衡水中学高中数学理复习测试42等比数列含答案
- 格式:doc
- 大小:970.50 KB
- 文档页数:3
高二数学等比数列试题答案及解析1.在等比数列中,,公比.若,则=( )A.9B.10C.11D.12【答案】C【解析】根据等比数列的通项公式,有,所以【考点】本小题主要考查等比数列通项公式的应用,考查学生的运算能力.点评:等差数列和等比数列是两种常考的数列,它们的基本运算要加以重视.2.已知实数列-1,x,y,z,-2成等比数列,则xyz等于()A.-4B.±4C.-2D.±2【答案】C【解析】.3.在等比数列中,且,则的值为()A.16B.27C. 36D. 81【答案】B【解析】主要考查等比数列的概念、通项公式。
解:设公比为q,因为,即,所以,q=3,从而=,=27,故选B。
4.在等比数列中,已知,则= ()A.8B.-8C.D. 16【答案】A【解析】主要考查等比数列的概念、通项公式。
解:因为,所以,,,故选A。
5.若正项等比数列的公比为,且,成等差数列,则。
【答案】【解析】主要考查等差、等比数列的概念及其通项公式。
解:因为成等差数列,所以,即,所以,解得,所以=。
6.已知等差数列的前4项和为10,且成等比数列,求数列的通项公式。
【答案】数列的通项公式为或。
【解析】主要考查等比数列的概念、通项公式。
解:设数列的首项为,公差为,则,则,由于成等比数列,所以,化简得所以解得或所以数列的通项公式为或。
7.在等比数列中,,则公比 .【答案】【解析】因为,解之得.8.在数列{an }中,其前n项和Sn=,若数列{an}是等比数列,则常数a的值为.【答案】【解析】当n=1时,,因为{an}是等比数列,所以.9.设椭圆C:与直线相交于P,Q两点,且(O为坐标原点)(1)求证:等于定值(2)若椭圆的离心率,求椭圆长轴长的取值范围【答案】(1)见解析;(2).【解析】(Ⅰ)证明:消去得设点,则,由,,即化简得,则即,故(Ⅱ)解:由化简得由得,即故椭圆的长轴长的取值范围是。
10.某工厂月生产总值的平均增长率为q,则该工厂的年平均增长率为()A.q B.12qC.(1+q)12D.(1+q)12-1【答案】D【解析】设第一年第1个月的生产总值为1,公比为(1+q),该厂一年的生产总值为S1=1+(1+q)+(1+q)2+…+(1+q)11.则第2年第1个月的生产总值为(1+q)12,第2年全年生产总值S2=(1+q)12+(1+q)13+…+(1+q)23=(1+q)12S1,所以该厂生产总值的年平均增长率为=(1+q)12-1.本题选择D选项.11.(1)设数列满足且,求的通项公式;(2)数列的前项和,求数列的通项公式.【答案】(1) (2)【解析】(1)由可得为等差数列,于是,从而可得结果;(2)当时,直接由前项和求首项,当大于等于时,由求解即可得结果.试题解析:(1)∵,∴数列是公差为1的等差数列,∴.∴.(2)当时,;当时,.∴【方法点睛】本题主要考查等差数列的定义及通项公式、数列通项与前项和之间的关系以及公式的应用,属于中档题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.12.设是公比为正数的等比数列,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)an=2n(2)2n+1+n2-2.【解析】求等差数列或等比数列的通项公式基本方法是列方程组解方程组,设出等比数列的首项与公比,借助等比数列通项公式列方程组,解方程组得出首项与公比,写出通项公式,根据首项与公差写出通项公式,利用分组求和法求出数列的和,一组利用等差数列前n项和公式求和,另一组采用等比数列前n项和公式求和,另外注意运算的准确性.试题解析:(1)设q为等比数列{an }的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{an }的通项为an=2·2n-1=2n(n∈N*)(2)Sn=.【点睛】求等差数列或等比数列的通项公式基本方法是列方程组解方程组,得出首项与公比(或公差),然后写出通项公式;有关数列求和问题,主要方法有倒序相加法、错位相减法、分组求和法、公式法等,本题采用分组求和法求和,本题要根据数列通项的形式特点采用相应的方法求和.13.等比数列中,若,,则()A.64B.-64C.32D.-32【答案】A【解析】数列是等比数列,,,即解得那么故选A.14.已知成等比数列,且曲线的顶点是,则等于()A.5B.6C.7D.12【答案】B【解析】把配方得得到顶点坐标为,即由成等比数列,则,故选B.15.已知函数的最低点为.