基于蚁群信息素的遗传操作算法
- 格式:pdf
- 大小:608.38 KB
- 文档页数:4
基于遗传算法和二进制蚁群算法的DV-Hop定位算法的优化LIN Feng-de;CHEN Jia-pin;DING Kai;LI Zhen-bo【摘要】无线传感器网络(WSN)是一种由节点组成的无线自组织网络,在很多领域中有广泛的使用.节点定位是无线传感器网络中最重要的部分,使用无测距定位算法中传统的DV-Hop算法来定位误差较大.为了提高DV-Hop算法的精确度,提出了一种基于遗传算法和二进制蚁群算法来改进DV-Hop定位算法.遗传算法中利用了线性交叉和非均匀变异算子在种群中进行搜索,在此基础上,采用二进制蚁群算法进行进一步的搜索,而后比较适应度函数来保留较优的个体,从而产生了新一代种群.二进制蚁群算法中使得每只蚂蚁的智能化比较低,每条路径对应的存储空间相对较小,显著提高了计算效率.仿真的结果表明,提出的算法比传统的DV-Hop算法、基于遗传算法的DV-Hop算法有更快的收敛速度和更高的定位精度.【期刊名称】《仪表技术与传感器》【年(卷),期】2019(000)001【总页数】6页(P86-90,96)【关键词】WSN;DV-Hop算法;遗传算法;二进制蚁群算法;适应度函数;定位精度【作者】LIN Feng-de;CHEN Jia-pin;DING Kai;LI Zhen-bo【作者单位】;;;【正文语种】中文【中图分类】TN9290 引言近年来,随着微机电系统(MEMS)、集成电路系统技术、通信技术以及计算机软件的巨大进步,带动了大规模分布式无线传感器网络的快速发展。
无线传感器网络(wireless sensor network,WSN)是由部署在检测区域内的大量低成本传感器节点通过无线通信方式形成的一种多跳自组织的网络系统。
其目的是协作地感知、采集和处理网络覆盖区域中感知的对象信息,并发送给观察者。
WSN 提供了一种新颖的信息获取和处理方法,在医疗卫生、环境监测、军事作战等方面具有广泛的应用,所以,WSN已经成为21世纪最受瞩目的科技之一[1-2]。
基于蚁群与遗传算法的含分布式电源的配电网规划方法作者:王磊李元安来源:《华中电力》2013年第12期摘要:本文对含分布式电源的配电网规划问题进行了深入研究。
首先在考虑经济性和安全性基础上,建立了含分布式发电的配电网规划模型,该模型以配电网投资和运行费用、分布式发电投资费用和常规电源购电费用总和最小为目标函数。
然后根据蚁群算法与遗传算法的特性,,提出了一种融合遗传算法改进的蚁群算法。
由遗传算法生成初始信息素分布,在蚁群算法寻优中,利用蚁群算法信息素轨迹更新求精确解,保持了遗传算法的全面搜索能力,从而获得在时间效率与精解效率都更优的一种新的启发式方法。
最后将遗传融合蚁群算法应用于配电网规划中含有分布式电源的问题上且进行了仿真实验。
仿真研究表明,改进后的算法具有更优良的全局优化性能,效果令人满意。
关键词:配电网规划;分布式电源;蚁群算法;遗传算法0 引言近年来,随着对环境保护问题的日益关注和高效小容量发电技术的提高,越来越多的DG 接入配电网络,使配电网络由单电源、辐射型结构逐步变为遍布电源和负荷的复杂网络,传统的配网规划、运行、保护等面临重大的变化。
配电网规划是实现配电网优化运行的一种控制手段,DG接入配电网后,配电网潮流的大小和方向发生巨大改变,使配电网的稳态电压也发生变化,DG的启停和出力变化还可能造成配电网络的电压波动甚至越限,从而使配电网规划变得更加复杂。
因此研究含DG的配电网的优化规划有重要的意义[1-3]。
本文在分析蚁群算法和遗传算法的基本原理、优缺点及应用的基础上,提出把蚁群算法和遗传算法混合使用,避开两种算法的不足,分析蚁群遗传算的实现流程和主要特性,对含有分布式电源的配电网规划问题进行研究,以便取得全局最优解的同时提高算法的计算速度。
1 计及DG的配电网规划的数学模型现阶段采用的配电网络规划方法大多是确定性规划,即用较为精确的数学模型来描述配电网络规划问题,并结合各类约束条件,从经济性角度出发求得最优的规划方案。
蚁群算法综述摘要:群集智能作为一种新兴的演化计算技术已成为越来越多研究者的关注焦点, 其理论和应用得到了很大的发展。
作为群集智能的代表方法之一,蚁群算法ACO (Ant Colony Optimization, 简称ACO) 以其实现简单、正反馈、分布式的优点得到广泛的应用。
蚁群算法是由意大利学者M. Dorigo 提出的一种仿生学算法。
本文主要讨论了蚁群算法的改进及其应用。
在第一章里介绍了蚁群算法的思想起源及研究现状。
第二章详细的介绍了基本蚁群算法的原理及模型建立,并简要介绍了几种改进的蚁群优化算法。
第三章讨论了蚁群算法的最新进展和发展趋势展望。
关键词:群集智能,蚁群算法,优化问题1 引言1.1 概述人类的知识都来自于对自然界的理解和感悟,如天上的闪电,流淌的河流,挺拔的高山,汪洋的大海,人们从中学会了生存,学会了征服自然和利用自然。
