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框。
第四章 第4节一、选择题1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2 Wb ,则( ) A .线圈中感应电动势每秒增加2 V B .线圈中感应电动势每秒减少2 V C .线圈中感应电动势始终为2 VD .线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V 答案 C解析 由E =n ΔΦΔt 知:ΔΦΔt恒定,n =1,所以E =2 V 。
2.一单匝矩形线框置于匀强磁场中,线框平面与磁场方向垂直。
先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍。
接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半。
先后两个过程中,线框中感应电动势的比值为( )A.12 B .1 C .2 D .4答案 B解析 根据法拉第电磁感应定律E =ΔΦΔt =ΔBSΔt ,设初始时刻磁感应强度为B 0,线框面积为S 0,则第一种情况下的感应电动势为E 1=ΔBS Δt =(2B 0-B 0)S 01=B 0S 0;第二种情况下的感应电动势为E 2=B ΔSΔt =2B 0(S 0-S 02)1=B 0S 0,所以两种情况下线框中的感应电动势相等,比值为1,故选项B 正确。
3.一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪种方法可使感应电流增加一倍( )A .把线圈匝数增加一倍B .把线圈面积增加一倍C .把线圈半径增加一倍D .改变线圈与磁场方向的夹角答案 C解析 设导线的电阻率为ρ,横截面积为S ,线圈的半径为r ,则I =ER =nΔΦΔt R =n πr 2ΔBΔt sin θρn ·2πrS=Sr 2ρ·ΔB Δt ·sin θ。
可见将r 增加一倍,I 增加一倍,将线圈与磁场方向的夹角改变时,sin θ不能变为原来的2倍(因sin θ最大值为1),若将线圈的面积增加一倍,半径r 增加到原来的2倍,电流也增加到原来的2倍,I 与线圈匝数无关。
第四节法拉第电磁感应定律基础夯实1.(2010·南京六中期中)下列几种说法中正确的是( )A.线圈中磁通量变越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大.线圈放在磁场越强的位置,产生的感应电动势一定越大2.如图所示的几种情况中,金属导体中产生的感应电动势为Bv的是( )A.乙和丁B.甲、乙、丁.甲、乙、丙、丁D.只有乙3.穿过闭合回路的磁通量Φ随时间变的图象分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是( )A .图甲中回路产生的感应电动势恒定不变B .图乙中回路产生的感应电动势一直在变大.图丙中回路在0~0时间内产生的感应电动势大于0~20时间内产生的感应电动势D .图丁回路产生的感应电动势可能恒定不变4.(2011·河南大附中高二期末)如图所示,两根相距为的平行直导轨b 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在b 和cd 上的一导体杆,与b 垂直,其电阻也为R 整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v 做匀速运动.令U 表示MN 两端的电压的大小,则( )A .U =12Bv ,流过固定电阻R 的感应电流由b 到dB .U =12Bv ,流过固定电阻R 的感应电流由d 到b.U =Bv ,流过固定电阻R 的感应电流由b 到d D .U =Bv ,流过固定电阻R 的感应电流由d 到b5.