(1)求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.【答案】(1) (2)【解析】(1)根据函数的最低点为,得到对称轴与最小值,列方程组求出,,即可求得函数解析式,然后利用一元二次不等式的解法求解即可;(2)由由,可得,分别求出与的最大值与最小值,利用不等式恒成立可得结果.试题解析:(1)依题意,得,①,②由①②解得,,.∴.则原不等式可化为,解得或.故不等式的解集为.(2)由,得,即,则,即.∵,∴的最小值是.的最大值是.∴,即.故实数的取值范围是.16.已知数列是递减等比数列,且,,则数列的通项公式__________.【答案】【解析】因为,,所以, ,又因为数列是递减等比数列,所以,数列的通项公式,故答案为.17.已知数列的前项和为,.(1)求数列的通项公式;(2)令,设数列的前项和为,求;(3)令,若对恒成立,求实数的取值范围.【答案】(1); (2);(3)【解析】(1) 当时,利用公式;,可得,验证当时是否适合即可;(2)由(1)可得,利用错位相减法求和即可(3)讨论当为奇数时,当为偶数时两种情况,分别利用等差数列求和公式求和,然后利用放缩法可证明结论.试题解析:(I)当时,当时,,适合上式,().(II),则•,‚,•-‚得,..(III),当为奇数时,,当为偶数时,,综上所述,【方法点睛】本题主要考查等差数列的通项与求和公式以及错位相减法求数列的的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.18.已知数列{a}满足.n(1)求{an}的通项公式;(2)设,求数列{bn }的前n项和Sn.【答案】(1);(2)【解析】(1)分类讨论和两种情况可得数列{an}的通项公式为;(2)结合(1)的结论错位相减可得数列{bn}的前n项和.试题解析:(1)当n=1时,,,两式相减得,∴,当n=1时也满足,∴.(2),∴Sn =1×3+2×32+3×33+…+n×3n,3Sn=1×32+2×33+3×34+…+n×3n+1,两式相减得∴-2Sn=3+32+33+34+…+3n-n×3n+1,∴.19.在如下数表中,已知每行、每列中的数都成等比数列,那么位于表中的第10行第11列的数是________________.【答案】【解析】由题意知,第1列的数是首项为1,公比为2的等比数列,所以第10行的第一个数为。
河北省衡水中学2023届高三上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若集合3(1)(4)ln log (1)x x M x y x ⎧⎫--==⎨⎬-⎩⎭∣,{}2R 4N yy =>∣ð,则()A .2M N∈⋂B .{[2,2](4,)}M N aa ∞⋃=∈-⋃+∣C .{(,2)(2,)}N aa ∞∞=∈-⋃+∣D .()R {[2,1]}M N aa ⋂=∈-∣ð2.若i 1|1|i -=--z z ,则||z z -=()A .1BC .2D .123.在△ABC 中,O 为重心,D 为BC 边上近C 点四等分点,DO mAB nAC =+uuu r uu u r uuu r,则m+n =()A .13B .13-C .53D .53-4.一个灯罩可看作侧面有布料的圆台,在原形态下测得的布料最短宽度为13,将其压扁变为圆环,测得布料最短宽度为5,则灯罩占空间最小为()A .175πB .325π3C .100πD .不存在5.若六位老师前去某三位学生家中辅导,每一位学生至少有一位老师辅导,每一位老师都要前去辅导且仅能辅导一位同学,由于就近考虑,甲老师不去辅导同学1,则有()种安排方法A .335B .100C .360D .3406.已知函数()πsin ,(0)6f x x ωω⎛⎫=+> ⎪⎝⎭将其向右平移π3个单位长度后得到()g x ,若()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,则()f x 一定满足的单调递增区间为()A .4π2π,5757⎡⎤-⎢⎥⎣⎦B .4π2π,3939⎡⎤-⎢⎥⎣⎦C .3π5π,1313⎡⎤⎢⎥⎣⎦D .5π7π,1919⎡⎤⎢⎣⎦7.已知0.99e 0.01100100e ,ln ,ln ln (0.99)9999a b a c c c -⎛⎫===-≠ ⎪⎝⎭,则()A . 1.01b a c >>>B . 1.01b a c >>>C . 1.01a b c>>>D . 1.01a b c >>>8.若已知函数()e x af x +=,()lng x x ka =+,()0,a ∞∃∈+,若函数()()()F x f x g x =-存在零点(参考数据ln 20.70≈),则k 的取值范围充分不必要条件为()A .