人教版初三数学下册专题复习:反比例函数
- 格式:doc
- 大小:69.00 KB
- 文档页数:2
反比率函数26.1 知识点 1 反比率函数的定义一般地,形如 y k0 )的函数称为反比率函数,它能够从以下几个方面来理解:( k 为常数,kx⑴ x 是自变量, y 是 x 的反比率函数;⑵自变量 x 的取值范围是x 0的一确实数,函数值的取值范围是y 0 ;⑶比率系数 k0 是反比率函数定义的一个重要构成部分;⑷反比率函数有三种表达式:k① y(k0 ),x② y kx1( k0 ),③ x y k (定值)(k0 );⑸函数 y k0 )与xky 是 x 的反比率函数时, x 也是 y 的反比率函数。
( k( k 0 )是等价的,所以当x y( k 为常数,k0 )是反比率函数的一部分,当k=0 时,y k k x,就不是反比率函数了,因为反比率函数y( k 0x )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确立反比率函数的表达式。
26.2 知识点 2 用待定系数法求反比率函数的分析式因为反比率函数 yk0 )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确( kx定反比率函数的表达式。
26.3 知识点 3 反比率函数的图像及画法反比率函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,因为反比率函数中自变量函数中自变量x 0 ,函数值y0 ,所以它的图像与x 轴、 y 轴都没有交点,即双曲线的两个分支无穷凑近坐标轴,但永久达不到坐标轴。
反比率的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比率函数的图像时应注意以下几点:①列表时选用的数值宜对称选用;②列表时选用的数值越多,画的图像越精准;③连线时,一定依据自变量大小从左至右(或从右至左)用圆滑的曲线连结,切忌画成折线;④绘图像时,它的两个分支应所有画出,但切忌将图像与坐标轴订交。
( 1)图象的形状:双曲线.越大,图象的曲折度越小,曲线越平直.越小,图象的曲折度越大.(2)图象的地点和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大.(3)对称性:图象对于原点对称,即若(a, b)在双曲线的一支上,则(,)在双曲线的另一支上.图象对于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4. k 的几何意义如图 1,设点 P( a, b)是双曲线上随意一点,作PA⊥ x 轴于 A 点, PB⊥y 轴于 B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图 2,由双曲线的对称性可知,P 对于原点的对称点Q 也在双曲线上,作QC⊥PA 的延伸线于C,则有三角形PQC 的面积为.图1图 25.说明:(1)双曲线的两个分支是断开的,研究反比率函数的增减性时,要将两个分支分别议论,不可以混为一谈.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点对于原点成中心对称.(3)反比率函数与一次函数的联系.26.4 知识点 4 反比率函数的性质☆对于反比率函数的性质,主要研究它的图像的地点及函数值的增减状况,以下表:反比率k0 )y( kk 的符号k 0k 0图像① x 的 取 值 范 围 是 ① x 的 取 值 范 围 是x0 ,y 的取值范围是x0 ,y 的取值范围是yy性质②当 k0 时,函数图像 ② 当 k 0 时,函数图像的两个分支分别在第 的两个分支分别在第 一、第三象限,在每个 二、第四象限,在每个 象限内,y 随 x 的增大而 象限内,y 随 x 的增大而 减小。
专题26.1反比例函数、定义图象与性质(八大考点)【考点1反比例函数的定义】【考点2 反比例函数系数K的几何意义】【考点3 反比例函数的图象】【考点4 反比例函数图象的对称性】【考点5 反比例函数的性质】【考点6 反比例函数图象点坐标特征】【考点7 待定系数法求反比例函数解析式】【考点8 反比例函数与一次函数的交点问题】【考点1反比例函数的定义】1.(2023秋•来宾期中)下列关系式中表示y是x的反比例函数的是( )A.y=B.y=2x+1C.y=x2D.y=【答案】D【解答】解:A、y=是正比例函数,不符合题意;B、y=2x+1是一次函数,不符合题意;C、y=x2中,x的次数不是1,不符合题意;D、y=是反比例函数,符合题意.故选:D.2.(2023秋•苍梧县期中)反比例函数的比例系数是( )A.3B.2C.D.【答案】D【解答】解:,故.故选:D.3.