不定积分公式大全24个
- 格式:doc
- 大小:160.00 KB
- 文档页数:3
不定积分的基本公式和运算法则直接积分法一、不定积分的基本公式和运算法则1.基本公式:- 常数公式:$\int c\,dx = cx + C$,其中c为常数,C为常数。
- 幂函数公式:$\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中n为非零常数,C为常数。
- 指数函数公式:$\int e^x\,dx = e^x + C$,其中C为常数。
- 对数函数公式:$\int \frac{1}{x}\,dx = \ln,x, + C$,其中C为常数。
2.基本运算法则:- 常数倍法则:$\int kf(x)\,dx = k\int f(x)\,dx$,其中k为常数。
- 和差法则:$\int (f(x) \pm g(x))\,dx = \int f(x)\,dx \pm \int g(x)\,dx$。
- 乘法法则:$\int u \cdot v\,dx = \int u\,dv + \int v\,du$。
- 除法法则:$\int \frac{u}{v}\,dx=i\ln,v,+j\int\frac{dv}{v}$。
直接积分法是指根据不定积分的基本公式和运算法则,直接进行积分计算的方法。
下面介绍一些常见的直接积分法:1.用代换法进行积分:-根据被积函数的形式,选择一个合适的代换,使得原函数的形式更简单。
-对原函数进行代换,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
-将上述结果带入到原函数中,得到最终的积分结果。
2.用分部积分法进行积分:-对于被积函数的乘积形式,选择一个函数进行求导,选择另一个函数进行积分。
- 根据分部积分公式$\int u \,dv = uv - \int v \,du$,进行积分计算。
3.用换元法进行积分:-对于被积函数的形式,选择一个新的变量代替原来的变量,使得积分变得更简单。
-对原函数进行换元,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
不定积分的15个基本公式不定积分是微积分中的一个重要概念,它是对一个函数的不定积分时求出它的原函数。
在计算不定积分时,有一些基本公式可以帮助我们简化计算。
下面是关于不定积分的15个基本公式:1. 常数公式:对于任意常数k,∫kdx = kx + C,其中C为任意常数。
2. 幂函数公式:对于任意常数n,∫x^n dx = (x^(n+1))/(n+1) + C,其中C为任意常数。
3. 倒数公式:∫1/x dx = ln|x| + C,其中C为任意常数。
4. 正弦函数公式:∫sin(x) dx = -cos(x) + C,其中C为任意常数。
5. 余弦函数公式:∫cos(x) dx = sin(x) + C,其中C为任意常数。
6. 正切函数公式:∫tan(x) dx = -ln|cos(x)| + C,其中C为任意常数。
7. 余切函数公式:∫cot(x) dx = ln|sin(x)| + C,其中C为任意常数。
8. 指数函数公式:∫e^x dx = e^x + C,其中C为任意常数。
9. 对数函数公式:∫ln(x) dx = xln(x) - x + C,其中C为任意常数。
10. 反正弦函数公式:∫arcsin(x) dx = xarcsin(x) + sqrt(1-x^2) + C,其中C为任意常数。
11. 反余弦函数公式:∫arccos(x) dx = xarccos(x) - sqrt(1-x^2) + C,其中C为任意常数。
12. 反正切函数公式:∫arctan(x) dx = xarctan(x) - ln|1+x^2| + C,其中C为任意常数。
13. 反余切函数公式:∫arccot(x) dx = xarccot(x) + ln|1+x^2| + C,其中C为任意常数。
14. 双曲正弦函数公式:∫sinh(x) dx = cosh(x) + C,其中C为任意常数。
15. 双曲余弦函数公式:∫cosh(x) dx = sinh(x) + C,其中C为任意常数。
常用的不定积分公式
不定积分是微积分中的一个重要概念,它是求解函数的原函数的过程。
常用的不定积分公式是一些基本函数的积分结果,它们是经过验证和推导得到的,可以用来简化积分计算。
以下是一些常用的不定积分公式:
1. 常数函数的不定积分公式:∫k dx = kx + C,其中k为常数,C为任意常数。
2. 幂函数的不定积分公式:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n 不等于-1,C为任意常数。
3. 指数函数的不定积分公式:∫e^x dx = e^x + C,其中C为任意常数。
4. 三角函数的不定积分公式:
-∫sin(x) dx = -cos(x) + C,其中C为任意常数。
-∫cos(x) dx = sin(x) + C,其中C为任意常数。
5. 反三角函数的不定积分公式:
-∫1/(√(1-x^2)) dx = arcsin(x) + C,其中C为任意常数。
-∫1/(1+x^2) dx = arctan(x) + C,其中C为任意常数。
6. 对数函数的不定积分公式:∫1/x dx = ln|x| + C,其中C为任意常数,x不等于0。
这些是常用的不定积分公式的一部分,它们可以用于解决各种函数的积分问题。
需要注意的是,在具体的积分计算过程中,还需要运用换元法、分部积分等积分技巧来处理复杂的积分表达式。
Ch4、不定积分§1、不定积分的概念与性质1、 原函数与不定积分定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。
① 连续函数一定有原函数;② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()(''x f x F C x F ==+③ 的任意两个原函数仅相差一个常数。
事实上,由[]0)()()()()()('2'1'11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。
定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为⎰dx x f )(,⎰-积分号,-)(x f 被积函数,-x 积分变量。
显然C x F dx x f +=⎰)()(例1、 求下列函数的不定积分①⎰+=C kx kdx②⎰⎪⎩⎪⎨⎧-=+-≠++=+1ln 1111μμμμμC x C x dx x2、 基本积分表(共24个基本积分公式)3、 不定积分的性质①[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()( ②⎰⎰≠=)0()()(k dxx f k dx x kf例2、 求下列不定积分①⎰⎰+-=++-==+--C x C x dx x x dx 11)2(11)2(22②⎰⎰+=++-==+--C x C x dx x xdx 21)21(11)21(21③⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x x arctan 3arcsin 5131522⑤()⎰⎰⎰++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2⑥⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 22222222⑦()⎰⎰+--=-=C x x dx x dx x cot 1csc cot 22§2、不定积分的换元法一、 第一类换元法(凑微分法) 1、()()()()b ax d adx b ax d b ax f a dx b ax f +=++=+⎰⎰1,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin②()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121 ③()())20(arctan 111222Ca x a a x a x d a x a dx +⎪⎭⎫ ⎝⎛=+=+⎰⎰④()())23(arcsin 1222Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰2、()()nn n n n n dx dx x dx x f ndx x x f ==--⎰⎰11,1即 例2、求不定积分①()()()()C x C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰232121221221221311112111211②()C e x d e dx e x x x x +-=--=---⎰⎰333323131 ③⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 122 ④⎰⎰⎪⎪⎭⎫ ⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos3、,tan sec ,sin cos ,cos sin ,,ln 12x d xdx x d xdx x d xdx de dx e x d dx xx x ==-===,,arcsin 11,arctan 11,sec tan sec 222222x a d dx x a xx d dx x x d dx x x d xdx x ±±=±=-=+=例3、 求不定积分①⎰⎰⎰+=+-=-==)16(sec ln cos ln cos cos cos sin tan Cx C x x xd dx x x xdx ②⎰⎰⎰+-=+===)17(cos ln sin lnsin cos cot Cx C x xd dx x xdx⑤()⎰⎰+==C x xdx x x ln ln ln