如图所示,将一半径为r 的金属圆环在垂直于环面的磁感应强度为B 的匀强磁场中用力握中间成“8”字型,并使上、下两圆半径相等.如果环的电阻为R ,则此过程中流过环的电荷量为( )A πr 2BRB πr 2B 2R .0D 3πr 2B 4R6.(2010·唐山二中高二期中)如图所示,足够长的U 型光滑导体框架的两个平行导轨间距为L ,导轨间连有定值电阻R ,框架平面与水平面之间的夹角为θ,不计导体框架的电阻.整个装置处于匀强磁场中,磁场方向垂直于框架平面向上,磁感应强度大小为B 导体棒b 的质量为,电阻不计,垂直放在导轨上并由静止释放,重力加速度为g 求:(1)导体棒b 下滑的最大速度;(2)导体棒b 以最大速度下滑时定值电阻消耗的电功率.7.(金华十校高二期末)如图(1)所示 ,线圈匝=200匝,直径d 1=40c ,电阻r =2Ω,线圈与阻值R =6Ω的电阻相连.在线圈的中心有一个直径d 2=20c 的有界圆形匀强磁场,磁感应强度按图(2)所示规律变,试求:[。
人教版物理选修3-2第四章电磁感觉第4节法拉第电磁感觉定律提升练习题(含分析 )4.4 法拉第电磁感觉定律提升练习一、选择题1.穿过一个单匝线圈的磁通量一直保持每秒钟平均地减少2Wb,则()A .线圈中的感觉电动势每秒钟增添 2 VB.线圈中的感觉电动势每秒钟减少 2 VC.线圈中无感觉电动势D.线圈中感觉电动势保持不变2.闭合回路的磁通量随时间t变化图象分别如下图,对于回路中产生的感觉电动势的以下阐述,此中正确的选项是()A.图甲回路中感觉电动势恒定不变B.图乙回路中感觉电动势恒定不变C.图丙回路中 0~ t1,时间内感觉电动势小于 t1~ t2时间内感觉电动势D.图丁回路中感觉电动势先变大后变小3.在匀强磁场中,有一个接有电容器的导线回路,如下图,已知电容C=30 μF,回路的长和宽分别为 l1=5 cm, l2=8 cm,磁场变化率为-25× 10 T / s,则()A .电容器带电荷量为- 9 C2× 10 B.电容器带电荷量为-9 C4× 10C.电容器带电荷量为-9C 6× 10D.电容器带电荷量为- 9C 8× 104.粗细平均的电阻丝围成图所示的线框,置于正方形有界匀强磁场中,磁感觉强度为B,方向垂直于线框平面,图中ab= bc= 2cd= 2de= 2ef= 2fa= 2L。
现使线框以相同大小的速度 v 匀速沿四个不一样方向平动进入磁场,而且速度方向一直与线框先进入磁场的那条边垂直,则在经过如下图地点时,以下说法中正确的选项是()人教版物理选修 3-2 第四章电磁感觉 第 4 节 法拉第电磁感觉定律 提升练习题 (含分析 )A . ab 两点间的电势差图①中最大B .ab 两点间的电势差图②中最大C .回路电流图③中最大D .回路电流图④中最小5.环形线圈放在匀强磁场中,设在第 1 s 内磁场方向垂直于线圈平面向里,如图甲所示。
第四章 电磁感应4 法拉第电磁感应定律A 级 抓基础1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2 Wb ,则( )A .线圈中感应电动势每秒增加 2 VB .线圈中感应电动势每秒减少2 VC .线圈中感应电动势始终为2 VD .线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V解析:由E =n ΔΦΔt 知:ΔΦΔt恒定,n =1,所以E =2 V . 答案:C2.将闭合多匝线圈置于磁感应强度仅随时间变化的磁场中,线圈平面与磁场方向垂直.关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同 解析:本题考查法拉第电磁感应定律等知识.根据法拉第电磁感应定律E =nS ΔB Δt,在其他条件不变的情况下,感应电动势的大小与线圈匝数成正比,A错;由上式可知,在n,S不变的情况下ΔBΔt(穿过线圈的磁通量)变化越快,E越大,B错,C对;由于不知道原磁场的磁通量是变大还是变小,所以也就不知道感应电流产生的磁场方向与原磁场方向是相同还是相反,D错.