蚁群算法详细讲解
- 格式:ppt
- 大小:793.50 KB
- 文档页数:81
蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。
算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。
如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。
二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。
具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。
应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。
算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。
然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。
如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。
在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。
四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
简要叙述蚁群算法及其优缺点蚁群算法,说白了,就是从蚂蚁们的“工作方式”中汲取灵感,来解决一些复杂的问题。
你想啊,蚂蚁虽然个头小,脑袋也没啥大智慧,可它们集体合作的时候,可真是让人瞠目结舌。
就拿找食物这事儿来说,蚂蚁们通过一种叫做“信息素”的东西,能把食物的方向告诉其他蚂蚁。
你想,成群结队的蚂蚁在地上爬来爬去,气氛可热闹了。
而这些蚂蚁在寻找最短路径的过程中,就是利用这种“信息素”来引导彼此。
哦对,信息素就是一种化学物质,它能吸引其他蚂蚁走自己走过的路,时间久了,大家都能找到最短最优的路线。
这就是蚁群算法的核心,大家通过简单的规则合作起来,居然能找到很复杂问题的解决方案。
听起来是不是有点神奇?但这就是大自然的魅力,真是让人不得不佩服!蚁群算法的好处,简直是数不胜数。
它特别适合处理那些“大而复杂”的问题。
像是找最短路径、优化调度这些问题,用蚁群算法解决起来特别靠谱。
更妙的是,它不需要预先知道问题的具体情况。
就像蚂蚁不需要知道前方有什么危险,只要它们不断地试探,最终总能找到正确的路。
蚁群算法特别“顽强”,它可以通过不断地调整来适应环境变化。
假设前方的路突然有个障碍,蚂蚁们马上就能改变路线,去找另一条更合适的道路。
这种动态适应能力,在现实世界中有着广泛的应用,像物流配送、网络路由、甚至是金融分析等,蚁群算法都能大显身手。
不过话说回来,世上没有十全十美的事儿,蚁群算法也有它的缺点。
首先吧,虽然它能找到“可行的”解,但并不总能找到“最优”的解。
你要知道,这个算法是基于概率的,蚂蚁们在探索路径时是随机的,所以它有可能会走冤枉路,最终找到一个不错但不是最好的答案。
就像你找餐厅,可能你最后选了个味道还不错的地方,但走了好多冤枉路,吃完饭才发现旁边就有个更好吃的店。
所以,有时候蚁群算法可能不是最理想的选择,特别是当问题特别复杂,解空间又大到让你头晕眼花的时候。
再者呢,蚁群算法的计算量也挺大的。
每次要让大量的“蚂蚁”在问题空间中四处乱窜,寻找最佳路径。
蚁群算法最短路径求解
蚁群算法是一种模拟蚂蚁寻找食物的行为,通过模拟蚂蚁在路径上的行为来寻找最短路径。
蚂蚁在寻找食物时,会释放一种化学物质,其他蚂蚁会跟随这种化学物质,最终找到食物。
这种化学物质被称为信息素,蚂蚁在路径上释放的信息素越多,其他蚂蚁就越容易跟随这条路径。
蚁群算法最短路径求解的过程可以分为以下几个步骤:
1. 初始化信息素:在开始求解之前,需要将所有路径上的信息素初始化为一个较小的值,通常为1/n(n为路径数量)。
2. 蚂蚁选择路径:每只蚂蚁在选择路径时,会根据信息素浓度和路径长度进行选择。
信息素浓度越高的路径,被选择的概率就越大。
同时,路径长度越短的路径,也被选择的概率就越大。
3. 更新信息素:当所有蚂蚁都选择完路径后,需要根据路径长度更新信息素。
路径长度越短的路径,信息素浓度就越高。
4. 重复执行:重复执行步骤2和步骤3,直到达到最大迭代次数或者找到最短路径为止。
5. 输出结果:输出最短路径和路径长度。
蚁群算法最短路径求解的优点是可以处理大规模的问题,同时也能够处理多目标问题。
但是,蚁群算法也存在一些缺点,例如容易陷入局部最优解、收敛速度较慢等问题。
因此,在实际应用中需要根据具体问题进行调整和优化。
(转载)ACO蚁群算法(算法流程,TSP例⼦解析)1. 背景——蚁群的⾃组织⾏为特征⾼度结构化的组织——虽然蚂蚁的个体⾏为极其简单,但由个体组成的蚁群却构成⾼度结构化的社会组织,蚂蚁社会的成员有分⼯,有相互的通信和信息传递。
⾃然优化——蚁群在觅⾷过程中,在没有任何提⽰下总能找到从蚁巢到⾷物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。
信息正反馈——蚂蚁在寻找⾷物时,在其经过的路径上释放信息素(外激素)。