ln⑥()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2 ⑦()()⎰⎰++=++=+C e ee d dx e e x xxx x 1ln 111 ⑧()()⎰⎰++-=+-+=+C e x ee e e dx xx x x x 1ln 111 ⑨()⎰⎰+=+=+C e e de dx e e xx x x x arctan 1122 ⑩()C e x d e dx e xx x x x +-=+--=++-+-+-⎰⎰2122121211例4、求不定积分①⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a a x dx )()(21112122 )22)(21(ln 1C ax +-=④()C x x x xd x dx xdx +-=⋅-==⎰⎰⎰2sin 412122cos 22221sin 2⑤()⎰⎰+--=+=C x x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin⑥⎰⎰⎰⎰+====C x x x d x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot⑦C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222 ⑧()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ二、 第二类换元法 1、三角代换例1、dx x a ⎰-22解:令)cos (sin t a t a x 或=,则tdt a dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C ax a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42 C x a x a x a +-+=22221arcsin 21 例2、()()C axa x a x d x a dx +=-=-⎰⎰arcsin 1222解:令t a x sin =原式=⎰⎰+=+==C axC t dt t a tdt a arcsin cos cos例3、⎰+22xa dx解:令)cot (tan t a t a x 或=,则tdt a dx t a x a 222sec ,sec ==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==C a x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec ())24(ln 22C a x x +++=例4、⎰+42x x dx解:令)cot (tan t a t a x 或=,则tdt dx t x 22sec 2,sec 24==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==C a x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec 例5、⎰-22ax dx解:令)csc (sec t a t a x 或=,则tdt t a dx t a a x tan sec ,tan 22==-原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛-+=++==c aa x a x C t t tdt t a tdtt a 22ln tan sec ln sec tan tan sec ())25(ln 22C a x x +-+=例6、⎰-dx xx 92 解:令t a x sec =,则tdt t dx t x tan sec 3,tan 392==- 原式=()()⎰⎰⎰+-=-==⋅C t t t tdt tdt t tttan 31sec 3tan 3tan sec 3sec 3tan 322 C x x C x x +--=+⎪⎪⎭⎫ ⎝⎛--=3arccos 393arccos 39322 小结:)(x f 中含有⎪⎪⎩⎪⎪⎨⎧-+-222222a x a x x a 可考虑用代换⎪⎩⎪⎨⎧===t a x t a x t a x sec tan sin2、无理代换例7、⎰++311x dx解:令dt t dx t x t x 2333,1,1=-==+则原式=()⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛++-=⎪⎭⎫ ⎝⎛++-=++-=+C t t t dt t t dt t t t dt t 1ln 231113111313222 ()()C x x x +++++-+=333211ln 313123 例8、()⎰+31xx dx解:令dt t dx t x t x 5666,,===则原式=()()⎰⎰⎰+-=⎪⎭⎫ ⎝⎛+-=+=+C t t dt t dt t t t t dt t