小学五年级 倍数与因数
- 格式:doc
- 大小:57.00 KB
- 文档页数:10
《倍数和因数》数学说课稿12篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!《倍数和因数》数学说课稿12篇《倍数和因数》数学说课稿1一、说目标《因数和倍数》是人教版义务教育教科书小学数学五年级下册第二单元内容,是小学阶段数与代数部分最重要的知识之一、也是在学生初步认识整数的基础上,探究其性质。
小学五年级数学因数和倍数说课稿大全(17篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!小学五年级数学因数和倍数说课稿大全(17篇)编写教案模板可以帮助教师清晰地组织教学内容和教学步骤,提高教学效果。
倍数与因数经典例题答案班级小组姓名成绩(满分120)一、认识倍数和因数(共4小题,每题3分,共计12分)例1.判断。
(1)因为42÷7=6,所以42是倍数,7是因数。
(×)(2)51是17的倍数,17是51的因数。
(√)(3)1是1,2,3,4,5,…的因数。
(√)(4)4的倍数有无数个,4的因数只有2和4。
(×)(5)因为4×8=32,所以32是8的倍数,8是32的因数。
(√)(6)一个数的倍数一定比这个数大。
(×)(7)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
(√)例1.变式1.根据算式填数。
(1)10×2=20(10)和(2)是(20)的因数,(20)是(2)和(10)的倍数。
(2)28÷7=4(28)是(7)和(4)的倍数,(4)和(7)是(28)的因数。
(3)3×18=54(54)是(3)和(18)的倍数,(3)和(18)是(54)的因数。
(4)95÷5=19(5)和(19)是(95)的因数,(95)是(5)和(19)的倍数。
找一个数的倍数的方法例1.变式2.把4的倍数用“○”圈起来。
例1.变式3.小蜜蜂采蜜。
(连一连)二、倍数与因数(共4小题,每题3分,共计12分)例2.判断。
(1)0不是自然数。
(×)(2)自然数都是整数。
(✓)(3)8是倍数,1是因数。
(×)(4)32既是4的倍数,又是8的倍数。
(✓)(5)1是1,2,3的因数。
(✓)(6)12是12的倍数。
(✓)例2.变式1.体育课上,王老师为五年级(1)班的同学安排了一次有趣的跳绳活动,王老师将全班学生分成5个小组,每组7人。
跳绳的规则是这样的:每人只跳60秒,跳的次数是7的倍数的有效,否则无效。
下面表格展示了两组同学的成绩,找一找哪些成绩是有效的,填在表格里。
例2.变式2.爸爸每4天休息一次,妈妈每3天休息一次,5月6日爸爸、妈妈都休息,下一次爸爸、妈妈共同休息将在几月几日?4+1=5(天)3+1=4(天)4x5=206+20=26(日)答:下一次爸爸、妈妈共同休息将在5月26日.组数成绩有效成绩第一组14,43,56,70,85,62,42第二组39,63,78,98,47,90,9114567042639891例2.变式3.老师的年龄在20岁到40岁之间,既是6的倍数,又是9的倍数,请猜猜老师今年几岁。
五年级数学因数与倍数一、因数与倍数的基本概念。
1. 因数。
- 定义:整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a 的因数。
例如,12÷1 = 12,12÷2 = 6,12÷3 = 4,12÷4 = 3,12÷6 = 2,12÷12 = 1,所以1、2、3、4、6、12是12的因数。
- 找因数的方法:- 从1开始,一对一对地找。
比如找18的因数,1×18 = 18,2×9 = 18,3×6 = 18,所以18的因数有1、2、3、6、9、18。
2. 倍数。
- 定义:一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。
例如,12÷1 = 12,12是1的倍数;12÷2 = 6,12是2的倍数;12÷3 = 4,12是3的倍数等。
- 找倍数的方法:用这个数分别乘1、2、3、4·s。
例如,找3的倍数,3×1 = 3,3×2 = 6,3×3 = 9,3×4 = 12·s,所以3、6、9、12·s是3的倍数。
二、因数与倍数的特征。
1. 因数的特征。
- 一个数的因数的个数是有限的。
例如,6的因数有1、2、3、6,共4个。
- 一个数最小的因数是1,最大的因数是它本身。
比如12,最小因数是1,最大因数是12。
2. 倍数的特征。
- 一个数的倍数的个数是无限的。
例如,5的倍数有5、10、15、20·s,有无数个。
- 一个数最小的倍数是它本身,没有最大的倍数。
如7的最小倍数是7。
三、2、3、5的倍数特征。
1. 2的倍数特征。
- 个位上是0、2、4、6、8的数都是2的倍数。
例如,10、12、14、16、18等都是2的倍数。
2. 3的倍数特征。
- 一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
因数和倍数的教案(推荐13篇)因数和倍数的教案第1篇教学内容:人教版小学数学五年级下册第二单元第5第6页《因数与倍数》教材分析:整除概念是贯穿这部分教材的一条主线。
签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c 直接引出因数和倍数的概念。
学情分析:因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。
要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学准备:多媒体课件教学过程:一、自主探索1、出示书上主题图,学生列出乘法算式2×6=12,在这里,2和6是12的因数。
12是2的倍数,也是6的倍数。
