三个常考的一元一次方程问题
- 格式:pdf
- 大小:769.93 KB
- 文档页数:3
一元一次方程方程应用题归类分析利用一元一次方程解决实际问题的常见题型:题型基本量,基本数量关系寻找相等关系的思路方法等积形式问题常见几何图形的长、宽、高、面积、周长、体积的公式,及相互之间的关系。
(1)形变积不变(2)形变积也变,但重量不变利息问题本息和、本金、利息、利息和、利息税、期数的关系。
利息=本金×利率×期数本息和=本金+利息年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等数字问题多位数的表示方法:是一个多位数,它可表示为:1. 抓住数字间或新数、原数之间的关系,寻找相等关系。
2. 常需设间接未知数。
比例问题甲:乙:丙=a:b:c各部分量之和=总量设其中一份为x,由已知各部分量在总量中所占的比例,可得各部分量的代数式。
追及问题路程、速度、时间的关系路程=速度×时间甲走的路程与乙走的路程之间关系等式。
相遇问题路程、速度、时间的关系甲走的路程+乙走的路程=A、B两地间的路程航行问题顺水速度、静水速度、水流速度、时间、路程、速度之间的关系。
两地间距离不变顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?2. 等积变形问题:,“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252⨯mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留.)整数π≈3143. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
一元一次方程组20道及答案
一、题目
1.求解方程组: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
2.解方程组: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
3.求解下列方程组: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \] …
二、答案
1.第一题答案: $ x=2, y=1 $
2.第二题答案: $ x=4, y=1 $
3.第三题答案: $ x=1, y=2 $
…
三、解答
1.第一题解答:
方程组为: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
解方程可得: $ x=2, y=1 $
2.第二题解答:
方程组为: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
求解可得: $ x=4, y=1 $
3.第三题解答:
方程组为: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \]
解得: $ x=1, y=2 $
…
四、总结
通过解这20道一元一次方程组题目,我们可以加深对于方程组解的理解。
这些题目的解答过程中,可以运用代入法、消元法等数学方法来求解方程组,希望此练习对大家的数学能力有所提升。
北师大版数学七年级上册--《一元一次方程应用题分类》一、形积问题1、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长4厘米、宽2厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?2、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
3、把一块长宽高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱体玻璃杯中(盛有水,铁块被水完全淹没)水面将增高多少?(不外溢)二、打折销售问题1.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,?结果每件仍获利15元,这种服装每件的成本为多少元?2、某商品的进价为700元,为了参加市场竞争,商店按标价的九折再让利40元销售,此时仍可获利10%,此商品的标价为多少元?13、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?4、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了几折优惠?5、新华书店准备将一套图书打折出售,如果按定价的6折出售将赔60元,若按定价出售则赚20元,试问这套图书的进价是多少?6、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?7、某服装店出售某种服装,已知售价比进价高20%以上才能出售,为了获得更多利润,该店老板以高出进价80%的价格标价,若你想买下标价360元的这种服装,最多降价多少元,该店老板还会出售?三、希望工程问题(调配问题)1、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?2、甲、乙两个水池共蓄水50吨,甲池用去5吨,乙池又注入8吨水后,甲池的水比乙池的水少3吨,问原来甲、乙两个水池各有多少吨水?3、某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间的人数就是第二车间人数的,求原来每个车间的人数?4、甲班有54人,乙班有48人,要使甲班人数是乙班人数的2倍,则应从乙班调往甲班多少人?四、行程问题(一)相遇问题和追及问题1、已知A、B两地相距100千米,甲以16千米/小时的速度从A地出发,乙以9千米/小时的速度从B地出发。