答案:C3.如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E1∶E2分别为()A.c→a,2∶1B.a→c,2∶1C.a→c,1∶2 D.c→a,1∶2解析:由右手定则判断可知,MN中产生的感应电流方向为N→M,则通过电阻R的电流方向为a→c.MN产生的感应电动势公式为E=BL v,其他条件不变,E与B成正比,则得E1∶E2=1∶2.答案:C4.如图所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M′N′的过程中,棒上感应电动势E 随时间t变化的图象,可能正确的是()解析:金属棒PQ 在进磁场前和出磁场后,不产生感应电动势,而在磁场中,由于匀速运动所以产生的感应电动势不变,故正确选项为A.答案:A5.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )A.12B .1C .2D .4解析:设原磁感应强度为B ,线框面积为S ,第一次在1 s 内将磁感应强度增大为原来的两倍,即变为2B ,感应电动势为E 1=ΔBS Δt=(2B -B )S t =BS t;第二次在1 s 内将线框面积均匀的减小到原来的一半,即变为12S ,感应电动势大小为E 2=2B ΔS Δt=2B ⎝ ⎛⎭⎪⎫S -12S t =BS t,所以有E 1E 2=1,选项B 正确. 答案:BB 级 提能力6.一矩形线圈abcd 位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图甲所示),磁感应强度B 随时间t 变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则能正确表示线圈中电流I随时间t变化规律的是()解析:0~1 s内磁感应强度均匀增大,根据楞次定律和法拉第电磁感应定律可判定,感应电流为逆时针(为负值)、大小为定值,A、B 错误;4 ~5 s内磁感应强度恒定,穿过线圈abcd的磁通量不变化,无感应电流,D错误.答案:C7.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度v0抛出,设在整个过程中棒的方向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是()A.越来越大B.越来越小C.保持不变D.无法判断解析:金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=BL v知,电动势也不变,故C正确.答案:C8.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为多少(重力加速度g取10 m/s2,sin 37°=0.6)?解析:导体棒做匀速直线运动,处于平衡状态,由平衡条件得:mg sin θ=μmg cos θ+B2L2v R+r,解得:v=5 m/s;导体棒产生的感应电动势:E=BL v,电路电流:I=ER+r,灯泡消耗的功率:P=I2R,解得:P=1 W.9.如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值I m.解析:(1)电流稳定后,导体棒做匀速运动:BIL=mg,①解得:B=mg IL.②(2)感应电动势E=BL v,③感应电流I=E R,④由②③④解得:v=I2R mg.(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m.机械能守恒12m v2m=mgh,感应电动势的最大值E m=BL v m,感应电流的最大值I m=E m R,解得:I m=mg2ghIR.10.