蚁群算法简述
- 格式:ppt
- 大小:346.00 KB
- 文档页数:36
简要叙述蚁群算法及其优缺点蚁群算法,说白了,就是从蚂蚁们的“工作方式”中汲取灵感,来解决一些复杂的问题。
你想啊,蚂蚁虽然个头小,脑袋也没啥大智慧,可它们集体合作的时候,可真是让人瞠目结舌。
就拿找食物这事儿来说,蚂蚁们通过一种叫做“信息素”的东西,能把食物的方向告诉其他蚂蚁。
你想,成群结队的蚂蚁在地上爬来爬去,气氛可热闹了。
而这些蚂蚁在寻找最短路径的过程中,就是利用这种“信息素”来引导彼此。
哦对,信息素就是一种化学物质,它能吸引其他蚂蚁走自己走过的路,时间久了,大家都能找到最短最优的路线。
这就是蚁群算法的核心,大家通过简单的规则合作起来,居然能找到很复杂问题的解决方案。
听起来是不是有点神奇?但这就是大自然的魅力,真是让人不得不佩服!蚁群算法的好处,简直是数不胜数。
它特别适合处理那些“大而复杂”的问题。
像是找最短路径、优化调度这些问题,用蚁群算法解决起来特别靠谱。
更妙的是,它不需要预先知道问题的具体情况。
就像蚂蚁不需要知道前方有什么危险,只要它们不断地试探,最终总能找到正确的路。
蚁群算法特别“顽强”,它可以通过不断地调整来适应环境变化。
假设前方的路突然有个障碍,蚂蚁们马上就能改变路线,去找另一条更合适的道路。
这种动态适应能力,在现实世界中有着广泛的应用,像物流配送、网络路由、甚至是金融分析等,蚁群算法都能大显身手。
不过话说回来,世上没有十全十美的事儿,蚁群算法也有它的缺点。
首先吧,虽然它能找到“可行的”解,但并不总能找到“最优”的解。
你要知道,这个算法是基于概率的,蚂蚁们在探索路径时是随机的,所以它有可能会走冤枉路,最终找到一个不错但不是最好的答案。
就像你找餐厅,可能你最后选了个味道还不错的地方,但走了好多冤枉路,吃完饭才发现旁边就有个更好吃的店。
所以,有时候蚁群算法可能不是最理想的选择,特别是当问题特别复杂,解空间又大到让你头晕眼花的时候。
再者呢,蚁群算法的计算量也挺大的。
每次要让大量的“蚂蚁”在问题空间中四处乱窜,寻找最佳路径。
导言蚁群算法是20世纪90年代发展起来一种模仿蚂蚁群体行为的新的智能优化算法。
意大利学者Dorigo M等人提出一种模拟昆虫王国蚂蚁群体觅食行为方式的仿生优化算法——蚁群算法(Ant Colony Algorithm,ACA)。
该算法引入正反馈并行机制,具有较强的鲁棒性、优良的分布式计算机制、易于与其他方法结合等优点。
目前蚁群算法已经渗透到各个应用领域,从一维静态优化问题到多维动态优化问题,从离散问题到连续问题。
蚁群算法解决了许多复杂优化和经典NP-C问题,展现出优异的性能和广阔的发展前景。
基本蚁群算法的原理基本蚁群算法(Ant System,AS)是采用人工蚂蚁的行走路线来表示待求问题可行解得一种方法。
每只人工蚂蚁在解空间中独立的搜索可行解,当它们碰到一个还没有走过的路口时,就随机挑选一条路径前行,同时释放出与路径长度有关的信息素(pheromone) 。
路径越短信息素的浓度就越大。
当后继的人工蚂蚁再次碰到这个路口的时候,以相对较大的概率选择信息素较多的路径,并在“行走路径”上留下更多的信息素,影响后来的蚂蚁,形成正反馈机制。
随着算法的推进,代表最优解路线上的信息素逐渐增多,选择它的蚂蚁也逐渐增多,其他路径上的信息素却会随着时间的流逝而逐渐消减,最终整个蚂蚁在正反馈机制的作用下集中到代表最优解的路线上,也就找到了最优解。
在整个寻优过程中,单只蚂蚁的选择能力有限,但蚁群具有高度的自组织性,通过信息素交换路径信息,形成集体自催化行为,找到最优路径。
蚁群优化算法中,每个优化问题的解都是搜索空间的一只蚂蚁,蚂蚁都有一个由优化的目标函数决定的适应度函数值(与释放的信息素成正比) ,蚂蚁根据周围信息素的多少决定搜索方向,并在搜索过的路径上释放信息素以影响别的蚂蚁。
优缺点分析ACA 具有如下优点:(1)ACA 是一种正反馈算法,这是蚁群算法最显著的特点;(2)ACA 本质上一种分布式并行算法。
(3)ACA 具有较好的全局寻优特性。
蚂蚁(蚁群)算法的经典简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。
这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面:范围蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
环境蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。
每个蚂蚁都仅仅能感知它范围内的环境信息。
环境以一定的速率让信息素消失。
觅食规则在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。
否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。
蚁群算法蚁群算法⽬录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群⾏为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导⼊数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显⽰ (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim,ACA)是由意⼤利学者多⾥⼽(Dorigo M)、马聂佐(Maniezzo V )等⼈于20世纪90初从⽣物进化的机制中受到启发,通过模拟⾃然界蚂蚁搜索路径的⾏为,提出来的⼀种新型的模拟进化算法。