(教师板书因数,倍数)2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?学生口答,巩固因数和倍数的含义?3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?学生发表自己的见解。
五年级下册《因数和倍数》教学设计(优秀3篇)五年级下册《因数和倍数》教学设计篇一教学目标:1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有的乘法和除法知识,通过尝试和交流等活动,探索并掌握找一个数的倍数和因数的方法,能在1-100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中,进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:理解倍数和因数的含义。
教学难点:探索并掌握找一个数的倍数和因数的方法。
教学过程:一、理解倍数和因数1、用12个同样大的正方形拼成一个长方形,可以怎样摆?先独立思考,在同桌交流自己的看法,再集体交流。
根据学生的回答,教师出示相应的拼法,并列式。
2、在4×3=12中,12是4的倍数,12也是3的倍数,3和4都是12的因数。
你能照老师的样子试着说一说吗?如果有学生只说倍数和因数,让学生通过争论明白倍数和因数表示的是两个数之间的关系,因此一定要说谁是谁的倍数,谁是谁的因数。
3、下面这些算式也能用倍数和因数表示吗?16÷2=85+6=1118-6=12学生如果有争论,让学生说说自己的理由。
由16÷2=8可以得到2×8=16,实际上16是2和8的乘积,所以也可以用倍数和因数来表示。
4、你能自己写出一条算式,用倍数和因数来说一说吗?学生自己思考,写一写,然后集体交流。
二、探索找一个数的倍数的方法1、谈话:3的倍数有哪些呢?我们来找找看。
一分钟内完成。
1分钟内你们写完了吗?如果再给半分钟呢?为什么?2、3的倍数有很多,我们不能都写出来,就用省略号来代替。
下面,谁来说说看,3的倍数是怎么找的?小结:找一个数的倍数,只要用这个数去乘以1、2、3、。
就能得到它的倍数。
3、填一填:2的倍数有________________________5的倍数有________________________4、观察上面的几个例子,你有什么发现?先小组交流,再指名回答。
五年级奥数第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c都是不为零的整数),那么a,b就是c的因数,c就是a,b的倍数。
例如6×2=12,所以6和2是12的因数,12是6和2的倍数。
如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
例如10能被5整除,那么10就是5的倍数,5就是10的因数。
2、一个数的因数的求法:(1)列乘法算式找(2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
例如:15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找)方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1,3, 5, 15。
最大的因数就是15,也就是它本身!最小的是1。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。
例如:3的倍数 3 6 9 12 15 。
...。
.。
3是3最小的倍数,也就是它本身倍数特征:最小的倍数是本身,没有最大的倍数如果两个数都是一个数的倍数,那么这两个数的和、差、积也是这个数的倍数.4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。
②个位上是0或5的数,是5的倍数.③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
5、常见数字的整除判定方法:(1)2:个位是偶数的自然数(2)5:个位是0或5的自然数注:若一个数同时是2和5的倍数,则此数的个位一定为0(3)4、25:末两位能被4、25整除(4)8、125:末三位能被8、125整除(5)3、9:各个数位上的数之和能被3、9整除(6)7、11、13通用性质:①一个数如果是1001的倍数,即能被7、11、13整除。
如201201=201×1001,则其必能被7、11、13整除②从末三位开始三位一段,奇数段之和与偶数段之和的差如果是7、11、13的倍数,则其为7、11、13的倍数③末三位一段,前后均为一段,用较大的减去较小的,如果差为7、11、13的倍数,则其为7、11、13的倍数(7)11:奇数位数字之和与偶数位数字之和的差能被11整除(8)99:两位一段(从右往左),各段的和能被99整除(9)999:三位一段(从右往左),各段的和能被999整除6、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
《倍数与因数》教案《倍数与因数》教案《倍数与因数》教案1教学内容认识自然数和整数,倍数和因数。
教学目标1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
初步探索找一个数的倍数的方法,能在1——100的自然数中,找出10以内某数的所有倍数。
2、学生经历探索认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。
在教师帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。
3、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动,体验数学与日常生活密切联系。
教学重点探究倍数和因数教学难点倍数和因数的关系的理解教学过程一、结合“水果店”情境图,认识自然数和整数。
1、谈话引入。
2、出示水果店情境图。