arctan 611161616222235 ()C x x +-=66arctan 6例9、⎰+dx xxx 11解:令()22212,11,1--=-==+t tdtdx t x t x x 则原式=()()⎰⎰⎰+⎪⎭⎫ ⎝⎛+-+-=⎪⎭⎫ ⎝⎛-+-=--=⎪⎪⎭⎫ ⎝⎛---C t t t dt t dt t t t tdtt t 11ln 212111212121222222 C x x xx x x +++-+-+-=11ln 12例10、⎰+xedx 1解:令()12,1ln ,122-=-==+t tdtdx t x t e x 则 原式⎰⎰+++-+=++-⋅=-=-⋅=C e e C t t t dt dt t t t x x 1111ln 11ln 21212121224、 倒代换例11、()⎰+46x x dx解:令()2676,4111,1tdtdx t t x x t x -=+=+=则 原式()()C x x C t t t d t dt t ++=++-=++-=+-=⎰⎰4ln 24114ln 2411414241416666666 ()C x x ++-=4ln 241ln 416§3、分部积分法分部积分公式:()()V U UV V U V U V U UV '-'=''+'=',()⎰⎰⎰'-'='Vdx U dx UV dx V U ,故⎰⎰-=VdU UV UdV(前后相乘)(前后交换)例1、⎰xdx x cos⎰⎰++=-==C x x x xdx x x x xd cos sin sin sin sin 例2、⎰dx xe x⎰⎰+-=-==C e xe dx e xe xde x x x x x例3、⎰xdx ln ⎰⎰+-=⋅-=-=C x x x dx xx x x x xd x x ln 1ln ln ln或解:令t e x t x ==,ln原式C x x x C e te dt e te tde t t t t t +-=+-=-==⎰⎰ln 例4、⎰xdx arcsin()⎰⎰⎰+-+=--+=--=-=C x x x xx d x x dxxx x x x xd x x 22221arcsin 1121arcsin 1arcsin arcsin arcsin或解:令t x t x sin ,arcsin ==原式C x x x C t t t tdt t t t td +-+=++=-==⎰⎰21arcsin cos sin sin sin sin 例5、⎰xdx e x sin()⎰⎰⎰⎰⎰--=+-=-=-==xdxe x x e x d e x e x e xde x e xdx e x e xde xxxxxxx x x x sin cos sin cos cos sin cos sin cos sin sin故()C x x e xdx e xx +-=⎰cos sin 21sin 例6、⎰dx xx2cos C x x x xdx x x x xd +-=-==⎰⎰sec ln tan tan tan tan 例7、()⎰++dx x x 21ln()()()Cx x x x dxxx x x x dx xx x xx x x x ++-++=+-++=++++⋅-++=⎰⎰222222211ln 11ln 1111ln§4、两种典型积分一、有理函数的积分有理函数01110111)()()(b x b x b x b a x a x a x a x Q x P x R m m m m n n n n ++++++++==---- 可用待定系数法化为部分分式,然后积分。
不定积分的四则运算公式在数学中,不定积分是一种求解函数的原函数的操作。
也就是说,当对一个函数进行不定积分后,得到的是一个包含任意常数的函数集合。
不定积分的四则运算公式是指对不定积分进行加减乘除的操作规则。
一、加法公式:对于两个函数的和的不定积分,有以下公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx二、减法公式:对于两个函数的差的不定积分,有以下公式:∫(f(x) - g(x))dx = ∫f(x)dx - ∫g(x)dx三、乘法公式:对于两个函数的乘积的不定积分,有以下公式:∫f(x)g(x)dx = ∫u(x)dv(x) = u(x)v(x) - ∫v(x)du(x)其中,u(x)和v(x)是函数f(x)和g(x)的原函数。
此公式是通过积分部分法得到的。
四、除法公式:对于两个函数的商的不定积分,有以下公式:∫f(x)/g(x)dx = ∫[u(x) + v(x)]/g(x)dx = ∫u(x)/g(x)dx +∫v(x)/g(x)dx其中,u(x)和v(x)是函数f(x)和g(x)的原函数。
此公式是通过将除法转化为乘法再应用乘法公式得到的。
需要注意的是,在进行乘法和除法的不定积分时,对被积函数进行合适的变换或引入中间变量来简化计算。
五、分配律公式:在不定积分的四则运算中,也可以应用分配律。