()0.7 1.3e ,eB .)0.71,e⎡⎣C .)2.23.1e ,e ⎡⎣D .()1.32.2e ,e 二、多选题9.在正方体1111ABCD A B C D -中,2,,,AB E F G =分别为棱1,,BB AB BC 中点,H 为1CC 近C 三等分点,P 在面11AA D D 上运动,则()A .1BC ∥平面1D FGB .若(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r,则C 点到平面PBH 的距离与P 点位置有关C .1BD EG⊥D .若(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r ,则P 10.若数列{}n a 有2142n n n a a a ++=-,n S 为{}2n a +前n 项积,{}n b 有112n n n n b b b b ++-=,则()A .(){}log log 2b a n a ⎡⎤+⎣⎦为等差数列(,0a b >)B .可能()()21112n n n S a -=-+C .1n b ⎧⎫⎨⎬⎩⎭为等差数列D .{}n b 第n 项可能与n 无关11.已知抛物线C :22x py =,过点P (0,p )直线{,}l C A B ⋂=,AB 中点为1Q ,过A ,B 两点作抛物线的切线121221,,,l l l l Q l y ⋂=⋂轴=N ,抛物线准线与2Q P 交于M ,下列说法正确的是()A .21Q Q x ⊥轴B .O 为PN 中点C .22AQ BQ ⊥D .M 为2PQ 近2Q 四等分点12.已知奇函数()f x ,x ∈R ,且()()πf x f x =-,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,()()cos sin 0f x x f x x '+>,当π2x →时,()2cos f x x →,下列说法正确的是()A .()f x 是周期为2π的函数B .()cos f x x 是最小正周期为2π的函数C .()cos f x x关于π,02⎛⎫ ⎪⎝⎭中心对称D .直线y kx =与()cos f x x若有3个交点,则4444,,3553k ππππ⎛⎤⎡⎫∈--⋃ ⎪⎥⎢⎝⎦⎣⎭三、填空题13.6212x x ⎛⎫-+ ⎪⎝⎭中常数项是_________.(写出数字)14.若⊙C :()()221x a y b -+-=,⊙D :()()22684x y -+-=,M ,N 分别为⊙C ,⊙D上一动点,MN 最小值为4,则34a b +取值范围为_________.15.已知双曲线22221x y a b-=,1F ,2F 分别为双曲线左右焦点,2F 作斜率为a b -的直线交by x a=于点A ,连接1AF 交双曲线于点B ,若21AB AF BF ==,则双曲线的离心率_________.16.已知函数()ln cos f x x kx x =+-,1212(0,,,)x x x x ∀∈∞≠+,使得()()12123f x f x x x ->-,k 的取值范围为_________.四、解答题17.已知O 为△ABC 外心,S 为△ABC 面积,r 为⊙O 半径,且满足()2222342cos cos 23CB AO r A B a S⋅+---=uu r uuu r (1)求∠A 大小;(2)若D 为BC 上近C 三等分点(即13CD BC =),且AD =S 最大值.18.张老师在2022年市统测后统计了1班和3班的数学成绩如下图所示22()()()()()n ad bc K a b b d c d a c -=++++,n a b c d =+++,()20P K k ≥0.0500.0250.0100.0050.0010k 3.8415.0246.6357.87910.828(1)根据卡方独立进行检验,说明是否有99.9%的把握数学成绩与班级有关;(2)现在根据分层抽样原理,从1班和3班中抽取10人,再让数学评价优秀的同学辅导一位数学评价一般的同学,每个人必有一人辅异,求在抽到甲辅导乙的情况下丙辅导丁的概率.(3)以频率估计概率,若从全年级中随机抽取3人,求至少抽到一人数学成绩为优秀的概率.(4)以频率估计概率,若从三班中随机抽取8人,求抽到x 人数学成绩为优秀的分布列(列出通式即可)及期望()E x ,并说明x 取何值时概率最大.19.在△ABC 中,π3BAC ∠=,A 、B 、C 、D 四点共球,R (已知)为球半径,O 为球心,O '为ABC 外接圆圆心,r (未知)为⊙O '半径.