自然界中也存在着很多奇特的现象,水中的鱼儿在发现食物时总能成群结队,天上的鸟儿在迁徙时也是组成很多复杂的阵型,蚂蚁在发现食物时总能找到一条最短的路径。
无论鱼儿,飞鸟或是蜜蜂,蚂蚁他们都有一个共同的特点好像有一种无形的力量将群体中的每个个体组织起来,形成一个统一的整体。
看似庞杂的种群却又有着莫大的智慧,让他们能够完成一个个体所无法完成的使命。
整个群体好像一个社会,形成一个有机整体,这个整体对单个个体要求不高,诸多个体组合起来数量庞大,却极具协调性和统一性,这就是群智能。
群智能算法是利用其个体数量上的优势来弥补单个个体的功能缺陷,使整个群体看起来拥有了个体所无法企及的能力和智慧。
单个个体在探索过程的开始都是处于一种盲目的杂乱的工作状态,因此这些个体所能找到的最优解,对于群体而言却并非是最优的而且这些解也都是无规则的,随着越来越多的个体不断探索,单个个体受到其他成员的影响,大量的个体却逐渐趋向于一个或一条最优的路线,原本杂乱的群体渐渐呈现一种一致性,这样整个群体就具有了寻找最优解的能力。
遗传算法与蚁群算法结合遗传算法1、基本思想2、算法原理3、代码实现4、结果截图5、总结1·基本思想吸取两个算法的优点,优缺互补,克服两个算法的缺点,利⽤了遗传算法的快速时间效率,优于蚂蚁算法的时间效率。
并且求解精度效率优于遗传算法。
这样就提⾼了两个算法结合的算法时间效率和求解精度。
2、算法原理这个算法的原理是先利⽤遗传算法的快速性、全局收敛性和随机性求出结果,结果产⽣有关问题的初始信息素分布,遗传算法执⾏完在运⽤蚁群算法,在⼀定初始信息素分布的情况下,充分利⽤蚁群算法并⾏性、正反馈性、求解精度效率⾼的特点。
3、代码实现%mainclear;clc;%%%%%%%%%%%%%%%输⼊参数%%%%%%%%N=50; %%城市的个数M=100; %%种群的个数ITER=500; %%迭代次数%C_old=C;m=2; %%适应值归⼀化淘汰加速指数Pc=0.8; %%交叉概率Pmutation=0.05; %%变异概率%%⽣成城市的坐标pos=randn(N,2);%%⽣成城市之间距离矩阵D=zeros(N,N);for i=1:Nfor j=i+1:Ndis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;D(i,j)=dis^(0.5);D(j,i)=D(i,j);endend%%⽣成初始群体popm=zeros(M,N);for i=1:Mpopm(i,:)=randperm(N);%随机排列,⽐如[2 4 5 6 1 3]end%%随机选择⼀个种群R=popm(1,:);figure(1);scatter(pos(:,1),pos(:,2),'rx');%画出所有城市坐标axis([-3 3 -3 3]);figure(2);plot_route(pos,R); %%画出初始种群对应各城市之间的连线axis([-3 3 -3 3]);%%初始化种群及其适应函数fitness=zeros(M,1);len=zeros(M,1);for i=1:M%计算每个染⾊体对应的总长度len(i,1)=myLength(D,popm(i,:));endmaxlen=max(len);%最⼤回路minlen=min(len);%最⼩回路fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);%找到最⼩值的下标,赋值为rrR=popm(rr(1,1),:);%提取该染⾊体,赋值为Rfor i=1:Nfprintf('%d ',R(i));%把R顺序打印出来endfprintf('\n');fitness=fitness/sum(fitness);distance_min=zeros(ITER+1,1); %%各次迭代的最⼩的种群的路径总长nn=M;iter=0;while iter<=ITERfprintf('迭代第%d次\n',iter);%%选择操作p=fitness./sum(fitness);q=cumsum(p);%累加for i=1:(M-1)len_1(i,1)=myLength(D,popm(i,:));r=rand;tmp=find(r<=q);popm_sel(i,:)=popm(tmp(1),:);end[fmax,indmax]=max(fitness);%求当代最佳个体popm_sel(M,:)=popm(indmax,:);%%交叉操作nnper=randperm(M);% A=popm_sel(nnper(1),:);% B=popm_sel(nnper(2),:);%%for