对于表达式的不定积分,有以下公式:∫(f(x) + g(x))h(x)dx = ∫f(x)h(x)dx + ∫g(x)h(x)dx这个公式可以用于将一个积分问题拆分为多个较简单的积分问题,以简化计算过程。
六、合并同类项公式:在计算积分过程中,有时会遇到求解多个相同形式的不定积分。
可以使用合并同类项的公式进行简化。
如下所示:∫(a f(x) + b f(x))dx = (a + b) ∫f(x)dx这个公式将多个相同形式的函数合并成一个函数,并在常数项上进行求和运算。
以上是不定积分的四则运算公式,这些公式是对不定积分进行运算时常用的规则。
常见的不定积分(公式大全)一、基本积分公式1. $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $,其中 $ n \neq 1 $。
2. $ \int dx = x + C $。
3. $ \int a dx = ax + C $,其中 $ a $ 为常数。
4. $ \int e^x dx = e^x + C $。
5. $ \int \ln x dx = x \ln x x + C $。
6. $ \int \frac{1}{x} dx = \ln |x| + C $。
7. $ \int \sin x dx = \cos x + C $。
8. $ \int \cos x dx = \sin x + C $。
9. $ \int \tan x dx = \ln |\cos x| + C $。
10. $ \int \cot x dx = \ln |\sin x| + C $。
二、换元积分法1. $ \int f(ax + b) dx = \frac{1}{a} \int f(ax + b) d(ax + b) $。
2. $ \int f(x^n) dx = \frac{1}{n} \int f(x^n) d(x^n) $。
3. $ \int f(\sqrt{ax^2 + bx + c}) dx = \frac{1}{a} \int f(\sqrt{ax^2 + bx + c}) d(\sqrt{ax^2 + bx + c}) $。
4. $ \int f(\sqrt{a^2 x^2}) dx = \frac{1}{a} \intf(\sqrt{a^2 x^2}) d(\sqrt{a^2 x^2}) $。
5. $ \int f(\sqrt{x^2 a^2}) dx = \frac{1}{a} \intf(\sqrt{x^2 a^2}) d(\sqrt{x^2 a^2}) $。
三、分部积分法1. $ \int u dv = uv \int v du $。
常用的24个不定积分公式及证明一、基本积分公式。
1. ∫ kdx = kx + C(k为常数)- 证明:根据求导公式(kx + C)'=k,所以∫ kdx = kx + C。
2. ∫ x^n dx=frac{x^n + 1}{n+1}+C(n≠ - 1)- 证明:对frac{x^n + 1}{n+1}+C求导,根据求导公式(x^m)'=mx^m - 1,可得(frac{x^n+1}{n + 1}+C)'=frac{(n + 1)x^n+1-1}{n+1}=x^n,所以∫ x^n dx=frac{x^n +1}{n+1}+C(n≠ - 1)。
3. ∫(1)/(x)dx=lnx+C- 证明:当x>0时,(ln x)'=(1)/(x);当x < 0时,[ln(-x)]'=(1)/(-x)×(-1)=(1)/(x)。
所以∫(1)/(x)dx=lnx+C。
4. ∫ e^x dx=e^x+C- 证明:因为(e^x)' = e^x,所以∫ e^x dx=e^x+C。
5. ∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)- 证明:设y = a^x,则ln y=xln a,y = e^xln a。
对y=(a^x)/(ln a)+C求导,((a^x)/(ln a)+C)'=(1)/(ln a)× a^xln a=a^x,所以∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)。
6. ∫sin xdx=-cos x + C- 证明:因为(-cos x)'=sin x,所以∫sin xdx =-cos x+C。
7. ∫cos xdx=sin x + C- 证明:因为(sin x)'=cos x,所以∫cos xdx=sin x + C。
8. ∫(1)/(cos^2)xdx=tan x + C- 证明:因为(tan x)'=sec^2x=(1)/(cos^2)x,所以∫(1)/(cos^2)xdx=tan x + C。
不定积分的四则运算公式1.加法运算:设函数f(x)和g(x)在区间上连续,则它们的和函数F(x)的不定积分满足如下公式:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx + C2.减法运算:设函数f(x)和g(x)在区间上连续,则它们的差函数F(x)的不定积分满足如下公式:∫[f(x) - g(x)]dx = ∫f(x)dx - ∫g(x)dx + C3.乘法运算:设函数f(x)和g(x)在区间上连续,则它们的乘积函数F(x)的不定积分满足如下公式:∫[f(x) * g(x)]dx ≠ ∫f(x)dx * ∫g(x)dx乘法的不定积分不能直接用乘法法则,而是需要通过换元法、分部积分等方法来计算。