6.3一元一次方程的定义一、选择题(共5小题)1、下列方程中,是一元一次方程的是()A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=2、下列方程中是一元一次方程的是()A、B、+4=3xC、y2+3y=0D、9x﹣y=23、下列各方程中,是一元一次方程的是()A、3x+2y=5B、y2﹣6y+5=0C、x﹣3=D、3x﹣2=4x﹣74、下列方程中,属于一元一次方程的是()A、x﹣3B、x2﹣1=0C、2x﹣3=0D、x﹣y=35、下列方程中,是一元一次方程的是()A、﹣1=2B、x2﹣1=0C、2x﹣y=3D、x﹣3=二、填空题(共9小题)6、在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有_________(只填序号).7、若方程3x2m﹣1+1=6是关于x的一元一次方程,则m的值是_________.8、已知等式5x m+2+3=0是关于x的一元一次方程,则m=_________.9、已知方程(m﹣2)x|m|﹣1+3=m﹣5是关于x的一元一次方程,则m=_________.10、关于x的方程(a+2)x|a|﹣1﹣2=1是一元一次方程,则a=_________.11、若方程3x4n﹣3+5=0是一元一次方程,则n=_________.12、已知2x m﹣1+4=0是一元一次方程,则m=_________.13、若4x m﹣1﹣2=0是一元一次方程,则m=_________.14、若2x3﹣2k+2k=41是关于x的一元一次方程,则x=_________.答案与评分标准一、选择题(共5小题)1、下列方程中,是一元一次方程的是()A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=考点:一元一次方程的定义。
分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、未知数的最高次数是2次,不是一元一次方程;B、符合一元一次方程的定义;C、是二元一次方程;D、分母中含有未知数,是分式方程.故选B.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是0,这是这类题目考查的重点.2、下列方程中是一元一次方程的是()A、B、+4=3xC、y2+3y=0D、9x﹣y=2考点:一元一次方程的定义。
一元一次方程应用题常见类型及等量关系湖北翟升华搜集整理班级姓名一、和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
二、等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h=πr2h②长方体的体积:V=长×宽×高=abc三、行程问题基本量之间的关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
(1)相遇问题:①甲行距+乙行距=原距;②(甲速+乙速)×相遇时间=相遇距离。
(2)追及问题:①快行距-慢行距=原距;②(快速-慢速)×追及时间=追及距离。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度;静水(风)速度=(顺水(风)速度+逆水(风)速度)÷2;水流(风)速度=(顺水(风)速度-逆水(风)速度)÷2。
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.(4)环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
(5)车上(离)桥(隧道)问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个车长;③车过桥指车头接触桥到车尾离开桥的一段路程,所走路程为:一个车长 +桥长;④车完全在桥上指车尾接触桥到车头离开桥的一段路程,所行路程为:桥长 - 一个车长。
四、工程问题基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
咸课堂一元一次方程章节常考选择40个附详细答案解析一元一次方程章节常考选择40个附详细答案解析一.选择题(共40小题)1.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣52.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8 4.若m满足方程|2019﹣m|=2019+|m|,则|m﹣2020|等于()A.m﹣2020B.﹣m﹣2020C.m+2020D.﹣m+2020 5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.06.下列方程中,是一元一次方程的是()A.x+2=2B.x+y=2C.x2﹣2x=1D.=2 7.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b8.下列利用等式的基本性质变形错误的是()A.如果x﹣3=7,那么x=7+3B.由2x=10得x=5C.如果x+1=y﹣4,那么x﹣y=﹣4﹣1D.如果﹣x=4,那么x=﹣29.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.一个有理数不是整数就是分数C.是单项式D.2是方程2x+1=4的解10.方程,去分母得到了8x﹣4﹣3x+3=1,这个变形()A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.无错误11.已知关于x的方程3x+2a+1=0的解是﹣1,则a的值是()A.﹣2B.﹣1C.1D.212.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+1813.如果关于x的方程x﹣3=3x+7与3(x+6)+4k=11的解相同,则求k为()A.2B.﹣2C.1D.不确定14.将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在()A.分母的最小公倍数找错B.去分母时漏乘项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同15.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)16.