(1)求()max A BCD V -和此时O 到面ABC 距离h ;(2)在()max A BCD V -的条件下,面OAB (可以无限延伸)上是否存在一点K ,使得KC ⊥平面OAB ?若存在,求出K 点距OO '距离1d 和K 到面ABC 距离2d ,若不存在请给出理由.20.在高中的数学课上,张老师教会了我们用如下方法求解数列的前n 项和:形如()1212nn a n ⎛⎫=+ ⎪⎝⎭的数列,我们可以错位相减的方法对其进行求和;形如()()122121nn nn b +=++的数列,我们可以使用裂项相消的方法对其进行求和.李华同学在思考错位相减和裂项相消后的本质后对其进行如下思考:错位相减:设11(1)n n a a q q -=≠,()()1212111,n nn n n S a a a a q q qS a q q q -=++⋅⋅⋅+=++⋅⋅⋅+=+⋅⋅⋅+()()()()11111(1)111n n n n n n q S a q q q a q q q a q --⎡⎤-=+⋅⋅⋅+--⋅⋅⋅-=+⋅⋅⋅+-+⋅⋅⋅+=-⎣⎦111n n q S a q -=-综上:当中间项可以相消时,可将求解n S 的问题用错位相减化简裂项相消:设1111111(1)11n n n k k k n n n n n n n ++=-==-⇒-=-⇒=+++1n n n b k k 或1n k n ⎧⎫-⎨⎬⎩⎭为公比为1的等比数列;①当1n k n =时,111n b n n =-+②当1n k n ⎧⎫-⎨⎬⎩⎭为公比为1的等比数列时,()11111,1n n k k b n n n =++=-+;故可为简便计算省去②的讨论,111n n nS k k n +=-=+综上:可将求解n S 的问题用裂项相消转化为求解n k 的问题你看了他的思考后虽觉得这是“废话文学”,但是你立刻脑子里灵光一闪,回到座位上开始写下了这三个问题:(1)用错位相减的方法“温故”张老师课堂上举的例子,求解数列{n a }前n 项和n S ;(2)用裂项相消的方法“知新”张老师课堂上举的例子,求解数列{n a }前n 项和n S ;(3)融会贯通,求证:()21232nn c n n ⎛⎫=++ ⎪⎝⎭前n 项和n T 满18n n S T +<.请基于李华同学的思考做出解答,并写出裂项具体过程.21.在平面直角坐标系中,12,F F 分别为(1,0)-,(1,0),⊙()222:116x y F -+=,E 为⊙2F 上一点,C 为线段2EF 上一点,⊙C 过1F 和E .(1)求C 点轨迹方程,并判断轨迹形状;(2)过12,F F 两直线12,l l 交C 分别于A 、B 和M 、N ,P ,Q 分别为AB 和MN 中点,求P 、Q 轨迹方程,并判断轨迹形状;(3)在(2)的条件下,若PQ //x 轴,12l l D ⋂=,求D 点轨迹方程,并判断轨迹形状.22.已知函数()11e ln-=-+kx f x x kx x.(1)求证:()0f x ≥;(2)若()0,x ∀∈+∞,都()211e ≥+f x ,求k 满足的取值范围.参考答案:1.B【分析】先求出集合,M N ,然后再逐个分析判断即可.【详解】由33(1)(4)0log (1)log (1)0x x x x --⎧>⎪-⎨⎪-≠⎩,得3(1)(4)log (1)011x x x x --->⎧⎨-≠⎩,解得>4x 或12x <<,所以{4M x x =>或}12x <<,因为{}2R 4N yy =>∣ð,所以{}{}2422N y y y y =≤=-≤≤,对于A ,因为(1,2)M N = ,所以2M N ∉⋂,所以A 错误,对于B ,因为{4M x x =>或}12x <<,{}22N y y =-≤≤,所以[2,2](4,)M N =-+∞ ,所以B 正确,对于C ,因为{}22N y y =-≤≤,所以C 错误,对于D ,因为{4M x x =>或}12x <<,所以R (,1][2,4]M =-∞ ð,因为{}22N y y =-≤≤,所以(){}R [2,1]2M N ⋂=-ðU ,所以D 错误,故选:B 2.A【分析】设i z a b =+,利用复数相等求出a b ,,即可求解.【详解】设i z a b =+,(,R,i a b ∈为虚数单位).因为i 1|1|i -=--z z ,所以()1i=1a b +--,所以11a b =⎧⎪⎨-=⎪⎩,解得:112a b =⎧⎪⎨=⎪⎩.