蚂蚁基本没有视觉,但能在⼩范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度⾼的⽅向移动。
⾃催化⾏为——某条路径上⾛过的蚂蚁越多,留下的信息素也越多(随时间蒸发⼀部分),后来蚂蚁选择该路径的概率也越⾼。
2. 算法基本思想:(1)根据具体问题设置多只蚂蚁,分头并⾏搜索。
(2)每只蚂蚁完成⼀次周游后,在⾏进的路上释放信息素,信息素量与解的质量成正⽐。
(3)蚂蚁路径的选择根据信息素强度⼤⼩(初始信息素量设为相等),同时考虑两点之间的距离,采⽤随机的局部搜索策略。
这使得距离较短的边,其上的信息素量较⼤,后来的蚂蚁选择该边的概率也较⼤。
(4)每只蚂蚁只能⾛合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。
(5)所有蚂蚁都搜索完⼀次就是迭代⼀次,每迭代⼀次就对所有的边做⼀次信息素更新,原来的蚂蚁死掉,新的蚂蚁进⾏新⼀轮搜索。
(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。
(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。
3. 信息素及转移概率的计算:4. 算法步骤算法流程图如下:5. 举例分析我们假设5个城市的TSP问题,然由于某种原因,城市道路均是单⾏道,即A->B和B->A的距离不相同,也就是说这是⼀个不对称的TSP问题。
现在城市距离信息如下表:设置参数:m=5,α=1,β=1,ρ=0.5,τ_ij(0)=2。
蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。
与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。
人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。
人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。
昆虫群体行为学中的蚁群算法随着社会的发展和科技的不断进步,人们日常的各种活动都离不开计算机和信息技术的支持,人工智能、机器学习已经成为重要的研究领域。
而昆虫群体行为学中的蚁群算法也成为了这个领域中的热门算法之一。
本文将结合案例深入剖析蚁群算法的工作原理及其应用。
一、蚁群算法概述蚁群算法,又称蚁群优化算法,是一种基于群体智能的优化算法,源于自然界中蚂蚁生活方式的模拟。
自然界中蚂蚁以信息的方式寻找到食物和家,形成了一套完整的优化流程。
在这个过程中,蚂蚁会不断地散发信息素,当有蚂蚁发现了食物或者家后,会回到巢穴,散发出一种信息素,可以引起其他蚂蚁的注意。
一段时间过后,信息素会消失,这样就可以避免信息过时。
蚂蚁就利用这样的方式,在一片茫茫草地中快速找到食物和家。
而蚁群算法就是对这种生物的生命周期进行了模拟。
蚁群算法主要基于以下两大原理:正反馈和负反馈。
正反馈指的是蚂蚁在寻找食物和家的过程中,距离食物和家越近,越有可能被其他蚂蚁选择。
因此,经过一段时间的搜寻,食物或家附近的信息素浓度就会越来越高,吸引越来越多的蚂蚁。
负反馈指的是信息素的挥发时间有限,如果蚂蚁在搜寻过程中进入了死路,无法找到食物或家,很快就会失去它们的踪迹,寻找其它的目标。
二、蚁群算法的原理蚁群算法是一种基于贪心策略和启发式搜索的算法。
贪心策略是指在局部最优解的情况下选择全局最优解。
而启发式搜索则是通过评估函数进行深度优先或广度优先的搜索。
蚁群算法将这两种方法相结合,将其运用到求解优化问题的任务中。
在蚁群算法中,人们把寻优问题抽象成一个图论问题,称之为图。
设有m个蚂蚁在图中寻找最短路径,并假设每个蚂蚁可以移动的来源于强化自身链接的信息素来对图进行搜索,并通过蚁群算法来不断优化搜索的结果。
蚁群算法的核心在于挥发函数(Evaporation Rate)和信息素覆盖(Pheromone Coverage),通过这两个函数控制信息素在搜索过程中的流动和新建,在搜索过程中提高发现最优解的概率。
一、引言蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。
寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。
若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。
最基本的蚁群算法见第二节。
目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。
本文将终点介绍随机蚁群算法。
二、基本蚁群算法(一)算法思想各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。
因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。
蚁群算法的基本思想如下图表示:图1 等概率选择图2 最优路径图3 最优比重(二)算法描述基本蚁群算法的算法简单描述如下:1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素;2.随着时间的推移,较短路径的信息素浓度升高;3.蚂蚁再次遇到障碍物时,会选择信息素浓度高的路径;4.较短路径的信息素浓度继续升高,最终最优路径被选择出来。