初二数学反证法
- 格式:ppt
- 大小:653.50 KB
- 文档页数:15
八年级反证法知识点反证法是一种论证方法,在数学、逻辑学、哲学以及其他领域中都得到广泛应用。
其基本思想是通过否定一个命题的逆否命题来证明原命题的正确性。
在八年级数学中,学生要学习如何应用反证法解决一些问题。
本文将介绍八年级反证法知识点,帮助学生更好地掌握这一方法。
初步了解反证法反证法的思路是假设所要证明的命题P不成立,然后推出一个矛盾的结论,进而证明命题P成立。
或者说,反证法是采用反面求证的方法,即证明“不是P”来间接证明“是P”。
例如,在证明“若a是偶数,则a²也是偶数”的时候,可以采用反证法:假设a是偶数但a²不是偶数,则a²为奇数。
但是,偶数的平方一定是偶数,与假设矛盾,因此可证明原命题成立。
如何运用反证法?反证法需要具备以下几个步骤:1. 先假设所要证明的命题P不成立,并推出一些合法的结论。
2. 分析这些结论是否有矛盾之处。
3. 如果这些结论存在矛盾,则说明所假设命题不成立,原命题P成立。
4. 如果这些结论不存在矛盾,则说明所假设的命题成立,而原命题P不成立。
举个例子,如果要用反证法证明“n²为偶数,则n也是偶数”,那么可以首先假设n是奇数。
因为奇数的平方还是奇数,所以n²也是奇数,而偶数的定义是2的倍数,不可能是奇数,因此推出结论矛盾,得证原命题成立。
需要注意的是,在运用反证法的时候,如果所得出的结论不够严密或存在漏洞,那么不能得出最终结论。
为了提高证明的严密性,可以结合其他证明方法进行运用。
例题1. 证明:不存在无理数x和y,使得x² - 2y² = 3。
解答:假设存在无理数x和y,满足x² - 2y² = 3。
考虑对这个方程两侧同时取立方根,得:x³ - 6xy² - 3y³ = 0。
注意到x和y都是无理数,而立方根是唯一的,因此x³也是无理数。
同理,3y³也是无理数。
初中数学竞赛辅导资料(初二18)反证法甲内容提要1. 反证法是一种间接的证明方法。
它的根据是原命题和逆否命题是等价命题,当一个命题不易直接证明时,釆取证明它的逆否命题。
2. 一个命题和它的逆否命题是等价命题,可表示为:A →B A B →⇔ 例如 原命题:对顶角相等 (真命题)逆否命题:不相等的角不可能是对顶角 (真命题)又如 原命题:同位角相等,两直线平行 (真命题)逆否命题:两直线不平行,它们的同位角必不相等 (真命题)3. 用反证法证明命题,一般有三个步骤:① 反设 假设命题的结论不成立(即假设命题结论的反面成立)② 归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾)③ 结论 从而得出命题结论正确例如: 求证两直线平行。
用反证法证明时① 假设这两直线不平行;② 从这个假设出发,经过推理论证,得出矛盾;③从而肯定,非平行不可。
乙例题例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行已知:如图∠1=∠2 A 1 B 求证:AB ∥CD 证明:设AB 与CD 不平行 C 2 D 那么它们必相交,设交点为M D这时,∠1是△GHM 的外角 A 1 M B ∴∠1>∠2 G这与已知条件相矛盾 2 ∴AB 与CD 不平行的假设不能成立 H∴AB ∥CD C例2.求证两条直线相交只有一个交点证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。
(从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。
但有的题目,第一步“反设”也要认真对待)。
例3.已知:m 2是3的倍数,求证:m 也是3的倍数证明:设m 不是3的倍数,那么有两种情况:m=3k+1或m= 3k+2 (k 是整数)当 m=3k+1时, m 2=(3k+1)2=9k 2+6k+1=3(3k 2+2k)+1当 m=3k+2时, m 2=(3k+2)2=9k 2+12k+4=3(3k 2+4k+1)+1即不论哪一种,都推出m 2不是3的倍数,这和已知条件相矛盾,所以假设不能成立。
初二数学反证法练习题反证法是数学中常用的一种证明方法,通过假设所要证明的结论不成立,然后通过逻辑推理来得出矛盾,进而证明原命题的方法。
在初二数学学习中,掌握反证法的运用对于解题有很大的帮助。
下面,我将为大家提供一些初二数学反证法练习题,帮助大家理解和掌握这个方法。
1. 题目:证明不存在最小正有理数。
解析:要证明不存在最小正有理数,首先假设存在最小正有理数,记为a。
然后通过推理得出矛盾,说明假设不成立。