(2023秋•临颍县期末)已知函数y=(m+1)是反比例函数,则m的值为( )A.1B.﹣1C.1或﹣1D.任意实数【答案】A【解答】解:∵函数y=(m+1)是反比例函数,∴m2﹣2=﹣1且m+1≠0,解得m=1.故选:A.4.(2022秋•朝阳期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是( )A.m<0B.C.D.m≥【答案】C【解答】解:根据题意得:1﹣2m<0,解得:m>.故选:C.【考点2 反比例函数系数K的几何意义】5.(2023秋•娄底期末)如图,点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k的值为( )A.﹣6B.6C.﹣3D.3【答案】A【解答】解:根据题意可知:S=|k|=3,△AOB又反比例函数的图象位于第二象限,k <0,则k =﹣6.故选:A .6.(2024•浙江一模)如图,点A 在反比例函数y =(x >0)的图象上,点B 在反比例函数y =(x <0)的图象上,AB ∥x 轴,点C 在x 轴上,△ABC 的面积为3,则k 的值为( )A .1B .﹣1C .2D .﹣2【答案】D【解答】解:连接OA ,OB ,如图,∵AB ⊥y 轴,∴OC ∥AB ,∴S △OAB =S △ABC =3,∴+|k |=3,∵k <0,∴k =﹣2.故选:D .7.(2024•新吴区一模)如图,第一象限的点A 、B 均在反比例函数的图象上,作AC⊥x 轴于点C ,BD ⊥x 轴于点D ,连接AO 、BO ,若OC =3CD ,则△AOB 的面积为( )A .B .C .D .【答案】D【解答】解:设CD =a ,则OC =3CD =3a ,∴OD =OC +CD =4a ,∵点A 、B 均在反比例函数的图象上,作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,∴点A,B ,四边形ACDB 为直角梯形,∴AC =,BD =,∴S 梯形ACDB =(AC +BC )•CD ==,根据反比例函数比例系数的几何意义得:S △OAC =S △OBD ,∵S △AOB =S △OAC +S 梯形ACDB ﹣S △OBD =S 梯形ACDB =.故选:D .8.(2024•钦州一模)点P ,Q ,R 在反比例函数(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线,图中所构成的三处阴影部分的面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=15,则S 2的值为( )A .2B .3C .4D .5【答案】B【解答】解:∵CD=DE=OE,∴可以假设CD=DE=OE=a,则P(,3a),Q(,2a),R(,a),∴CP=,DQ=,ER=,∴OG=AG,OF=2FG,OF=GA,∴S1=S3=2S2,∵S1+S3=15,∴S3=9,S1=6,S2=3,故选:B.9.(2024•黔东南州一模)如图,已知A(1,y1)、B(4,y2)为反比例函数y=(x>0)图象上的两点,连接OA,OB,AB,则三角形OAB的面积是( )A.4B.C.D.【答案】D【解答】解:由A(1,y1)、B(4,y2)为反比例函数y=(x>0)图象上的两点,得A(1,4)、B(4,1),得直线AB表达式为:y=5﹣x,得如图中C(0,5),故三角形OAB的面积=三角形OCB的面积﹣三角形OAC的面积=5×4÷2﹣5×1÷2=7.5,故选:D.10.(2024春•德惠市期中)如图,在▱ABCD 中,AB ∥x 轴,点B 、D 在反比例函数y =(k ≠0)的图象上,若▱ABCD 的面积是8,则k 的值是( )A .2B .4C .6D .8【答案】B【解答】解:连接OB ,∵四边形ABCD 是平行四边形,▱ABCD 的面积是8,∴△ABC 的面积=的面积=,AB =CD ,AB ∥CD ,∴点B 、D 横坐标互为相反数,∴点B 、D 纵坐标也互为相反数,又∵AB ∥x 轴,AB ∥CD ,∴OA =OC ,∴,∴k =2S △AOB =S △ABC =4,故选:B.11.(2024•江西模拟)如图,在平面直角坐标系中,点P在反比例函数y=(x>0)的图象上,点A,B在x轴上,且PA⊥PB,PA交y轴于点C,AO=BO=BP.若△ABP的面积是4,则k的值是( )A.1B.2C.D.【答案】B【解答】解:连接OP,作PD⊥x轴于D,∵△ABP的面积是4,AO=BO,∴△OBP的面积为2,∵PA⊥PB,AO=BO=BP,∴sin∠PAB=,∵sin30°=,∴∠PAB=30°,∴∠PBA=60°,∴△POB为等边三角形,∴S△POD =S△POB=1,∴=1,∴k=±2,∵反比例函数的图象位于第一象限,∴k =2.故选:B .12.