已知关于x的一元一次方程(k﹣2)x+2=0的解是x=2,则k的值为()A.﹣1B.0C.1D.217.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,318.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.219.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.420.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣21.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.22.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或23.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.324.鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是()解:设鸡有x只,那么兔子有□只.因为☆+兔的足数=94,所以列方程为〇x+△(35﹣x)=94,解这个方程,得x=23,从而35﹣23=12.答:鸡有23只,兔子有12只.A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2D.△代表225.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣2 26.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=527.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同28.若关于x的方程ax﹣4=20+a的解为x=5,则a的值为()A.﹣6B.﹣4C.6D.4 29.下列结论正确的是()A.﹣3ab2和b2a是同类项B.a不是单项式C.a一定比﹣a大D.x=3是方程﹣x+1=4的解30.根据等式的性质,下列变形正确的是()A.由﹣x=y,得x=2y B.由3x=2x+2,得x=2C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣5 31.下列变形符合等式性质的是()A.如果2x﹣3=7,那么2x=7﹣3B.如果,那么x=﹣3C.如果﹣2x=5,那么x=5+2D.如果3x﹣2=x+1,那么3x﹣x=1﹣232.已知(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,则m的值为()A.1B.2C.3D.1或3 33.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b34.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+ 35.已知x=y,则下列各式中,不一定成立的是()A.x﹣2=y﹣2B.x+C.﹣3x=﹣3y D.36.下列式子中:①5x+3y=0,②6x2﹣5x,③3x<5,④x2+1=3,⑤+2=3x.是方程的有()A.1个B.2个C.3个D.4个37.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1B.0C.2D.338.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是()A.2B.﹣3C.3D.﹣239.方程=4(x﹣1)的解为x=3,则a的值为()A.2B.22C.10D.﹣240.已知关于x的方程3x+2a=2的解是x=a﹣1,则a的值是()A.1B.C.D.﹣1一元一次方程章节常考选择40个详细答案解析一.选择题(共40小题)1.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A.2.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8【解答】解:3π+4≠5中不含未知数,所以错误.故选:B.4.若m满足方程|2019﹣m|=2019+|m|,则|m﹣2020|等于()A.m﹣2020B.﹣m﹣2020C.m+2020D.﹣m+2020【解答】解:∵m满足方程|2019﹣m|=2019+|m|,∴m≤0,∴|m﹣2020|=|m|+|﹣2020|=﹣m+2020.故选:D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0【解答】解:根据题意得:|a﹣2|=1,解得a=3或a=1,因为a﹣3≠0,所以a≠3,综上可知:a=1.故选:B.6.下列方程中,是一元一次方程的是()A.x+2=2B.x+y=2C.x2﹣2x=1D.=2【解答】解:A.x+2=2,是一元一次方程,故A符合题意;B.x+y=2,是二元一次方程,故B不符合题意;C.x2﹣2x=1,是一元二次方程,故C不符合题意;D.=2是分式方程,故D不符合题意;故选:A.7.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b【解答】解:A.若a=b,则3+a=3+b,故本选项不符合题意;B.若a=b,则ac=bc,故本选项不符合题意;C.若ac=bc,当c≠0时,a=b,故本选项符合题意;D.若a2=b2,则a=b或a=﹣b,故本选项符合题意;故选:D.8.下列利用等式的基本性质变形错误的是()A.如果x﹣3=7,那么x=7+3B.由2x=10得x=5C.如果x+1=y﹣4,那么x﹣y=﹣4﹣1D.如果﹣x=4,那么x=﹣2【解答】解:如果x﹣3=7,那么x=7+3,原变形正确,故此选项不符合题意;如果2x=10,那么x=5,原变形正确,故此选项不符合题意;如果x+1=y﹣4,那么x﹣y=﹣4﹣1,原变形正确,故此选项不符合题意;如果﹣x=4,那么x=﹣8,原变形错误,故此选项符合题意;故选:D.9.