假设存在最小正有理数a,那么可以找到一个比a小的有理数b,满足0 < b < a。
根据有理数的性质,a与b之间必存在有理数c,使得a > c > b。
然而,根据假设a是最小正有理数,c作为介于a与b之间的有理数,却不满足最小性质,与假设相矛盾。
因此,不存在最小正有理数。
2. 题目:证明根号2是无理数。
解析:要证明根号2是无理数,需要假设根号2是有理数,然后通过推理得出矛盾,说明假设不成立。
假设根号2是有理数,即根号2可以表示为一个最简分数,记为a/b,其中a和b互质。
根据有理数的性质,可以假设a与b都是正整数,且b不等于0。
由根号2 = a/b 可得 2 = (a^2)/(b^2)。
将两边平方,得到 2b^2 = a^2。
因此,根据方程2b^2 = a^2,可以得出结论:a^2是2的倍数。
那么根据整数的性质,a也是2的倍数,假设a = 2c,其中c是正整数。
将a = 2c代入原方程,得到 2b^2 = (2c)^2,化简得到 b^2 = 2c^2。
同理,根据方程b^2 = 2c^2,可以得出结论:b^2也是2的倍数,那么b也是2的倍数。
由于a和b都是2的倍数,说明a和b有共同的因子2,与假设a和b互质相矛盾。
因此,根号2不可能表示为最简分数,即根号2是无理数。
通过以上的两个反证法练习题,我们可以看到反证法在解决一些数学问题时有着重要的作用。
掌握反证法的方法和步骤,能够帮助我们更好地理解和解决数学问题。
初二数学反证法在初二数学的学习中,我们会接触到一种独特而有趣的证明方法——反证法。
反证法就像是数学世界中的一场“思维冒险”,它以一种与众不同的方式帮助我们解决问题、验证结论。
那么,什么是反证法呢?简单来说,反证法就是先假设要证明的命题不成立,然后从这个假设出发,通过一系列合理的推理和计算,得出一个与已知条件、定理、公理或者明显事实相矛盾的结果。
这个矛盾的出现就说明我们最初的假设是错误的,从而间接证明了原命题是正确的。
比如说,我们要证明“在一个三角形中,最多只能有一个直角”。
如果直接证明,可能会感觉有些无从下手。
但如果用反证法,我们就先假设在一个三角形中可以有两个或三个直角。
假设一个三角形中有两个直角,那么这两个直角所对应的角度之和就是 180 度。
而三角形的内角和是 180 度,这样第三个角就没有度数了,这显然不符合三角形的定义,产生了矛盾。
所以假设不成立,从而证明了在一个三角形中最多只能有一个直角。
再比如,证明“根号 2 是无理数”。
假设根号 2 是有理数,那么它可以表示为一个分数,即根号 2 = p / q(p 和 q 是互质的整数,且 q 不等于 0)。
两边平方得到 2 = p²/ q²,即 p²= 2q²。
这意味着 p²是偶数,那么 p 也必然是偶数。
设 p = 2m(m 是整数),代入上式得到4m²= 2q²,即 2m²= q²,这又说明 q 也是偶数。
p 和 q 都是偶数,与p 和 q 互质矛盾。
所以假设不成立,从而证明了根号 2 是无理数。
反证法在数学证明中有着广泛的应用,它不仅能够帮助我们解决一些直接证明较为困难的问题,还能锻炼我们的逻辑思维能力和推理能力。
在使用反证法时,需要注意一些要点。
首先,我们的假设必须要合理,要基于原命题的条件和结论进行假设。
其次,在推理过程中,每一步都要严谨、合理,确保能够得出明确的矛盾。
初中数学反证法简单例子初中数学中的反证法是一种常用的证明方法,通过假设所要证明的命题不成立,然后推导出与已知事实相矛盾的结论,从而证明原命题一定成立。
下面我们来列举一些初中数学中常用的反证法的简单例子。
1. 命题:不存在任意两个不相等的正整数,使得它们的和等于它们的积。
假设存在两个不相等的正整数a和b,满足a + b = ab。
由于a和b不相等,不妨设a > b,那么有a > a/2 > b。
根据不等式性质,我们可以得到2a > a + b = ab,即2 > b。
但是正整数b不可能小于2,与假设矛盾。
因此,不存在任意两个不相等的正整数满足该条件。
2. 命题:存在一个无理数x,使得x的平方等于2。
假设不存在这样的无理数x,即对于任意实数x,x的平方不等于2。
那么我们可以考虑一个特殊的实数y,即y = √2。
根据无理数定义,√2不是有理数,因此是一个无理数。
而根据假设,y的平方不等于2,即y^2 ≠ 2。
然而,这与y = √2相矛盾。
因此,存在一个无理数x,使得x的平方等于2。
3. 命题:对于任意正整数n,2n不等于n的平方。
反证法证明:假设存在一个正整数n,使得2n = n^2。
可以将等式两边同时除以n,得到2 = n。
然而,这与n是一个正整数相矛盾。
因此,对于任意正整数n,2n不等于n的平方。