4.除法运算:设函数f(x)和g(x)在区间上连续,且g(x)不等于0,则它们的商函数F(x)的不定积分满足如下公式:∫[f(x) / g(x)]dx ≠ ∫f(x)dx / ∫g(x)dx除法的不定积分也不能直接用除法法则,而是需要通过换元法、分部积分等方法来计算。
此外,还有一些辅助的运算公式可以用于简化不定积分的计算:5.常数倍公式:如果k为常数,则有:∫k * f(x)dx = k * ∫f(x)dx + C6.积分换元公式:设y=g(x)是函数g的一个可导函数,而f是g的一个原函数,则有:∫f(g(x)) * g'(x)dx = F(g(x)) + C其中,F表示函数f的一个原函数。
7.分部积分公式:设函数u(x)和v(x)在区间上连续且可导,则有如下公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx + C以上是不定积分的四则运算公式及其辅助公式。
在实际计算中,根据具体的函数表达式,可以灵活运用这些公式来简化不定积分的计算。
不定积分公式大全24个图解
一、分段函数的积分
1、线性函数:
当函数为线性函数时,即形如f(x)=ax+b,其积分公式为:
∫f(x)dx=ax^2/2+bx+C(C为任意常数)
图解如下:
2、二次函数:
当函数为二次函数时,即形如f(x)=ax^2+bx+c,其积分公式为:
∫f(x)dx=ax^3/3+bx^2/2+cx+C(C为任意常数)
图解如下:
3、三次函数:
当函数为三次函数时,即形如f(x)=ax^3+bx^2+cx+d,其积分公式为:∫f(x)dx=ax^4/4+bx^3/3+cx^2/2+dx+C(C为任意常数)
图解如下:
4、四次函数:
当函数为四次函数时,即形如f(x)=ax^4+bx^3+cx^2+dx+e,其积分
公式为:
∫f(x)dx=ax^5/5+bx^4/4+cx^3/3+dx^2/2+ex+C(C为任意常数)
图解如下:
二、三角函数的积分
1、正弦函数:
当函数为正弦函数时,即形如f(x)=sin(x),其积分公式为:∫sin(x)dx=-cos(x)+C(C为任意常数)
图解如下:
2、余弦函数:
当函数为余弦函数时,即形如f(x)=cos(x),其积分公式为:∫cos(x)dx=sin(x)+C(C为任意常数)
图解如下:
3、正切函数:
当函数为正切函数时,即形如f(x)=tan(x),其积分公式为:∫tan(x)dx=ln,sec(x),+C(C为任意常数)
图解如下:
4、余切函数:
当函数为余切函数时,即形如f(x)=cot(x)。
不定积分公式大全基本公式有哪些不定积分是微积分中的一个重要概念,用于求函数的原函数。
在求不定积分时,由于原函数可以以任意常数为常数项,所以不定积分也可以表示为“∫f(x)dx=F(x)+C”,其中F(x)为f(x)的原函数,C为任意常数。
下面列举了一些常见的基本求不定积分的公式:1. 一次幂和:∫x^n dx = (n+1)x^(n+1)/(n+1)+C,其中n为实数,n≠-12. 常数乘积法则:∫c*f(x) dx = c*∫f(x) dx,其中c为常数。
3. 常数倍法则:∫(c*f(x)+d*g(x)) dx = c*∫f(x) dx + d*∫g(x) dx,其中c和d为常数。
4. 幂函数的积分:∫x^α dx = x^(α+1)/(α+1)+C,其中α≠-15. 正弦函数和余弦函数的积分:∫sin(x) dx = -cos(x)+C,∫cos(x) dx = sin(x)+C。
6. 指数函数的积分:∫e^x dx = e^x + C。
7. 自然对数函数的积分:∫1/x dx = ln,x,+C。
8. 倒数函数的积分:∫1/(x^2+a^2) dx = (1/a)arctan(x/a)+C,其中a不等于0。
9. 正切函数和余切函数的积分:∫sec^2(x) dx = tan(x)+C,∫csc^2(x) dx = -cot(x)+C。
10. 反正弦函数的积分:∫1/√(1-x^2) dx = arcsin(x)+C。
11. 反余弦函数的积分:∫1/√(1-x^2) dx = arccos(x)+C。
12. 反正切函数的积分:∫1/(1+x^2) dx = arctan(x)+C。
13. 积分的换元法:若∫f(g(x))*g'(x) dx = F(g(x))+C,则∫f(u) du = F(u)+C,其中u=g(x)。
14. 分部积分法:∫u*dv = u*v - ∫v*du,其中u和v都是函数,可以通过选择合适的u和dv来简化不定积分的计算。
不定积分公式大全24个
不定积分公式大全24个具体如下:
1、∫x^ndx=x^(n+1)/(n+1) +C, 其中n≠-1.