如图所示,用相同的均匀导线制成的两个圆环a和b,已知b的半径是a的两倍,若在a内存在着随时间均匀变化的磁场,b在磁场外,MN两点间的电势差为U;若该磁场存在于b内,a在磁场外,MN两点间的电势差为多少(MN在连接两环的导线的中点,该连接导线的长度不计)?解析:磁场的变化引起磁通量的变化,从而使闭合电路产生感应电流.由题意,磁场随时间均匀变化,设磁场的变化率为ΔBΔt,a的半径为r,则b的半径为2r,线圈导线单位长电阻为R0.线圈a的电阻为R0=2πrR0,线圈b的电阻为R b=4πrR0.因此有R b=2R a.当线圈a在磁场中时,a相当于电源,根据法拉第电磁感应定律,电动势为E a=ΔBΔtπr2,当线圈b在磁场中时,b相当于电源,所以,E b=ΔBΔtπ(2r)2=4E a,U是a为电源时的路端电压,由闭合电路欧姆定律,U=E a R a+R bR b,设U b是b为电源时的路端电压,同理有U b=E bR b+R aR a,将上面各式联立解得:U b=2U.11.匀强磁场的磁感应强度B=0.2 T,磁场宽度l=3 m,一正方形金属框边长ad=l′=1 m,每边的电阻r=0.2 Ω,金属框以v=10 m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如下图所示.求:(1)画出金属框穿过磁场区域的过程中,金属框内感应电流的I -t图线;(2)画出ab两端电压的U-t图线.解析:线框的运动过程分为三个阶段:第一阶段cd相当于电源,ab为等效外电路;第二阶段cd和ab相当于开路时两并联的电源;第三阶段ab相当于电源,cd相当于外电路,如下图所示.在第一阶段,有I1=Er+3r=Bl′v4r=2.5 A.感应电流方向沿逆时针方向,持续时间为:t1=l′v=110s=0.1 s.ab两端的电压为:U1=I1·r=2.5×0.2 V=0.5 V,在第二阶段,有:I2=0,U2=E=Bl′v=2 V,t2=0.2 s.在第三阶段,有I3=E4r=2.5 A.感应电流方向为顺时针方向.U3=I3×3r=1.5 V,t3=0.1 s.规定逆时针方向为电流正方向,故I-t图象和ab两端的U-t 图象分别如下图所示.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
人教版高二物理选修3-2第四章法拉第电磁感应定律专项训练一、选择题1.如图所示,A、B两闭合线圈为同样导线绕成,A有10匝,B有20匝,两圆线圈半径Z比为2: 1.均匀磁场只分布在B线圈内.当磁场随时间均匀减弱时()B.A、B中均有恒定的感应电流C.A、B中感应电动势Z比为2: 1D.A、B中感应电流之比为1: 2【答案】BD【解析】试题分析:穿过闭合电路的磁通量发生变化,电路中产生感应电流;由法拉第电磁感应定律可以求出感应电动势;由电阻定律求出导线电阻,最后由欧姆定律可以求出线圈电流.磁场随时间均匀减弱,穿过闭合线圈昇的磁通量减少,〃中产主感应电流,故A错误;磁场随时间均匀减弱, 穿过闭合线圈久〃的磁通量减少,A.〃屮都产生感应电流,故B正确;由法拉第电磁感应定律得,感应电动势:E = n—= n—S,其屮竺、S都相同,力有10匝,〃有20匝,线圈产生的感应电动势之比为1: 2, /、At At At〃环屮感应电动势E A:E B=1:2,故C错误:线圈电阻R = p- = p n 2?Cr = 两圆线圈半径之比为2: 1, As s sE有10匝,〃有20匝,p、s都相同,则电阻之比R A:R B F A:「B=1:1,由欧姆定律1 = 3得,产生的感应电流之R比I A:【B=1:2,故D正确;2.高频焊接技术的原理如图(a).线圈接入图(b)所示的正弦式交流电(以电流顺吋针方向为正),圈内待焊工件形成闭合冋路•则()A.图(b)中电流有效值为IB.0〜t]时间内工件中的感应电流变大C.0〜h时间内工件中的感应电流方向为逆时针D.