4. 命题:对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法证明:假设存在一个正整数n,使得n^2 + 3n + 2 = m^2,其中m是一个正整数。
可以将等式变形为n^2 + 3n + 2 - m^2 = 0。
这是一个关于n的二次方程,可以使用求根公式解得n = (-3 ± √(9 - 8(2 - m^2))) / 2。
由于n是一个正整数,因此根号内的值必须为正整数。
然而,当m取不同的正整数值时,根号内的值不可能为正整数,因此假设不成立。
因此,对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法在初中数学解题中的运用分析反证法是数学中一种重要的证明方法,它通常在解决数学问题时发挥着重要的作用。
在初中数学中,我们经常会遇到一些需要用到反证法才能解决的问题,比如证明某个命题的真假,或者推导出一些结论。
在本文中,我们将对反证法在初中数学解题中的运用进行分析,并举例说明其具体运用。
让我们简单了解一下什么是反证法。
反证法是一种证明方法,它采用反证的思路来证明一个命题的真假。
通常,当我们试图证明一个命题时,如果直接使用证明方法无法得出结论,我们可以尝试采用反证法。
反证法的基本思路是,假设命题的否定是成立的,然后通过推导出矛盾的结论,从而得出命题的原命题是成立的结论。
让我们来看一个简单的例子,证明根号2是无理数。
要证明根号2是无理数,首先我们可以假设根号2是有理数,即可以表示为两个整数的比值,即根号2 = m/n,其中m和n 是整数,并且它们没有公因数。
然后我们对等式根号2 = m/n 进行平方,可以得到 2 =m^2/n^2。
接着我们可以得到 m^2 = 2n^2。
这时我们可以观察到m^2是2的倍数,那么m一定也是2的倍数,即m=2k。
代入m=2k,我们可以得到 (2k)^2 = 2n^2,简化后得到 4k^2 = 2n^2,再简化得到 2k^2 = n^2。
这说明n^2也是2的倍数,那么n也一定是2的倍数。
所以m和n同时都是2的倍数,这与我们假设的m和n互质相矛盾。
所以我们可以得出结论,假设根号2是有理数,会导致矛盾,所以根号2是无理数。
在这个例子中,我们使用了反证法来证明根号2是无理数。
我们假设根号2是有理数,然后通过四则运算推导出矛盾的结论,从而得出结论,根号2是无理数。
另外一个例子,我们来看一个关于方程的例子,证明方程 x^2 + 5x + 6 = 0 的根不是有理数。
要证明方程的根不是有理数,我们可以采用反证法。
首先我们假设方程有有理数根,即可以表示为p/q,其中p和q是整数,并且它们没有公因数。
初二数学反证法练习题反证法是一种常用的数学证明方法,它通过推导出与已知条件相矛盾的结论来证明一个命题的真假。
在初二数学学习中,反证法常常被用于解决一些复杂的问题。
本文将介绍一些初二数学中常见的反证法练习题,帮助同学们熟悉并掌握反证法的应用。
题目一:证明“根号2是无理数”。
解析:要证明根号2是无理数,首先我们假设根号2是有理数,并将其表示为p/q,其中p和q是互质的整数(即最大公约数为1)。
那么我们可以得到等式2 = (p/q)^2,即2q^2 = p^2。
由此可知,p^2一定是2的倍数,因此p也一定是2的倍数。
令p = 2k(k为整数),则原等式可以写成2q^2 = (2k)^2,简化得q^2 = 2k^2。
同样地,我们可以得出q也是2的倍数。
但这与我们最初假设的“p 和q是互质的整数”相矛盾。
因此,假设错误,根号2不可能表示为有理数,即根号2是无理数。
题目二:证明“开方后是无理数的数的平方是无理数”。
解析:我们假设存在一个数x,它的开方后是无理数,即√x是无理数。
那么我们可以假设√x是有理数,即√x = p/q,其中p和q为整数,且p/q为最简分数。
根据已知条件,我们有x = (√x)^2 = (p/q)^2 = p^2/q^2。
将x的表达式代入上式中,得到x = p^2/q^2。
由此可知,p^2和q^2均为x的因数。
根据因数的性质,我们可以得知p也是x的因数,且q也是x的因数。
这与我们最初的假设“p和q为最简分数”相矛盾,因此假设错误,开方后是无理数的数的平方一定是无理数。
题目三:证明“3不能表示成形如4k+1的整数的平方”。
解析:我们假设存在一个整数m,使得m^2 = 4k + 1,其中k为整数。
那么我们可以得到等式m^2 ≡ 1 (mod 4),即m^2除以4的余数为1。
考虑整数的平方的情况,我们可以得知一个整数的平方只可能是0或1(对4取余)。
根据这个性质,我们可以考虑m的两种情况:情况一:m为偶数假设m = 2n,其中n为整数。