(2023秋•昌图县期末)如图,过x 轴上任意点P 作y 轴的平行线,分别与反比例函数y =(x >0),y =﹣(x >0)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为 .【答案】.【解答】解:设点P 坐标为(a ,0)则点A 坐标为(a ,),B 点坐标为(a ,﹣)∴S △ABC =S △APC +S △CPB =+==.故答案为:.【考点3 反比例函数的图象】13.(2023秋•岳阳楼区期末)如图所示,该函数表达式可能是( )A .y =3x 2B .C .D .y =3x【答案】C【解答】解:由图象可得,该函数图象位于第二、四象限,在每个象限内y随x的增大而增大,且是双曲线,故选:C.14.(2024春•普陀区期中)反比例函数与一次函数y=﹣kx+k在同一坐标系中的大致图象是( )A.B.C.D.【答案】A【解答】解:当k<0时,﹣k>0,反比例函数在二,四象限,一次函数y=﹣kx+k 的图象过一、三、四象限,无符合选项;当k>0时,﹣k<0,反比例函数在一、三象限,一次函数y=﹣kx+k的图象过一、二、四象限,A选项符合.故选:A.15.(2024•昭阳区模拟)在同一直角坐标系中,函数y=kx+k与的图象大致为( )A.B.C.D.【答案】C【解答】解:①当k>0时,一次函数y=kx+k经过一、二、三象限,反比例函数的的图象在一、三象限,故C选项的图象符合要求;②当k<0时,一次函数y=kx+k经过二、三、四象限,反比例函数的的图象在二、四象限,没有符合条件的选项.故选:C.16.(2024•青岛一模)一次函数y=ax+b与反比例函数在同一直角坐标系中的图象可能是( )A.B.C.D.【答案】D【解答】解:A、由一次函数y=ax+b的图象知,a>0,b>0,则ab>0,所以反比例函数y=的图象位于第一、三象限,不符合题意;B、由一次函数y=ax+b的图象知,a>0,b>0,则ab>0,所以反比例函数y=的图象位于第一、三象限,符合题意;C、由一次函数y=ax+b的图象知,a>0,b<0,则ab<0,所以反比例函数y=的图象位于第二、四象限,不符合题意;D、由一次函数y=ax+b的图象知,a<0,b<0,则ab>0,所以反比例函数y=的图象位于第一、三象限,不符合题意;故选:D.17.(2024春•泰兴市期中)函数y=kx﹣k与在同一平面直角坐标系内的图象可能是( )A.B.C.D.【答案】B【解答】解:A.∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象应经过一、二、四象限,故本选项不符合题意;B.∵由反比例函数的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象应经过一、三、四象限,故本选项符合题意;C.∵由反比例函数的图象在一、三象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象应经过一、三、四象限,故本选项不符合题意;D.∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项不符合题意.故选:B.18.(2024•商河县一模)反比例函数的图象如图所示,则一次函数y=kx+b的图象可能是( )A.B.C.D.【答案】D【解答】解:由反比例函数的图象可知:kb>0,当k>0,b>0时,∴直线经过一、三、四象限,当k<0,b<0时,∴直线经过一、二、四象限,故选:D.【考点4 反比例函数图象的对称性】19.(2023秋•宣汉县期末)正比例函数与反比例函数的图象相交于A、B两点,其中点A的坐标为(3,2),那么点B的坐标为( )A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,﹣3)D.(2,3)【答案】A【解答】解:解方程组得,.因为点A的坐标为(3,2),那么点B的坐标为(﹣3,﹣2).故选:A.20.(2023秋•竞秀区期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣【答案】D【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.21.(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4【答案】D【解答】解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.【考点5 反比例函数的性质】22.(2024春•长寿区校级期中)若点P(1,3)在反比例函数的图象上,则k的值为( )A.B.3C.﹣3D.【答案】B【解答】解:∵点P(1,3)在反比例函数的图象上,∴,解得:k=3.故选:B.23.