图(b) '|>T越大,工件温度上升越快【答案】AC【解析】由图知电流的最大值为返/,因为该电流是正弦式交流电,则有效值为/,故A正确.,一/图象切线的斜率等于电流的变化率,根据数学知识可知:0〜/]时间内线圈中电流的变化率减小,磁通量的变化率变小,rti法拉第电磁感应定律可知工件中感应电动势变小,则感应电流变小,故B错误.根据楞次定律可知:0〜"吋I'可内工件中的感应电流方向为逆吋针,故C正确.图(b)中厂越大,电流变化越慢,工件中磁通量变化越慢,由法拉第电磁感应定律可知工件屮产生的感应电动势越小,温度上升越慢,故D错误.3.如图所示,一光滑绝缘的半圆面和一根很长的直导线被固定在同一竖直平面内,直导线水平处于半圆面的下方,导线中通有方向向右的恒定电流I,将一铜环从半圆面左侧最高点a从静止释放后,铜环沿着半圆面运动,到达右侧的b点为最高点,a、b高度差为已知通电直导线在周围某一点产生磁场的磁感应强度与该点到导线的距离成反比,下列说法正确的是( )A.铜环在半圆面左侧下滑过程,感应电流沿顺时针方向B.铜环第一次经过最低点时感应电流达到最大C.铜环往返运动第二次到达右侧最高点时与b点的高度差小于2AhD.铜环沿半圆面运动过程,铜环所受安培力的方向总是与铜环中心的运动方向相反【答案】AC【解析】A、rti安培定则知半圆面内磁场方向为垂直纸面向外,由上至下磁感应强度逐渐增大,铜环在左侧下滑过程中,通过圆坏的磁通量增大,则由楞次定律知感应电流为顺时针方向,故A正确;B、根据通电直导线产生磁场的特点可知,在同一水平面上磁感应强度是相等的,所以若铜环的速度为水平时,铜环内的磁通量变化率为0,感应电流为零,所以铜环在最低点的感应电流最小,故B错误;C、设铜环的质量为m,则铜坏第一次从a点运动到b点时,消耗的能量为mgAh;铜坏在竖直方向上的速度越大时,其里面的磁通量变化率越大,产生的感应电流越大,从而产生的焦耳热越大,消耗的能量越大.显然铜环从右往左端返冋时,在同一高度,竖直方向上的速度要比第一次从左端到右端的小,所以返冋消耗的能量要小于第一次消耗的能量,即小于mgAh;同理,铜坏再从左端运动到右端,消耗的能量更小TmgAh, 则铜环往复运动第二次到达右侧最高点时与点b的高度差小于2Ah,故C正确;D、当铜环沿着半圆面斜向下运动时,根据对称性,铜环左右两端产生的安培力大小相等,方向相反;而铜环下半部分产生的安培力要大于上半部分产生的安培力,下半部分产生的安培力的合力方向竖直向上,上半部分产生的安培力的合力竖直向下,所以铜环所受到的安培力是竖直向上的,显然与铜环中心的运动方向不是相反的,故D错误;点睛:本题考查法拉第电磁感应定律与能暈和受力相结合的题目,要注意明确安培定则的应用,确定磁场方向,再根据楞次定律以及功能关系进行分析,即可明确圆环的运动情况。
第四章法拉第电磁感应定律专项训练一、选择题1.(多选题)如图所示,A、B两闭合线圈为同样导线绕成,A有10匝,B有20匝,两圆线圈半径之比为2:1.均匀磁场只分布在B线圈内.当磁场随时间均匀减弱时()A.A中无感应电流B.A、B中均有恒定的感应电流C.A、B中感应电动势之比为2:1D.A、B中感应电流之比为1:22.(多选题)高频焊接技术的原理如图(a).线圈接入图(b)所示的正弦式交流电(以电流顺时针方向为正),圈内待焊工件形成闭合回路.则()A.图(b)中电流有效值为IB.0~t1时间内工件中的感应电流变大C.0~t1时间内工件中的感应电流方向为逆时针D.图(b)中T越大,工件温度上升越快3.(多选题)如图所示,一光滑绝缘的半圆面和一根很长的直导线被固定在同一竖直平面内,直导线水平处于半圆面的下方,导线中通有方向向右的恒定电流I,将一铜环从半圆面左侧最高点a从静止释放后,铜环沿着半圆面运动,到达右侧的b点为最高点,a、b高度差为△h,已知通电直导线在周围某一点产生磁场的磁感应强度与该点到导线的距离成反比,下列说法正确的是()A.铜环在半圆面左侧下滑过程,感应电流沿顺时针方向B.铜环第一次经过最低点时感应电流达到最大C.铜环往返运动第二次到达右侧最高点时与b点的高度差小于2△hD.