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.一个有理数不是整数就是分数C.是单项式D.2是方程2x+1=4的解【解答】解:A、连接A,B,线段AB的长度是AB的距离,故此选项不符合题意;B、整数和分数统称为有理数,一个有理数不是整数就是分数,故此选项符合题意;C、是多项式,故此选项不符合题意;D、当x=2时,2x+1=2×2+1=5≠4,故此选项不符合题意;故选:B.10.方程,去分母得到了8x﹣4﹣3x+3=1,这个变形()A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.无错误【解答】解:方程﹣=1,左右两边同乘12,去分母得:4(2x﹣1)﹣3(x﹣1)=12,去括号得:8x﹣4﹣3x+3=12,题中的变形漏乘了不含分母的项.故选:B.11.已知关于x的方程3x+2a+1=0的解是﹣1,则a的值是()A.﹣2B.﹣1C.1D.2【解答】解:将x=﹣1代入得:﹣3+2a+1=0,解得:a=1.故选:C.12.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+18【解答】解:A、4x﹣3=3x+2变形得:4x﹣3x=2+3,不符合题意;B、3x=2变形得:x=,不符合题意;C、2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3,不符合题意;D、x﹣1=x+3变形得:4x﹣6=3x+18,符合题意.故选:D.13.如果关于x的方程x﹣3=3x+7与3(x+6)+4k=11的解相同,则求k为()A.2B.﹣2C.1D.不确定【解答】解:∵x﹣3=3x+7,∴x=﹣5,将x=﹣5代入3(x+6)+4k=11得:3+4k=11,∴k=2.故选:A.14.将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在()A.分母的最小公倍数找错B.去分母时漏乘项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同【解答】解:将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在去分母时分子部分没有加括号.故选:C.15.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)【解答】解:在解方程+x=时,在方程的两边同时乘以6,去分母正确的是:2(x﹣1)+6x=3(3x+1).故选:B.16.已知关于x的一元一次方程(k﹣2)x+2=0的解是x=2,则k的值为()A.﹣1B.0C.1D.2【解答】解:把x=2代入(k﹣2)x+2=0,得2(k﹣2)+2=0.解得k=1.故选:C.17.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,3【解答】解:∵2*3=(2x+1)*2,∴(2x+1)*2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.18.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.2【解答】解:根据题意(3*x)+(x*3)=14,可化为:(3x+6)+(3x+2x)=14,解得x=1.故选:B.19.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.4【解答】解:3x+5=m,∴m=3x+5①;又x﹣2m=5,∴m=②;令①=②,∴3x+5=,6x+10﹣x+5=0,∴x=﹣3,故选:B.20.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣【解答】解:3x+5=11,移项,得3x=11﹣5,合并同类项,得3x=6,系数化为1,得x=2,把x=2代入6x+3a=22中,得6×2+3a=22,∴a=,故选:B.21.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.【解答】解:∵|2x﹣6|=0,∴2x﹣6=0,解得:x=3.故选:A.22.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或【解答】解:因为方程|x﹣|=1,所以x﹣=±1,解得x=或x=﹣,因为关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,所以解方程x+2=2(m﹣x)得,m=,当x=时,m=,当x=﹣时,m=.所以m的值为:或.故选:A.23.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.3【解答】解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2;故选:B.24.鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是()解:设鸡有x只,那么兔子有□只.因为☆+兔的足数=94,所以列方程为〇x+△(35﹣x)=94,解这个方程,得x=23,从而35﹣23=12.答:鸡有23只,兔子有12只.A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2D.△代表2【解答】解:设鸡有x只,则兔子有(35−x)只,∵鸡的足数+兔的足数=94,∴列方程为2x+4(35−x)=94,解这个方程,得:x=23,从而35−23=12,∴鸡有23只,兔子有12只,∴□代表(35−x),☆代表鸡的足数,〇代表2,△代表4,故选:D.25.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣2【解答】解:根据题意得:a+2=1,解得:a=﹣1,b+1=3,解得:b=2,把a=﹣1,b=2代入方程ax+b=0得:﹣x+2=0,解得:x=2,故选:C.26.