i=1:M*Pc*0.5A=popm_sel(nnper(i),:);B=popm_sel(nnper(i+1),:);[A,B]=cross(A,B);% popm_sel(nnper(1),:)=A;% popm_sel(nnper(2),:)=B;popm_sel(nnper(i),:)=A;popm_sel(nnper(i+1),:)=B;end%%变异操作for i=1:Mpick=rand;while pick==0pick=rand;endif pick<=Pmutationpopm_sel(i,:)=Mutation(popm_sel(i,:));endend%%求适应度函数NN=size(popm_sel,1);len=zeros(NN,1);for i=1:NNlen(i,1)=myLength(D,popm_sel(i,:));endmaxlen=max(len);minlen=min(len);distance_min(iter+1,1)=minlen;fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);fprintf('minlen=%d\n',minlen);R=popm_sel(rr(1,1),:);for i=1:Nfprintf('%d ',R(i));endfprintf('\n');popm=[];popm=popm_sel;iter=iter+1;%pause(1);end%end of whilefigure(3)plot_route(pos,R);axis([-3 3 -3 3]);figure(4)plot(distance_min);%交叉操作函数 cross.mfunction [A,B]=cross(A,B)L=length(A);if L<10W=L;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10)+8;elseW=floor(L/10)+8;end%%W为需要交叉的位数p=unidrnd(L-W+1);%随机产⽣⼀个交叉位置%fprintf('p=%d ',p);%交叉位置for i=1:Wx=find(A==B(1,p+i-1));y=find(B==A(1,p+i-1));[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));endend%连点画图函数 plot_route.mfunction plot_route(a,R)scatter(a(:,1),a(:,2),'rx');hold on;plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);hold on;for i=2:length(R)x0=a(R(i-1),1);y0=a(R(i-1),2);x1=a(R(i),1);y1=a(R(i),2);xx=[x0,x1];yy=[y0,y1];plot(xx,yy);hold on;endend%染⾊体的路程代价函数 mylength.mfunction len=myLength(D,p)%p是⼀个排列[N,NN]=size(D);len=D(p(1,N),p(1,1));for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));endend%变异函数 Mutation.mfunction a=Mutation(A)index1=0;index2=0;nnper=randperm(size(A,2));index1=nnper(1);index2=nnper(2);%fprintf('index1=%d ',index1);%fprintf('index2=%d ',index2);temp=0;temp=A(index1);A(index1)=A(index2);A(index2)=temp;a=A;end%适应度函数fit.m,每次迭代都要计算每个染⾊体在本种群内部的优先级别,类似归⼀化参数。
改进的蚁群遗传优化算法及其应用作者:刘传领来源:《计算机应用》2013年第11期摘要:针对当前移动机器人的一些路径规划算法存在的局限性,提出了一种基于改进蚁群优化和遗传优化的融合算法。
利用改进的信息素更新技术和路径节点选择技术使算法尽快找到优化路径,来形成融合算法的初始种群,机器人每前进一步,蚂蚁就对局部路径重新搜索,并处理随机出现的障碍物;然后利用遗传算法(GA)对种群个体进行全局优化,从而能使机器人沿一条全局优化的路径到达终点。
仿真结果表明了该融合算法的可行性和有效性。
关键词:蚁群优化;遗传算法;移动机器人;路径规划;信息素0引言移动机器人的路径规划问题是移动机器人研究领域的热点问题。
移动机器人路径规划技术的研究起始于20 世纪70 年代,斯坦福研究院的Nils Nilssen和Charles Rosen等,在1966年至1972年研制出了取名Shakey的自主移动机器人[1-6],在20世纪80年代中期,设计和制造机器人的浪潮席卷全世界[5-7]。