铜环沿半圆面运动过程,铜环所受安培力的方向总是与铜环中心的运动方向相反4.如图甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内电容器()A .上极板带正电,所带电荷量为012)(tB B CS - B .上极板带正电,所带电荷量为012)(t B B C - C .上极板带负电,所带电荷量为012)(t B B CS - D .上极板带负电,所带电荷量为012)(t B B C - 5.如图所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论不正确的是( )A .感应电流方向不变B .CD 段直线始终不受安培力C .感应电动势最大值E=BavD .感应电动势平均值E =41πBav 6.(多选题)如图所示,一电子以初速度v 沿与金属板平行方向飞入MN 极板间,突然发现电子向M 板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是( )A .开关S 闭合瞬间B .开关S 由闭合后断开瞬间C .开关S 是闭合的,变阻器滑片P 向右迅速滑动D .开关S 是闭合的,变阻器滑片P 向左迅速滑动7.等离子体气流由左方连续以速度v o 射入P 1和P 2两板间的匀强磁场中,ab 直导线与P 1、P 2相连接,线圈A 与直导线cd 连接.线圈A 内有如图乙所示的变化磁场,且磁场B 的正方向规定为向左,如图甲所示,则下列叙述正确的是( )A.0~1 s内ab、cd导线互相排斥 B.l~2 s内ab、cd导线互相吸引C.2~3 s内ab、cd导线互相吸引 D.3~4 s内ab、cd导线互相吸引8.穿过闭合回路的磁通量φ随时间t变化的图象分别如图①~④所示,下列关于回路中产生的感应电动势的论述,正确的是()A.图①中,回路产生的感应电动势恒定不变B.图②中,回路产生的感应电动势一直在变大C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生感应电动势D.图④中,回路产生的感应电动势先变小后变大9.电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是()A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电10.矩形导线框固定在匀强磁场中,如图甲所示.磁感线的方向与导线框所在平面垂直,规定磁场的正方向为垂直纸面向里,磁感应强度B随时间t变化的规律如图乙所示,则()A.从0到t1时间内,导线框中电流的方向为abcdaB.从0到t1时间内,导线框中电流越来越小C.从0到t2时间内,导线框中电流的方向始终为adcbaD.从0到t2时间内,导线框bc边受到的安培力越来越大二、计算题11.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6Ω,线圈电阻R2=4Ω,求:(1)回路中的感应电动势大小;(2)回路中电流的大小和方向;(3)a、b两点间的电势差.12.如图甲所示,质量m=1kg,边长ab=1.0m,电阻r=2Ω单匝正方形闭合线圈abcd放置在倾角θ=30°的斜面上,保持静止状态.匀强磁场垂直线圈平面向上,磁感应强度B随时间t变化如图乙所示,整个线圈都处在磁场中,重力加速度g=10m/s2.求:(1)t=1s时穿过线圈的磁通量;(2)4s内线圈中产生的焦耳热;(3)t=3.5s时,线圈受到的摩擦力.13.如图所示,两金属板正对并水平放置,分别与平行金属导轨连接,Ⅰ、Ⅱ、Ⅲ区域有垂直导轨所在平面的匀强磁场.金属杆ab与导轨垂直且接触良好,并一直向右匀速运动.某时刻ab进入Ⅰ区域,同时一带正电小球从O点沿板间中轴线水平射入两板间.ab在Ⅰ区域运动时,小球匀速运动;ab从Ⅲ区域右边离开磁场时,小球恰好从金属板的边缘离开.