(2024春•苏州期中)对于反比例函数,下列说法正确是( )A.函数图象位于第一、三象限B.函数图象经过点(﹣2,﹣3)C.函数图象关于y轴对称D.x>0时,y随x值的增大而增大【答案】D【解答】解:A.因为y=﹣,k=﹣6<0,所以函数图象位于第二、四象限,不符合题意;B.当x=﹣2时,y=﹣=3,函数图象经过点(﹣2,3),不符合题意;C.函数图象关于原点对称,不符合题意;D.x>0时,y随x值的增大而增大,符合题意.故选:D.24.(2024•临沂一模)如图,平面直角坐标系xOy中有4条曲线分别标注着①,②,③,④,是双曲线y=﹣的一个分支的为( )A.①B.②C.③D.④【答案】A【解答】解:∵双曲线y=﹣中,k<0,∴双曲线y=﹣的分支在第二、四象限,可排除③④;由图可知,①经过(﹣2,3),②经过(﹣1,3),而3=﹣,故为双曲线y=﹣的一个分支的是①,故选:A.25.(2024•绥江县模拟)反比例函数的图象位于( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【答案】D【解答】解:∵,k=﹣3<0,∴函数图象过二、四象限.故选:D.26.(2024•香洲区校级一模)若反比例函数y=在每个象限内的函数值y随x的增大而减小,则( )A.k<0B.k>0C.k>1D.k<1【答案】C【解答】解:∵反比例函数y=在每个象限内的函数值y随x的增大而减小,∴k﹣1>0,∴k>1,故选:C.27.(2023秋•南开区期末)若函数的图象在每个象限内y的值随x的增大而增大,则m的取值范围是( )A.m>2B.m>﹣2C.m<2D.m<﹣2【答案】C【解答】解:∵函数的图象在每个象限内y的值随x的增大而增大,∴m﹣2<0,解得m<2.故选:C.28.(2024•顺德区二模)若点(2,3)在反比例函数的图象上,下列哪个点也在函数图象上( )A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)【答案】A【解答】解:∵点(2,3)在反比例函数的图象上,∴k=6,∵A(﹣2,﹣3)中纵横坐标之积=﹣2×(﹣3)=6,∴点A在反比例函数的图象上.故选:A.【考点6 反比例函数图象点坐标特征】29.(2024•佛山一模)已知点A(﹣2,a),B(1,b),C(3,c)在反比例函数的图象上,下列结论正确的是( )A.a<b<c B.a<c<b C.b<c<a D.c<b<a【答案】B【解答】解:∵反比例函数的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,∵点A(﹣2,a),B(1,b),C(3,c)在反比例函数的图象上,且﹣2<0<1<3,∴a<0,b>c>0,∴a<c<b,故选:B.30.(2024•怀化一模)反比例函数的图象一定经过的点是( )A.(1,﹣16)B.(2,﹣8)C.(4,﹣4)D.(8,2)【答案】D【解答】解:反比例函数图象上点的纵横坐标之积为定值16,A、1×(﹣16)=﹣16≠16,点(1,﹣16)不在反比例函数图象上,不符合题意;B、2×(﹣8)=﹣16≠16,点(2,﹣8)不在反比例函数图象上,不符合题意;C、4×(﹣4)=﹣16≠16,点(4,﹣4)不在反比例函数图象上,不符合题意;D、8×2=16,点(8,2)在反比例函数图象上,符合题意.故选:D.31.(2024•西和县二模)已知反比例函数的图象经过点(2,6),若该反比例函数的图象也经过点(﹣1,n),则n的值为( )A.﹣12B.3C.﹣6D.﹣3【答案】A【解答】解:∵反比例函数的图象经过点(2,6),点(﹣1,n),∴2×6=﹣1×n,∴n=﹣12.故选:A.32.(2024春•兴化市期中)函数y=﹣(k≠0,k为常数)的图象上有三点(﹣3,y1),(﹣2,y2),(4,y3),则函数值的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y3<y1D.y3<y1<y2【答案】D【解答】解:因为﹣|k|<0,所以函数y=﹣图象在第二、四象限.由于在第二象限,y值随x的增大而增大,(﹣3,y1),(﹣2,y2)在第二象限的双曲线的分支上,因为﹣3<﹣2,所以y1<y2,且y1,y2都是正数.在第四象限双曲线中的点,对应的y值小于0,而点(4,y3)在第四象限的双曲线的分支上,则y3<0,所以大小关系是y3<y1<y2.故选:D.【考点7 待定系数法求反比例函数解析式】33.已知点(―2,5)在反比例函数y=kx的图象上,则k的值为()A.10B.―10C.25D.―2534.在平面直角坐标系中,点A(1,4a),B(a,a+2)都在反比例函数y=kx(k≠0)的图象上,则k的值为()A.2B.4C.6D.835.已知点A(2,3)在反比例函数y=k的图象上,下列各点中也在该函数图象上的是()xA.