2、∫1/xdx=ln|x|+C, 即当n=-1时的幂函数类型.
3、∫x/(a+bx)dx=(bx-aln|a+bx|)/b^2+C.
4、∫x/(a+bx)^2dx=(a/(a+bx)+ln|a+bx|)/b^2+C.
5、∫x^2/(a+bx)dx=(-bx(2a-bx)/2+a^2ln|a+bx|)/b^3+C.
6、∫x^2/(a+bx)^2dx=(bx-a^2/(a+bx)-2aln|a+bx|)/b^3+C.
7、∫
x^2/(a+bx)^3dx=(2a/(a+bx)-a^2/(2(a+bx)^2)+ln|a+bx|)/b^3 +C.
8、∫1/(x(a+bx))dx=ln|x/(a+bx)| /a+C.
含有二次二项式的平方和差类型有如下的基本公式:(其中结果出现反三角函数的也可以归为反三角函数类型)
9、∫1/(a^2+x^2)dx=arctan(x/a) /a+C. 特别地,当a=1时,∫1/(1+x^2)dx=arctanx+C.
10、∫1/(x^2-a^2)dx= -∫1/(a^2-x^2)dx= ln|(x-a)/(x+a)|
/(2a)+C.
11、∫1/根号(a^2-x^2)dx= arcsin (x/a)+C. 特别地,当a=1时,∫1/根号(1-x^2)dx= arcsinx +C.
12、∫1/(x根号(x^2-a^2))dx= arccos (a/x) /a+C. 特别地,当a=1时,∫1/(x根号(x^2-1))dx= arccos(1/x)+C.
三角函数类型不定积分公式有很多,以下列举出最常见的,它们都是成对出现的:
13、∫sinxdx=-cosx+C;∫cosxdx=sinx+C.
14、∫(sinx)^2dx=(x-sinxcosx)/2+C;∫
(cosx)^2dx=(x+sinxcosx)/2+C.
15、∫xsinxdx=sinx-xcosx+C;∫xcosxdx=cosx+xsinx+C.
16、∫tanxdx=-ln|cosx|+C;∫cotxdx=ln|sinx|+C.
17、∫(tanx)^2dx=-x+tanx+C;∫(cotx)^2dx=-x-cotx+C.
18、∫secxdx=ln|secx+tanx|+C; ∫cscxdx=ln|cscx-cotx|+C.
19、∫(secx)^2dx=tanx+C;∫(cscx)^2dx=-cotx+C.
同样也有反三角函数类型的不定积分公式:
20、∫arcsinxdx=xarcsinx+根号(1-x^2)+C;∫
arccosxdx=xarccosx-根号(1-x^2)+C
21、∫arctanxdx=xarctanx-ln(1+x^2) /2+C;∫
arccotxdx=xarccotx+ln(1+x^2) /2+C.
22、∫arcsecxdx=xarcsecx-ln|x+根号(x^2-1)|+C;∫arccscxdx=xarccscx+ln|x+根号(x^2-1)|+C.
最后是指数函数和对数函数形式的不定积分公式:
23、∫a^xdx=a^x /lna+C, 特别地,当a=e时,∫exdx=ex+C.
24、∫lnxdx=x(lnx-1) +C.。