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.27.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同【解答】解:方程去分母,得,3(y+2)+2(2y﹣1)=12,去括号得,3y+6+4y﹣2=12,∴错在分子部分没有加括号,故选:C.28.若关于x的方程ax﹣4=20+a的解为x=5,则a的值为()A.﹣6B.﹣4C.6D.4【解答】解:把x=5代入方程ax﹣4=20+a得:5a﹣4=20+a,解得:a=6,故选:C.29.下列结论正确的是()A.﹣3ab2和b2a是同类项B.a不是单项式C.a一定比﹣a大D.x=3是方程﹣x+1=4的解【解答】解:A、﹣3ab2和b2a是同类项,原说法正确,故本选项符合题意;B、a是单项式,原说法错误,故本选项不符合题意;C、当a=0时,a=﹣a,原说法错误,故本选项不符合题意;D、x=﹣3是方程﹣x+1=4的解,原说法错误,故本选项不符合题意.故选:A.30.根据等式的性质,下列变形正确的是()A.由﹣x=y,得x=2y B.由3x=2x+2,得x=2C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣5【解答】解:A、由﹣x=y,得﹣x=2y,故不符合题意;B、由3x=2x+2,得x=2,符合题意;C、由2x﹣3=3x,得x=﹣3,故不符合题意;D、由3x﹣5=7,得3x=7+5,故不符合题意;故选:B.31.下列变形符合等式性质的是()A.如果2x﹣3=7,那么2x=7﹣3B.如果,那么x=﹣3C.如果﹣2x=5,那么x=5+2D.如果3x﹣2=x+1,那么3x﹣x=1﹣2【解答】解:A、等式2x﹣3=7的两边都加3,可得2x=7+3,原变形错误,故此选项不符合题意;B、等式﹣x=1的两边都乘﹣3,可得x=﹣3,原变形正确,故此选项符合题意;C、等式﹣2x=5的两边都除以﹣2,可得x=﹣,原变形错误,故此选项不符合题意;D、等式3x﹣2=x+1的两边都加﹣x+2,可得3x﹣x=1+2,原变形错误,故此选项不符合题意.故选:B.32.已知(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,则m的值为()A.1B.2C.3D.1或3【解答】解:∵(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,∴|m﹣2|=1且m﹣3≠0,∴m=1,故选:A.33.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b【解答】解:A、在3a=2b两边同时加2,即得3a+2=2b+2,故A不符合题意;B、在3a=2b两边同时减5,即得3a﹣5=2b﹣5,故B不符合题意;C、在3a=2b两边同时除以6,即得=,故C不符合题意;D、将3a=2b两边平方,得9a2=4b2,不能得到9a=4b,故D符合题意;故选:D.34.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+【解答】解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.35.已知x=y,则下列各式中,不一定成立的是()A.x﹣2=y﹣2B.x+C.﹣3x=﹣3y D.【解答】解:当m=0时,=无意义,故D不一定成立,故选:D.36.下列式子中:①5x+3y=0,②6x2﹣5x,③3x<5,④x2+1=3,⑤+2=3x.是方程的有()A.1个B.2个C.3个D.4个【解答】解:①5x+3y=0,是方程;②6x2﹣5x,是多项式,不是方程;③3x<5,是不等式,不是方程;④x2+1=3,是方程;⑤+2=3x是方程.所以方程有①④⑤,共3个.故选:C.37.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1B.0C.2D.3【解答】解:把x=3代入方程得到:6﹣3(2a﹣1)+3=0解得:a=2.故选:C.38.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是()A.2B.﹣3C.3D.﹣2【解答】解:把x=﹣3代入方程得:k﹣2k+3=5,解得:k=﹣2.故选:D.39.方程=4(x﹣1)的解为x=3,则a的值为()A.2B.22C.10D.﹣2【解答】解:把x=3代入原方程得:解得:a=10故选:C.40.已知关于x的方程3x+2a=2的解是x=a﹣1,则a的值是()A.1B.C.D.﹣1【解答】解:根据题意得:3(a﹣1)+2a=2,解得a=1故选:A.。
一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
【典型例题】例1.x 的43与1的和为8,求x ?例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。
例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。
类型二:数字问题一般可设个位数字为a ,十位数字为b ,百位数字为c①两位数可表示为:10b a + ②三位数可表示为:10010c b c ++然后抓住数字间或新数、原数之间的关系找等量关系列方程。
【典型例题】例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l ,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型三:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:①利润=卖的钱—成本 ②利润=成本X 利润率注意打几折是按原价的百分之几十出售。
一般的相等关系:卖的钱—成本=成本X 利润率【典型例题】例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?例5.商店对某种商品进行调价,决定按原价的九折出售,此时该商品的利润率是15℅,已知这种商品每件的进货价为1800元,求每件商品的原价。