(―2,3)B.(―1,―6)C.(1,―6)D.(―3,2)36.如图,平面直角坐标系中,四边形OABC为菱形,点A(4,3),点C在x轴正半轴,则经过点B的反比例函数的表达式为.37.在平面直角坐标系中,将点A(2,3)向下平移5个单位长度得到点B,若点B恰好在反比例函数的图象上,则此反比例函数的表达式为.【考点8 反比例函数与一次函数的交点问题】39.如图,一次函数y=ax+b与反比例函数y=k的图象交于点A(1,2),Bx的解集是()(m,―1).ax+b≥kxA.x<―2或0<x<1B.x≤―2或0<x≤1C.―2<x<0或x>1D.―2≤x<0或x≥140.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2(k2≠0)相交于xA、B两点,已知点A的坐标为(1,2),则点B的坐标()A.(―1,―2)B.(―2,―1)C.(―1,―1)D.(―2,―2)41.如图,一次函数y=x+3与反比例函数y=k相交于点A(m,4)和点B(―4,n),则关于x的x不等式x+3<k的解集是()xA.x<―4或0<x<1B.―4<x<0或x>1C.―1<x<0或x>4D.x<―1或0<x<442.如图所示是一次函数y1=kx+b和反比例函数y2=m的图象,观察图象写出当y1>y2时,xx的取值范围为()A.x<―2或0<x<3B.x<―2或3<xC.―2<x<0或3<x D.―2<x<0或0<x<3【答案】C【分析】本题考查了一次函数与反比例函数的交点问题,根据图象即可求解,掌握数形结合思想是解题的关键.【详解】解:由函数图象可得,当―2<x<0或x>3时,y1>y2,故选:C.43.在平面直角坐标系中,函数y=6―x与y=4(x>0)的图象交于点A,B,若点A的坐标为x(m,n),则宽为m,长为n的矩形的面积、周长分别为()A.4,6B.4,12C.8,6D.8,1244.如图,一次函数y=k1x+b的图象与反比例函数y=k2(x>0)的图象相交于A(1,4),Bx时,x的取值范围为()(4,1)两点,当k1x+b<k2xA.x<1B.0<x<1或x>4C.1<x<4D.x>4【答案】B【分析】本题考查反比例函数与一次函数的综合应用.找到直线在双曲线下方时,x的取值范围即可得解.45.已知反比例函数y=k与正比例函数y=ax的一个交点坐标为(2,3),则另一个交点坐标x为()A.(―2,―3)B.(―3,―2)C.―1,―12D,122【答案】A【分析】本题考查了正比例函数与反比例函数的性质,抓住二者图象均关于原点对称是解题关键.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴两图象的交点关于原点对称∵一个交点为(2,3),∴另一个交点坐标为(―2,―3)故选:A。
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
第二十六章 反比例函数26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了。
26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
专题复习:反比例函数导学案.
考点3 反比例函数的应用
3.(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()
4.(2015•佛山)若正比例函数y=k1x的图象与反比例函数y= 的图象有一个交点
坐标是(﹣2,4)
(1)求这两个函数的表达式;
(2)求这两个函数图象的另一个交点坐标.
5.(2015•南通)如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积.
.
6.(2015•珠海)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数y= 的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).
(1)求k的值;
(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.
7.(2015•贺州)已知k1<0<k2,则函数y= 和y=k2x﹣1的图象大致是()
8.(2015•湘西州)如图,已知反比例函数y= 的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
9. (2012广东)如图,直线y=2x﹣6与反比例函数y= 的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)在x轴上是否存在点C,使得AC=AB?
若存在,求出点C的坐标;若不存在,请说明理由.。