(2)教师提示:还有要补充的吗?(目的是让学生找出图中隐含的数字,比如0,1/2等。
(3)学生活动:分一分。
你能把它们分分类吗?学生单独活动,教师帮助有困难的学生。
全班再进行交流。
交流时让学生说出分类的标准和分类的结果。
教师要适当地进行引导,为下面教学自然数和整数做准备。
(4)根据学生的分类情况,加上教师的适当引导,揭示什么样的数是自然数,什么样的数是整数?并让学生举出例子来进一步说明和巩固。
二、利用整数乘法认识倍数和因数。
1、解决:买5千克梨需要多少钱?5×4=20(元)2、利用算式说明倍数和因数的含义。
(1)说明含义。
20是4和5的倍数;4和5是20的因数(需进一步使学生明确,20是4的倍数也是5的倍数;4是20的因数,5也是20的因数)关于倍数和因数这种相互依存的'关系,学生第一次接触,教师要让学生多说一说,并通过一定的例证进一步说明。
(2)举例说明。
举出一个乘法算式,说出其中的因数和倍数关系。
(3)练习:说一说。
第3页“说一说”先自己试说,同桌之间交流后,再进行全班交流。
3、说明研究倍数和因数的范围。
教师根据课堂生成,相机给出“只在自然数(零除外)的范围内研究倍数和因数”这个规定。
环球雅思教育学科教师讲义讲义编号: ______________ 副校长/组长签字:签字日期:【知识梳理】一、因数与倍数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
只能说谁是谁的因数,谁是谁的倍数。
不能说是谁是因数,谁是倍数。
【知识点2】倍数因数只考虑正数。
小数、分数等不讨论倍数、因数的问题。
【知识点3】没有前提条件确定倍数与因数:例如:36的因数有()。
确定一个数的所有因数,我们应该从1的乘法口诀一次找出。
如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36。
重复的和相同的只算一个因数。
一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
例如:7的倍数()。
确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。
因此7的倍数有:7、14、21、28、35、42……一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。
【知识点4】有前提条件的情况下确定倍数与因数例如:25以内5的倍数有(5、10、15、20、25 )。
特别注意前提条件是25以内!例如:5、1、20、35、40、10、140、2以上各数中,是20的因数的数有();是20的倍数的数有();既是20的倍数又是20的因数的数有()。
首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数字中出现的因数是不能填入括号的!【知识点5】关于倍数因数的一些概念性问题1、一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
2、一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。
3、1是任一自然数(0除外)的因数。
也是任一自然数(0除外)的最小因数。
4、一个数的因数最少有1个,这个数是1。
除1以外的任何整数至少有两个因数(0除外)。
5、一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。
6、一个数的最小倍数=一个数的最大因数=这个数二、2,3,5的倍数的特征【知识点1】2、3、5的倍数特征1、个位上是0,2,4,6,8的数都是2的倍数。
例如:202、480、304,都能被2整除。
2、个位上是0或5的数,是5的倍数。
例如:5、30、405都能被5整除。
3、一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。
例如:12、108、204都能被3整除。
4、个位上是0的数既是2的倍数又是5的倍数。
例如:80、20、70、130等。
5、个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。
例如:120、90、180、270等。
6、自然数按能否被2 整除的特征可分为奇数和偶数。
也就是说是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
(因此在自然数中,除了奇数就是偶数)7、偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数-奇数=偶数无论多少个偶数相加都是偶数偶数个奇数相加是偶数奇数个奇数相加是奇数【知识点2】一些特殊数的倍数的特征1、一个数各位数上的和能被9整除,这个数就是9的倍数。
但是,能被3整除的数不一定能被9整除;能被9整除的数一定能被3整除。
2、一个数的末两位数能被4整除,这个数就是4的倍数。
例如:16、404、1256都是4的倍数。
3、一个数的末两位数能被25整除,这个数就是25的倍数。
例如:50、325、500、1675都是25的倍数。
4、一个数的末三位数能被8(或125)整除,这个数就是8(或125)的倍数。
例如:1168、4600、5000、12344都是8的倍数,1125、13375、5000都是125的倍数。
5、如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数6、如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数三、质数和合数【知识点1】质数和合数的相关定义1、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)2、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