所以111i,1i 22z z =+=-,所以||i 1z z -==故选:A 3.B【分析】连接AO 延长交BC 于E 点,则E 点为BC 的中点,连接AD OD 、,利用向量平面基本定理表示DO可得答案.【详解】连接AO 延长交BC 于E 点,则E 点为BC 的中点,连接AD OD 、,所以()23213432=++=-+⨯+=+DB BA AE CB AB AB A DO DA CAO uuu r uu u r uuu r uu u r uu r uu u r uu r uu u r uu u r uuu r ()()3115431212=--++=-AB AC AB AB AC AB AC uu u r uuu r uu u r uu u r uuu r uu u r uuu r ,所以15,1212==-m n ,15112123+=-=-m n .故选:B.4.D【分析】设圆台的上、下底面圆的半径分别为,r R ,母线长为l ,高为h ,由题意可知5R r -=,13l =,则12h =,利用圆台的体积公式求出体积表达式,利用二次函数的性质即可得到答案.【详解】设圆台的上、下底面圆的半径分别为,r R ,母线长为l ,高为h由题意可知5R r -=,13l =,则12h ==则圆台的体积为()()()()2222211ππ124π315255353V h R r Rr r r r r r r ⎡=++=⨯⨯+⎤++=⎣⎦+++2512π25π2r ⎛⎫=++ ⎪⎝⎭当0r >时,V 单调递增,故V 不存在最小值.故选:D .5.C【分析】把6位老师按照4,1,1或3,2,1或2,2,2人数分为三组;每种分组再分同学1安排的几位老师辅导解答.【详解】把6位老师按照4,1,1或3,2,1或2,2,2人数分为三组;①把6为老师平均分为3组的不同的安排方法数有22264233C C C 15A ⋅⋅=在把这三组老师安排给三位不同学生辅导的不同安排方案数为:33A 6=,根据分步计数原理可得共有不同安排方案为:2223642333C C C A 15690A ⋅⋅=⨯=如果把甲老师安排去辅导同学1的方法数为:2212425222C C 1C A 30A ⋅⋅⋅=所以把6位老师平均安排给三位学生辅导且甲老师不安排去辅导同学1的方法数为903060-=②把6位老师按照4,1,1分为3组给三位学生辅导的方法数为:若1同学只安排了一位辅导老师则11425542C C C A 50⋅=若1同学安排了四位辅导老师则4252C A 10=所以把6位老师按照4,1,1分为3组给三位学生辅导,甲老师不安排去辅导同学1的方法数为60③把6位老师按照3,2,1分为3组给三位学生辅导的方法数为;若1同学只安排了一位辅导老师则12325532C C C A 100⋅=若1同学只安排了两位辅导老师则21325432C C C A 80⋅=若1同学只安排了三位辅导老师则31225322C C C A 60⋅=所以把6位老师按照3,2,1分为3组给三位学生辅导,甲老师不安排去辅导同学1的方法数为6080100240++=综上把6位老师安排给三位学生辅导,甲老师不安排去辅导同学1的方法数为2406060360++=故选:C 6.A【分析】根据平移变换得函数()ππsin ,(0)36g x x ωωω⎛⎫=-+> ⎪⎝⎭,由()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,结合正弦函数图象可得131922ω≤<,再求π6x ω+的范围,结合正弦函数的单调性,由此可判断答案.【详解】解:有题意可得()πππsin ,(0)336g x f x x ωω⎛⎫⎛⎫=-=-+> ⎪ ⎪⎝⎭⎝⎭,由π,π3x ⎡⎤∈⎢⎥⎣⎦得πππ2ππ,36636x ωωω⎛⎫⎡⎤-+∈+ ⎪⎢⎥⎝⎭⎣⎦,由于()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,所以9π2ππ13π2362ω≤+<,解得131922ω≤<,当4π2π,5757x ⎡⎤∈-⎢⎥⎣⎦,π42[,]6576576x ππππωωω+∈-++而42[,[,)57657622ππππππωω-++⊂-,故A 正确,当4π2π,3939x ⎡⎤∈-⎢⎥⎣⎦,π42[,]6396396x ππππωωω+∈-++而426351[,][,)3963967878ππππππωω-++⊂-,故B 不正确,当3π5π,1313x ⎡⎤∈⎢⎥⎣⎦,π35[,]6136136x ππππωωω+∈++,而355298[,[,136136378ππππππωω++⊂,故C 不正确,当5π7π,1919x ⎡⎤∈⎢⎥⎣⎦,π57[,]6196196x ππππωωω+∈++,而5721411[,][,)1961961143ππππππωω++⊂,故D 不正确,故选:A.7.D【分析】变形a ,b ,构造函数e ()ln xf x x x x=-+比较a ,b 的大小,构造函数()ln g x x x=-比较,e b 的大小,利用极值点偏移的方法判断1.01,c 的大小作答.