已知板间距为4d,导轨间距为L,Ⅰ、Ⅱ、Ⅲ区域的磁感应强度大小相等、宽度均为d.带电小球质量为m,电荷量为q,ab运动的速度为v0,重力加速度为g.求:(1)磁感应强度的大小;(2)ab在Ⅱ区域运动时,小球的加速度大小;(3)要使小球恰好从金属板的边缘离开,ab运动的速度v0要满足什么条件.详细解析1.BD解:A、磁场随时间均匀减弱,穿过闭合线圈A的磁通量减少,A中产生感应电流,故A错误;B、磁场随时间均匀减弱,穿过闭合线圈A、B的磁通量减少,A、B中都产生感应电流,故B正确;C、由法拉第电磁感应定律得,感应电动势:E=n=n S,其中、S都相同,A有10匝,B有20匝,线圈产生的感应电动势之比为1:2,A、B环中感应电动势E A:E B=1:2,故C错误;D、线圈电阻:R=ρ=ρ=,两圆线圈半径之比为2:1,A有10匝,B有20匝,ρ、s 都相同,则电阻之比R A:R B=r A:r B=1:1,由欧姆定律I=得,产生的感应电流之比I A:I B=1:2,故D 正确;故选:BD.2.AC解:A、由图知电流的最大值为I,因为该电流是正弦式交流电,则有效值为I,故A正确.B、i﹣t图象切线的斜率等于电流的变化率,根据数学知识可知:0~t1时间内工件中电流的变化率减小,磁通量的变化率变小,由法拉第电磁感应定律可知工件中感应电动势变小,则感应电流变小,故B错误.C、根据楞次定律可知:0~t1时间内工件中的感应电流方向为逆时针,故C正确.D、图(b)中T越大,电流变化越慢,工件中磁通量变化越慢,由法拉第电磁感应定律可知工件中产生的感应电动势越小,温度上升越慢,故D错误.故选:AC3.AC解:A、由安培定则知半圆面内磁场方向为垂直纸面向外,由上至下磁感应强度逐渐增大,铜环在左侧下滑过程中,通过圆环的磁通量增大,则由楞次定律知感应电流为顺时针方向,故A正确;B、根据通电直导线产生磁场的特点可知,在同一水平面上磁感应强度是相等的,所以若铜环的速度为水平时,铜环内的磁通量变化率为0,感应电流为零,所以铜环在最低点的感应电流最小,故B错误;C、设铜环的质量为m,则铜环第一次从a点运动到b点时,消耗的能量为mg△h;铜环在竖直方向上的速度越大时,其里面的磁通量变化率越大,产生的感应电流越大,从而产生的焦耳热越大,消耗的能量越大.显然铜环从右往左端返回时,在同一高度,竖直方向上的速度要比第一次从左端到右端的小,所以返回消耗的能量要小于第一次消耗的能量,即小于mg△h;同理,铜环再从左端运动到右端,消耗的能量更小于mg△h,则铜环往复运动第二次到达右侧最高点时与点b的高度差小于2△h,故C正确;D、当铜环沿着半圆面斜向下运动时,根据对称性,铜环左右两端产生的安培力大小相等,方向相反;而铜环下半部分产生的安培力要大于上半部分产生的安培力,下半部分产生的安培力的合力方向竖直向上,上半部分产生的安培力的合力竖直向下,所以铜环所受到的安培力是竖直向上的,显然与铜环中心的运动方向不是相反的,故D错误;故选:AC4.A解:根据法拉第电磁感应定律,电动势E=,电容器两端的电压等于电源的电动势,所以电容器所带的带电量.根据楞次定律,在环形导体中产生的感应电动势的方向为逆时针方向,所以电容器的上极板带正电.故A正确,B、C、D错误.故选A.5.B解:A、根据楞次定律,知半圆形闭合回路在进入磁场的过程中,感应电流的方向为逆时针方向,方向不变.故A正确.B、根据左手定则,CD段所受的安培力方向竖直向下.故B错误.C、切割的有效长度的最大值为a,则感应电动势的最大值E=Bav.故C正确.D、根据法拉第电磁感应定律得: ==πBav.故D正确.