该算法⽤蚁群在搜索⾷物源的过程中所体现出来的寻优能⼒来解决⼀些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的⽅法来引导每个蚂蚁的⾏动。
蚁群算法能够被⽤于解决⼤多数优化问题或者能够转化为优化求解的问题,现在其应⽤领域已扩展到多⽬标优化、数据分类、数据聚类、模式识别、电信QoS管理、⽣物系统建模、流程规划、信号处理、机器⼈控制、决策⽀持以及仿真和系统辩识等⽅⾯。
蚁群算法是群智能理论研究领域的⼀种主要算法。
1.2 蚁群⾏为分析Bm=20t=0 m=10m=10t=11.3 蚁群算法解决优化问题的基本思想⽤蚂蚁的⾏⾛路径表⽰待优化问题的可⾏解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增⾼,选择该路径的蚂蚁个数愈来愈多。
《智能计算—蚁群算法基本综述》班级:研1102班专业:计算数学姓名:刘鑫学号:11070100362012年蚁群算法基本综述刘鑫(西安理工大学理学院,研1102班,西安市,710054)摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。
ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。
关键词:蚁群;算法;优化;改进;应用0引言专家发现单个蚂蚁只具有一些简单的行为能力。
但整个蚁群却能完成一系列复杂的任务。
这种现象是通过高度组织协调完成的1991年。
意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。
研究了蚂蚁的行为。
提出其基本原理及数学模型。
并将之应用于寻求旅行商问题(TSP)的解。
通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。
而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。
如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。
如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。
靠公式对信息素浓度的调整不能缓解这种现象。
会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。
所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。
笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。
1 蚁群算法概述ACA源自于蚁群的觅食行为。
S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。
形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。
蚁群算法基本原理
蚁群算法(Ant Colony Algorithm)是一种基于模拟蚁群行为的优化算法,用于解决复杂的优化问题。
其原理是模拟蚂蚁寻找食物的行为,在寻找过程中通过信息素来引导蚂蚁探索最优解。
基本流程:
1. 初始化:将蚂蚁随机分散在问题空间中,每只蚂蚁都随机选择一个起点。
2. 蚂蚁搜索:每只蚂蚁根据一定的概率选择下一个节点,概率与当前节点的信息素有关,如果信息素较高则该节点被选中的概率较大。
3. 信息素更新:每只蚂蚁在搜索过程中会留下一定的信息素,当搜索完成后,信息素会根据一定的规则进行更新,具体规则可以为:信息素浓度与路径长度成反比例关系,或者信息素挥发速度固定。
4. 最优解记录:当所有蚂蚁完成搜索后,从它们所走过的路径中选择获得最优解,并将该路径上的信息素浓度进行更新。
5. 重复搜索:重复上述所有步骤,直到达到设定的迭代次数或者满足终止条件。
蚁群算法基本原理就是通过模拟蚁群行为,通过信息素的引导来搜索最优解。
在
实际应用中,蚁群算法可以用于解决诸如旅行商问题、作业调度问题、路径规划问题、图像分割问题等优化问题。
一、引言蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。
寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。
若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。
最基本的蚁群算法见第二节。
目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。
本文将终点介绍随机蚁群算法。
二、基本蚁群算法(一)算法思想各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。
因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。
蚁群算法的基本思想如下图表示:图1 等概率选择图2 最优路径图3 最优比重(二)算法描述基本蚁群算法的算法简单描述如下:1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素;2.随着时间的推移,较短路径的信息素浓度升高;3.蚂蚁再次遇到障碍物时,会选择信息素浓度高的路径;4.较短路径的信息素浓度继续升高,最终最优路径被选择出来。