【详解】依题意,0.99e 0.99a =,e 0.01ln 0.99e 10.99ln 0.99b =--=-+-,令e ()ln x f x x x x =-+,22e (1)1(e )(1)()1x x x x x f x x x x ---'=-+=,当01x <<时,e 10x x >>>,即()0f x '<,函数()f x 在(0,1)上单调递减,(0.99)(1)e 1f f >=-,即0.99e 0.99ln 0.99e 10.99-+>-,因此a b >,令()ln g x x x =-,1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,函数()g x 在(0,1)上单调递减,(0.99)(1)1g g >=,而e 1(0.99)e>1.01b g =-+>,函数()g x 在(1,)+∞上单调递增,显然11(e)e 1,()1e eg g =-=+,则方程1(),(1,1]e g x k k =∈+有两个不等实根12,x x ,1201x x <<<,有12()()g x g x k ==,ln ln 0.99ln 0.99ln (0.99)()a c c c c g g c =-⇔-=-⇔=,而0.99c ≠,则有1c >,令()()(2)h x g x g x =--,01x <<,2112(1)()()(2)1102(2)x h x g x g x x x x x -'''=+-=-+-=-<--,即函数()h x 在(0,1)上单调递减,当(0,1)x ∈时,()(1)0h x h >=,即()(2)g x g x >-,因此11()(2)g x g x >-,即有211()()(2)g x g x g x =>-,而211,21x x >->,()g x 在(1,)+∞上单调递增,于是得212x x >-,即122x x +>,取10.99x =,2x c =,于是得20.99 1.01c >-=,又()(0.99))1()(e eg g c g g <<=,()g x 在(1,)+∞上单调递增,从而1.01e c <<,所以 1.01a b c >>>,D 正确.故选:D【点睛】思路点睛:某些数或式大小关系问题,看似与函数的单调性无关,细心挖掘问题的内在联系,抓住其本质,构造函数,分析并运用函数的单调性解题,它能起到化难为易、化繁为简的作用.8.C【分析】因为求的是充分不必要条件,而非充要条件,所以采用特殊值法,只要满足()()11f g ≤,则有()()()F x f x g x =-存在零点,求出1e ak a+≥时k 的取值范围,即为一个充分条件,再由选项依次判断即可.【详解】 当0a =时,()e x af x +=的图象恒在()lng x x ka =+上方,∴若满足()()11f g ≤,即1eln1aka +≤+,1e ak a+≥,则()f x 与()g x 的图象必有交点,即()()()F x f x g x =-存在零点.令()1e x h x x+=()0x >,()()12e 1x x h x x +-'=,有当01x <<时,()0h x '<,()h x 单调递减;当1x >时,()0h x '>,()h x 单调递增.()()21e h x h ∴≥=.即当2e k ≥时,一定存在()10,a =∈+∞,满足()()11f g ≤,即()()()F x f x g x =-存在零点,因此)2e ,k ⎡∈+∞⎣是满足题意k 的取值范围的一个充分条件.由选项可得,只有)2.2 3.1e ,e ⎡⎣是)2e ,⎡+∞⎣的子集,所以)2.2 3.1e ,e ⎡⎣是k 的取值范围的一个充分不必要条件.故选:C .9.BCD【分析】建立空间直角坐标系,利用空间向量逐一解答即可.