本题选择错误的,故选:B.6.AD解:电子向M板偏转,说明电子受到向左的电场力,两金属板间的电场由M指向N,M板电势高,N板电势低,这说明:与两金属板相连的线圈产生的感应电动势:左端电势高,与N板相连的右端电势低;A、开关S闭合瞬间,由安培定则可知,穿过线圈的磁通量向右增加,由楞次定律知在右侧线圈中感应电流的磁场方向向左,产生左正右负的电动势,电子向M板偏振,A正确;B、开关S由闭合后断开瞬瞬间,穿过线圈的磁通量减少,由楞次定律知在右侧线圈中产生左负右正的电动势,电子向N板偏振,B错误;C、开关S是闭合的,变阻器滑片P向右迅速滑动,变阻器接入电路的电阻增大,电流减小,穿过线圈的磁通量减小,由楞次定律知在上线圈中产生左负右正的电动势,电子向N偏振,C错误;D、开关S是闭合的,变阻器滑片P向左迅速滑动,滑动变阻器接入电路的阻值减小,电流增大,穿过线圈的磁通量增大,由楞次定律知在上线圈中感应出左正右负的电动势,电子向M偏振,D正确.故选:AD.7.B解:AB、由左侧电路可以判断ab中电流方向由a到b;由右侧电路及图乙可以判断,0~2 s内cd中电流为由c到d,跟ab中电流同向,因此ab、cd相互吸引,故A错误,B正确;CD、2~4 s内cd中电流为由d到c,跟ab中电流反向,因此ab、cd相互排斥,故C、D错误;故选:B8.D解:根据法拉第电磁感应定律我们知道感应电动势与磁通量的变化率成正比,即E=N结合数学知识我们知道:穿过闭合回路的磁通量Φ随时间t变化的图象的斜率k=.A、图①中磁通量Φ不变,无感应电动势.故A错误.B、图②中磁通量Φ随时间t均匀增大,图象的斜率k不变,也就是说产生的感应电动势不变.故B错误.C、图③中回路在O~t l时间内磁通量Φ随时间t变化的图象的斜率为k1,在t l~t2时间内磁通量Φ随时间t变化的图象的斜率为k2,从图象中发现:k1大于k2的绝对值.所以在O~t l时间内产生的感应电动势大于在t l~t2时间内产生的感应电动势.故C错误.D、图④中磁通量Φ随时间t变化的图象的斜率先变小后变大,所以感应电动势先变小后变大,故D正确.故选:D.9.D解:当磁铁N极向下运动时,导致向下穿过线圈的磁通量变大,由楞次定律可得,感应磁场方向与原来磁场方向相反,再由安培定则可得感应电流方向沿线圈盘旋而下,由于线圈相当于电源,则流过R的电流方向是从b到a,对电容器充电下极板带正电.故选:D.10.C解:A、由图可知,0﹣t2内,线圈中磁通量的变化率相同,故0到t2时间内电流的方向相同,由楞次定律可知,电路中电流方向为顺时针,即电流为adcba方向,故A错误,C正确B、从0到t1时间内,线圈中磁通量的变化率相同,感应电动势恒定不变,电路中电流大小时恒定不变;导线电流大小恒定,故B错误;D、从0到t2时间内,磁场的变化率不变,则电路中电流大小时恒定不变,故由F=BIL可知,F与B成正比,即先减小后增大,故D错误;故选:C.11.解:(1)根据法拉第电磁感应定律,则有:E=N=100×0.2×0.2=4V;(2)根据楞次定律,垂直向里的磁通量增加,则电流方向是逆时针方向;依据闭合电路欧姆定律,则有:I===0.4A(3)根据欧姆定律,则有:U ab=IR=0.4×6=2.4V;12.解:(1)根据磁通量定义式,那么t=1s时穿过线圈的磁通量:φ=BS=0.1Wb(2)由法拉第电磁感应定律E=,结合闭合电路欧姆定律,I=,那么感应电流,4s内线圈中产生的感应电流大小,由图可知,t总=2s;依据焦耳定律,则有:Q=I2rt总=0.01J(3)虽然穿过线圈的磁通量变化,线圈中产生感应电流,但因各边受到安培力,依据矢量的合成法则,则线圈受到的安培力的合力为零,因此t=3.5s时,线圈受到的摩擦力,等于重力沿着斜面的分力,即:f=mgsinθ=5N13.解:(1)ab在磁场区域运动时,产生的感应电动势大小为:ε=BLv0…①金属板间产生的场强大小为:…②ab在Ⅰ磁场区域运动时,带电小球匀速运动,有mg=qE…③联立①②③得:…④(2)ab在Ⅱ磁场区域运动时,设小球的加速度a,依题意,有qE+mg=ma…⑤联立③⑤得:a=2g…⑥(3)依题意,ab分别在Ⅰ、Ⅱ、Ⅲ磁场区域运动时,小球在电场中分别做匀速、类平抛和匀速运动,设发生的竖直分位移分别为SⅠ、SⅡ、SⅢ;ab进入Ⅲ磁场区域时,小球的运动速度为vⅢ.则:SⅠ=0 …⑦SⅡ=…⑧SⅢ=vⅢ…⑨vⅢ=…⑩又:SⅠ+SⅡ+SⅢ=2d联立可得:.。