2022-2023学年上学期初中数学北师大版七年级期末必刷常考题之一元一次方程一.选择题(共5小题)1.(2020秋•海曙区期末)下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+182.(2020秋•宁波期末)已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣2 B.﹣1 C.1 D.23.(2020秋•瑞安市期末)已知等式3x=2y+4,则下列等式中不一定成立的是()A.3x﹣4=2y B.3x+1=2y+5 C.3mx=2my+4 D.x=4.(2020秋•鄞州区期末)我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9 B.3(x+2)=2x+9C.+2=D.﹣2=5.(2020秋•海曙区期末)为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x元,可列方程为()A.B.C.D.二.填空题(共5小题)6.(2020秋•宁波期末)已知关于x的方程(a+3)x﹣4=x﹣4a的解为x=﹣2,则a=.7.(2021春•市中区期末)若2x3k﹣5=3是关于x的一元一次方程,则k=.8.(2020秋•南宁期末)某电视台组织知识竞赛,共设20道选择题,各题分值相间,每题必答,下表记录了其中3名参赛者的得分情况,若参赛者D得88分,则他答对题.参赛者答对题目答错题目得分A19194B200100C1010409.(2021春•烟台期末)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时,该轮船在静水中的速度为千米/小时.10.(2021春•莱山区期末)七年级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.则七年级共有名学生.三.解答题(共5小题)11.(2020秋•瑞安市期末)解方程:(1)4x﹣3=12﹣x;(2)+1=.12.(2020秋•海曙区期末)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).13.(2020秋•云南期末)在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?14.(2020秋•江北区期末)小北同学在校运动会400米赛跑中,先以6米/秒的速度跑完大部分赛程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒.请问:(1)小北同学冲刺的时间有多长?(2)如果他想把成绩提高1秒(即减少1秒钟),他需要提前几秒开始最后冲刺?15.(2020秋•宁波期末)小商品批发市场内,某商品的价格按如下优惠:购买不超过300件时,每件3元;超过300件但不超过500件时,每件2.5元;超过500件时,每件2元.某客户欲采购这种小商品700件.(1)现有两种购买方案:①分两次购买,第一次购买240件,第二次购买460件;②一次性购买700件.问哪种购买方案费用较省?省多少元?说明理由.(2)若该客户分两次购买该商品共700件(第二次多于第一次),共付费1860元,则第一次、第二次分别购买该商品多少件?2022-2023学年上学期初中数学北师大版七年级期末必刷常考题之一元一次方程参考答案与试题解析一.选择题(共5小题)1.(2020秋•海曙区期末)下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+18【考点】等式的性质;解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、4x﹣3=3x+2变形得:4x﹣3x=2+3,不符合题意;B、3x=2变形得:x=,不符合题意;C、2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3,不符合题意;D、x﹣1=x+3变形得:4x﹣6=3x+18,符合题意.故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.2.(2020秋•宁波期末)已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣2 B.﹣1 C.1 D.2【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=1代入方程2x﹣a=0得出2﹣a=0,再求出方程的解即可.【解答】解:把x=1代入方程2x﹣a=0得:2﹣a=0,解得:a=2,故选:D.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.3.(2020秋•瑞安市期末)已知等式3x=2y+4,则下列等式中不一定成立的是()A.3x﹣4=2y B.3x+1=2y+5 C.3mx=2my+4 D.x=【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】根据等式的性质逐个判断即可.【解答】解:A、∵3x=2y+4,∴3x﹣4=2y,原变形正确,故本选项不符合题意;B、∵3x=2y+4,∴3x+1=2y+5,原变形正确,故本选项不符合题意;C、∵3x=2y+4,∴等式两边都乘以m得:3mx=2my+4m,原变形错误,故本选项符合题意;D、∵3x=2y+4,∴x=y+,原变形正确,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.等式的性质:1、等式两边加同一个数(或整式)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.(2020秋•鄞州区期末)我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9 B.3(x+2)=2x+9C.+2=D.