3、1不是质数也不是合数,自然数除了1外,不是质数就是合数。
4、如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。
5、100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
6、除2以外所有的质数都是奇数。
除2以外任意两个质数的和都是偶数7、最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数【知识点2】分解质因数(相加和相乘)把一个合数分成几个质数相乘的形式,叫做分解质因数。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
分解质因数,应该从最小的质数开始试积,直到每个因数都是质数时为止。
例如:24=2×12 24=3×82×6 因此24=2×2×2×3 2×42×3 2×242=(2)+(40)=(3)+(39)=(5)+(37)× × √【经典例题】【例1】填空题1. 自然数中,()的数叫做偶数,()的数叫做奇数。
2. 个位上是()或()的数,是5的倍数。
3. 既是2的倍数又是5的倍数的数的特征是()。
4. 6既是()的倍数,又是()的倍数,还是()的倍数。
5. 奇数与偶数的和是()数;奇数与奇数的和是()数;偶数与偶数的和是()数。
6. 87是一个()数,还是一个()数。
7. 一个两位数,它既是5的倍数,又是3的倍数,而且是偶数,这个数最小是()。
8. 能被2、3、5整除的最小两位数是()。
9. 在自然数范围内,最小的质数是(),最小的合数是(),最小的奇数是(),最小的偶数是()。
【例2】判断(对的打“√”,错的打“×”)(每题2分,共16分)1. 在自然数中,除了奇数就是偶数。
()2. 个位上是3、6、9的数就是3的倍数。
()3. 1是质数。
()4. 2既是偶数,又是质数。
()5. 所有的质数都是奇数。
()6. 10是倍数,5是因数。
()7. 自然数a的最大因数是a,最小倍数也是a。
()8. 一个自然数不是质数就是合数。
()【例3】选择(每题2分,共14分)1. 下面数中,( )既是2 的倍数,又是5的倍数。
A. 24B. 30C. 452. ()的最小倍数是1。
A. 3B. 0C. 13. 最小的质数与最小的合数的和是()A. 6B. 5C. 34. 下面数中,( )既是2 的倍数,又是3的倍数。
A. 27B. 36C. 195. 两个质数的和是12,积是35,这两个质数是()A. 3和8B. 2和9C. 5和76. 1、3、5都是15的()A. 质因数B. 公因数C. 因数7. 一个合数至少有()个因数。
A. 1B. 2C. 3【例4】分类(21分)45 67 78 34 23 24 15 128 76 85 9089 49 79 31 97 87 77 37 0 123 55以上数中,偶数有()奇数有()质数有()合数有()2的倍数有()5的倍数有()3的倍数有()。
【例5】在□里填一个数字,使每个数都是3的倍数。
(每题3分,共15分)□5,□里可以填();3□7,□里可以填();□78,□里可以填()14□3,□里可以填();60□1,□里可以填()。
【例6】五·一班部分同学参加植树活动,已经来了37人,5个人分成一组,至少还要来几个人,才能正好分完?【例7】小洪买了以下几本书,故事书10元一本,科技书8元一本,作文书7元一本。
给售货员50元,找回22元,对不对?为什么?【课堂练习】一、填空。
(33%)(1)6×4=24,6和4是24的(),24是6的(),也是4的()。
(2)24的因数有()。
(3)下面的数中,把质数划去,留下合数。
2 9 23 2728293135373951(4)一个数,既是12的倍数,又是12的因数,这个数是()。
(5)两个都是质数的连续自然数是()和()。
(6)在15、18、29、35、39、41、47、58、70、87这些数中:①是偶数的有();②是奇数的有();③有因数3的是();④5的倍数有()。
(7)最小的自然数是(),最小的质数是()最小的合数是()。
二、选择题。
将正确答案的序号填在题中的括号里。
(8%)(1)一个数是3的倍数,这个数各位上数的和()。
①大于3②等于3③是3的倍数④小于3(2)一个合数至少有()。
①一个因数②二个因数③三个因数④四个因数(3)87是();41是()。
①合数②质数③因数④倍数(4)既不是质数又不是合数的是()。
①1②2③3④4(5)42÷3=14,我们可以说()。
①42是倍数②3是因数③ 42是3的倍数④42是3的因数(6)两个奇数的和()。
①一定是奇数②一定是偶数③可能是奇数也可能是偶数④一定是质数(7)几个质数之积一定是()。
①奇数②偶数③合数④质数(8)5和7都是35的()。
①奇数②偶数③因数④倍数三、生活中的数(16分)1、501班上体育课,有34人参加跳绳活动,要分成5人一组,至少还要再来几个人?可以分成几组?2、食品店运来75个面包,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?如果每3个装一袋,能正好装完吗?为什么?3、晚上小明家正开着灯在吃晚饭,顽皮的弟弟按了5下开关,这时灯是亮还是暗?如果按了50下呢?【课后作业】一、判断题( )1、任何自然数,它的最大因数和最小倍数都是它本身。
( )2、一个数的倍数一定大于这个数的因数。
( )3、个位上是0的数都是2和5的倍数。
( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
( )5、5是因数,10是倍数。
( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。
( )7、因为18÷9=2,所以18是倍数,9是因数。
( )9、任何一个自然数最少有两个因数。
( )10、一个数如果是24的倍数,则这个数一定是4和8的倍数。
( )11、15的倍数有15、30、45。