根据以往的研究,从机器人对环境感知的角度,将移动机器人路径规划方法分为三类[7-10]:基于环境模型的全局路径规划方法、基于传感器信息的局部路径规划方法和基于行为的路径规划方法。
目前,已有的局部路径规划算法有人工势场法、模糊逻辑法等[2,5],已有的全局路径规划算法有A*方法、可视图法、遗传算法、蚁群算法等[11-17]。
本文提出了一种基于蚁群优化算法(Ant Colony Optimization, ACO)和遗传算法(Genetic Algorithm, GA)的移动机器人路径规划融合算法(ACO+GA),该算法克服了遗传算法在初始可行解的有效构造以及针对复杂环境设计相应的遗传算子等方面的困难,特别是在遇到非规则障碍物的复杂环境下使用蚁群采用最近邻居搜索策略完成机器人局部最优路径的搜索。
在遇到非规则障碍物的复杂环境下使用蚁群算法采用最近邻搜索策略完成机器人局部最优路径的搜索。
蚁群算法与遗传算法的混合算法蚁群算法(Ant Colony Optimization,ACO)和遗传算法(Genetic Algorithm,GA)都属于启发式算法的范畴,它们分别从不同的角度对问题进行建模和求解。
蚁群算法以模拟蚁群觅食行为为基础,通过信息素和启发式规则指导蚂蚁解空间;而遗传算法通过模拟进化过程,利用交叉和变异运算生成新的个体,并适应性地选择个体进行下一代的繁衍。
两者在解决问题时有各自的局限性,因此将两种算法相结合,形成混合算法,可以克服各自的缺点,实现更有效的求解。
蚁群算法具有较强的全局能力,但其速度较慢,且可能会陷入局部最优解。
而遗传算法能够在过程中较快地收敛到局部最优解,但有可能会陷入局部最优解无法跳出。
因此,将两者结合起来,可以同时利用蚁群算法的全局和遗传算法的局部特性。
混合算法的基本思想是,将蚁群算法作为全局策略,用于生成一组较优的解,然后利用遗传算法在这组解中进行局部优化,以寻找最优解。
整个混合算法的流程如下:1.初始化蚁群相关参数和遗传算法的相关参数,包括蚁群大小、信息素更新速率、遗传算法的种群大小、交叉和变异的概率等;2.使用蚁群算法生成一组初始解,并计算每个解的适应度;3.利用遗传算法从初始解中选择适应度较高的一部分个体,作为种群;4.对种群进行交叉和变异操作,生成下一代个体;5.计算下一代个体的适应度;6.如果满足停止条件(如达到指定迭代次数或找到满意解),则输出结果;否则,返回第3步,继续优化。
在混合算法中,蚁群算法和遗传算法的相互作用可以通过以下几种方式实现:1. 优选策略(Elitism):将蚁群算法生成的一组解合并到遗传算法的种群中,在遗传算法的选择过程中保留一些蚁群算法生成的优秀个体,以避免遗传算法陷入局部最优解。
2.信息素启发式规则:将蚁群算法的信息素启发式规则应用于遗传算法的交叉和变异操作中,以指导交叉和变异过程中的方向,增加遗传算法的全局能力。
遗传算法蚁群算法粒子群算法模拟退火算法《探究遗传算法、蚁群算法、粒子群算法和模拟退火算法》一、引言遗传算法、蚁群算法、粒子群算法和模拟退火算法是现代优化问题中常用的算法。
它们起源于生物学和物理学领域,被引入到计算机科学中,并在解决各种复杂问题方面取得了良好的效果。
本文将深入探讨这四种算法的原理、应用和优势,以帮助读者更好地理解和应用这些算法。
二、遗传算法1. 概念遗传算法是一种模拟自然选择过程的优化方法,通过模拟生物进化过程,不断改进解决方案以找到最优解。
其核心思想是通过遗传操作(选择、交叉和变异)来优化个体的适应度,从而达到最优解。
2. 应用遗传算法在工程优化、机器学习、生物信息学等领域有着广泛的应用。
在工程设计中,可以利用遗传算法来寻找最优的设计参数,以满足多种约束条件。
3. 优势遗传算法能够处理复杂的多目标优化问题,并且具有全局搜索能力,可以避免陷入局部最优解。
三、蚁群算法1. 概念蚁群算法模拟蚂蚁在寻找食物过程中释放信息素的行为,通过信息素的沉积和蒸发来实现最优路径的搜索。
蚁群算法具有自组织、适应性和正反馈的特点。
2. 应用蚁群算法在路径规划、网络优化、图像处理等领域有着广泛的应用。
在无线传感网络中,可以利用蚁群算法来实现路由优化。
3. 优势蚁群算法适用于大规模问题的优化,具有分布式计算和鲁棒性,能够有效避免陷入局部最优解。
四、粒子群算法1. 概念粒子群算法模拟鸟群中鸟类迁徙时的行为,通过个体间的协作和信息共享来搜索最优解。
每个粒子代表一个潜在解决方案,并根据个体最优和群体最优不断更新位置。
2. 应用粒子群算法在神经网络训练、函数优化、机器学习等领域有着广泛的应用。
在神经网络的权重优化中,可以利用粒子群算法来加速训练过程。
3. 优势粒子群算法对于高维和非线性问题具有较强的搜索能力,且易于实现和调整参数,适用于大规模和复杂问题的优化。
五、模拟退火算法1. 概念模拟退火算法模拟金属退火时的过程,通过接受劣解的概率来跳出局部最优解,逐步降低温度以逼近最优解。