﹣2=【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】根据“每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:+2=.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.5.(2020秋•海曙区期末)为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x元,可列方程为()A.B.C.D.【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】设这种服装的原价为x元,根据“宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%”,列方程即可得到答案.【解答】解:设这种服装的原价为x元,根据题意得,,故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,正确的列出方程是解题的关键.二.填空题(共5小题)6.(2020秋•宁波期末)已知关于x的方程(a+3)x﹣4=x﹣4a的解为x=﹣2,则a=4.【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=﹣2代入方程(a+3)x﹣4=x﹣4a得出﹣2(a+3)﹣4=﹣2﹣4a,再求出方程的解即可.【解答】解:把x=﹣2代入方程(a+3)x﹣4=x﹣4a得:﹣2(a+3)﹣4=﹣2﹣4a,解得:a=4,故答案为:4.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.7.(2021春•市中区期末)若2x3k﹣5=3是关于x的一元一次方程,则k=2.【考点】一元一次方程的定义.【专题】一次方程(组)及应用;运算能力.【分析】根据一元一次方程的定义得到x的指数为1,列出方程,解方程即可.【解答】解:依题意得:3k﹣5=1,解得k=2,故答案为:2.【点评】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.8.(2020秋•南宁期末)某电视台组织知识竞赛,共设20道选择题,各题分值相间,每题必答,下表记录了其中3名参赛者的得分情况,若参赛者D得88分,则他答对18题.参赛者答对题目答错题目得分A19194B200100C101040【考点】一元一次方程的应用.【专题】其他问题;应用意识.【分析】设参赛者D答对了y道题,则他答错了(20﹣y)道题,根据答对题目的得分+答错题目的得分=88分建立方程求出其解即可.【解答】解:由参赛者B可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛者A的得分列得:19×5﹣x=94,解得:x=1,即答对一道题得5分,答错一道题扣1分;设参赛者D答对y道题,根据题意得:5y﹣1×(20﹣y)=88,解得:y=18,则他答对18道题.故答案为:18.【点评】本题考查了列一元一次方程解实际问题的运用,理解题意找准等量关系列出方程是解题的关键.9.(2021春•烟台期末)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时,该轮船在静水中的速度为12千米/小时.【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设该轮船在静水中的速度为x千米/小时,利用顺流的速度﹣轮船在静水中的速度=轮船在静水中的速度﹣逆流的速度,即可得出关于x的一元一次方程,解之即可求出该轮船在静水中的速度.【解答】解:设该轮船在静水中的速度为x千米/小时,依题意得:﹣x=x﹣,解得:x=12.故答案为:12.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.(2021春•莱山区期末)七年级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.则七年级共有240名学生.【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设一共有汽车x辆,根据两种不同的坐法学生人数不变建立方程求出其解,进一步求得七年级共有多少名学生.【解答】解:设一共有汽车x辆,由题意,得45x+15=60(x﹣1),解得:x=5,则45x+15=225+15=240.故答案为:240.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据学生人数不变建立方程是关键.三.解答题(共5小题)11.(2020秋•瑞安市期末)解方程:(1)4x﹣3=12﹣x;(2)+1=.【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】(1)方程移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x+x=12+3,合并得:5x=15,解得:x=3;(2)去分母得:3(1﹣x)+12=4(2x+1),去括号得:3﹣3x+12=8x+4,移项得:﹣3x﹣8x=4﹣3﹣12,合并得:﹣11x=﹣11,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.12.(2020秋•海曙区期末)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=﹣;(2)去分母得:2(5x+1)﹣(7x+2)=4,去括号得:10x+2﹣7x﹣2=4,移项得:10x﹣7x=4﹣2+2,合并得:3x=4,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.13.(2020秋•云南期末)在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?【考点】一元一次方程的应用.【专题】一次方程(组)及应用;运算能力.【分析】根据品牌电子体温枪由甲、乙两部件各一个组成和题目中的数据,可以列出相应的方程,然后求解即可.【解答】解:设甲种部件生产x天,则乙种部件生产(30﹣x)天,由题意可得600x=400(30﹣x),解得x=12,∴30﹣x=18,答:甲、乙两种部件各应生产12天、18天.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.14.(2020秋•江北区期末)小北同学在校运动会400米赛跑中,先以6米/秒的速度跑完大部分赛程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒.请问:(1)小北同学冲刺的时间有多长?(2)如果他想把成绩提高1秒(即减少1秒钟),他需要提前几秒开始最后冲刺?【考点】一元一次方程的应用.【专题】一次方程(组)及应用;运算能力.【分析】(1)设设小北同学冲刺的时间为x秒,则以6米/秒的速度跑的时间为(65﹣x)秒,然后根据路程=速度×时间即可列出相应的方程,从而可以解答本题;(2)根据路程=速度×时间,可以列出相应的方程,注意此时的总的时间为64秒.【解答】解:(1)设小北同学冲刺的时间为x秒,则以6米/秒的速度跑的时间为(65﹣x)秒,由题意可得,6(65﹣x)+8x=400,解得x=5,答:小北同学冲刺的时间有5秒;(2)设他最后冲刺冲刺的时间为a秒,由题意可得,6(64﹣a)+8a=400,解得a=8,8﹣5=3(秒),答:他需要提前3秒开始最后冲刺.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.15.(2020秋•宁波期末)小商品批发市场内,某商品的价格按如下优惠:购买不超过300件时,每件3元;超过300件但不超过500件时,每件2.5元;超过500件时,每件2元.某客户欲采购这种小商品700件.(1)现有两种购买方案:①分两次购买,第一次购买240件,第二次购买460件;②一次性购买700件.问哪种购买方案费用较省?省多少元?说明理由.(2)若该客户分两次购买该商品共700件(第二次多于第一次),共付费1860元,则第一次、第二次分别购买该商品多少件?【考点】有理数的混合运算;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】(1)利用总价=单价×数量,分别求出选择方案①②所需费用,比较做差后可得出购买方案②费用较省,省470元;(2)设第一次购买该商品x件,则第二次购买该商品(700﹣x)件,分0<x<200,200≤x≤300及300<x<350三种情况考虑,利用总价=单价×数量,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)购买方案②费用较省,理由如下:购买方案①所需费用为3×240+2.5×460=720+1150=1870(元),购买方案②所需费用为2×700=1400(元).∵1870>1400,1870﹣1400=470(元),∴购买方案②费用较省,省470元.(2)设第一次购买该商品x件,则第二次购买该商品(700﹣x)件.①当0<x<200时,3x+2(700﹣x)=1860,解得:x=460(不合题意,舍去);②200≤x≤300时,3x+2.5(700﹣x)=1860,解得:x=220,∴700﹣x=700﹣220=480.③当300<x<350时,2.5x+2.5(700﹣x)=1750≠1860,该情况不存在.答:第一次购买该商品220件,第二次购买该商品480件.【点评】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键:(1)利用总价=单价×数量,分别求出选择方案①②所需费用;(2)找准等量关系,正确列出一元一次方程.考点卡片1.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.2.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.3.一元一次方程的定义(1)一元一次方程的定义只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x 的次数必须是1.(2)一元一次方程定义的应用(如是否是一元一次方程,从而确定一些待定字母的值)这类题目要严格按照定义中的几个关键词去分析,考虑问题需准确,全面.求方程中字母系数的值一般采用把方程的解代入计算的方法.4.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.5.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.6.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x 的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.7.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句。
一元一次方程应用题
一元一次方程是指只含有一个未知数的一次方程,可表示为ax+b=0,其中a和b为已知数,x为未知数。
一元一次方程应用题常见的类型包括:
1. 购买商品问题:如某商品的价格为x元,现有b元,求买几件商品后还剩a元。
2. 时间、速度、距离问题:如A车以每小时x公里的速度行驶,经过b小时后行驶了a公里,求A车的速度。
3. 水混合问题:如已知某种酒精溶液中酒精的浓度为x%,现加入b 升水后酒精的浓度为a%,求原溶液中酒精的浓度。
4. 利润问题:如一件商品的进价为b元,售价为x元,求多少件商品时能够获利a元。
这些应用题主要通过建立一元一次方程来求解,需要根据题目中给出的已知条件和未知量,写出方程并解出未知数的值。
一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t 1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。