【详解】解:根据题意建立如图所示的坐标系:因为正方体的边长为2,所以1(0,0,0)A ,(0,0,1)A ,1(2,0,0)B ,1(2,2,0)C ,1(0,2,0)D ,(2,0,2)B ,(2,2,2)C ,(0,2,2)D ,(2,0,1)E ,(1,0,2)F ,(2,1,2)G ,4(2,2,3H ,对于A ,因为1(0,2,2)BC =-u u u u r ,1(1,2,2)FD =--u u u u r ,(1,1,0)FG =u u u r,设平面1D FG 的法向量为(,,)n x y z = ,则有2200x y z x y -+-=⎧⎨+=⎩,则有23y zy x⎧=⎪⎨⎪=-⎩,取(2,2,3)n =-r,因为120n BC ⋅=-≠r u u u u r,所以1n BC ⊥ru u u u r不成立,所以1BC ∥平面1D FG 不成立,故错误;对于B ,设00(0,,)P y z ,则00(2,1,2)G y z P =---uu u r ,(1,1,0)GF =--uu u r ,2(0,1,)3GH =-uuu r ,又因为(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r,所以0021223y z μμϕϕ⎧⎪-=-⎪-=-+⎨⎪⎪-=-⎩,所以有002433z y =-+,所以P 点轨迹为如图所示的线段1MD ,在平面11BCC B 内作出与1MD 平行的直线1NC ,易知1MD 与1NC 的距离等于平面11ADD A 与平面11BCC B 的距离为2,因为1NC 与BH 不平行,所以1MD 与BH 不平行,所以点P 到BH 的距离不是定值,所以PBH S 不是定值,又因为P BCH C BPH V V --=,即1121223233PBH S h ⨯⨯⨯⨯=⋅V ,(h 为C 点到平面PBH 的距离),所以43PHBh S =V 不是定值,所以C 点到平面PBH 的距离与P 点位置有关,故正确;对于C ,因为1(2,2,2)BD =--uuu r ,(0,1,1)EG =uu u r,1220BD EG ⋅=-=uuu u r uu r ,所以1BD EG ⊥uuu r uuu r,即有1BD EG ⊥,故正确;对于D ,由B 可知P 点轨迹为002433z y =-+,令00y =,则043z =;令02z =,则02y =,所以P 3=,故正确.故选:BCD 10.BD【分析】结合递推式2142n n n a a a ++=-,取12a =-,求{}n a 的通项公式判断选项A 错误,求n S 判断B ,由递推式112n n n n b b b b ++-=,取10b =,判断C ,求数列{}n b 的通项公式判断D.【详解】因为2142n n n a a a ++=-,所以()1222n n a a +=++,所以当2,N n n *≥∈时,20n a +≥,若12a =-,则2,N n a n *=-∈,()log 2a n a +不存在,A 错误;因为12a =-时,2,N n a n *=-∈,所以20n a +=,所以0n S =,又()()211012nn a -+=-,所以可能()()21112n nn S a -=-+,B 正确;因为112n n n n b b b b ++-=,取10b =,则0,N n b n *=∈,此时1nb 不存在,C 错误;D 正确;故选:BD.11.AD【分析】设直线l 的斜率为k ,不妨设0p >,直线l 的方程为y kx p =+,()()1122,,,A x y B x y ,与抛物线方程联立求出12x x +,12x x ,12y y +,得()21,+Q pk pk p ,令12=-pk x 求出1y ,求出xy p '=,可得直线1l 的方程、直线2l 的方程,由22122⨯=AQ BQ x x k k p可判断C ;联立直线1l 、直线2l 的方程可得()2,-Q pk p 可判断A ;令0x =由()1110-=-x y y x p得()0,P p 可判断B ;由()0,P p 、M 点的纵坐标为2p-、()2,-Q pk p 可判断D.【详解】由题意直线l 的斜率存在,设为k ,不妨设0p >,()()1122,,,A x y B x y ,则直线l 的方程为y kx p =+,与抛物线方程联立22y kx px py=+⎧⎨=⎩,可得22220x pkx p --=,222480∆=+>p k p ,所以122x x pk +=,2122x x p =-,21222+=+y y pk p ,所以()21,+Q pk pk p ,不妨令1222==x pk x p k所以221222=+-=++y pk p ky pk p由22x y p=得x y p '=,所以直线1l 的方程为()111x y y x x p -=-,直线2l 的方程为()222x y y x x p-=-,所以2221222221-⨯===-≠-AQ BQ x x p k k p p ,故C 错误;由()()111222x y y x x p x y y x x p ⎧-=-⎪⎪⎨⎪-=-⎪⎩解得11x pk y kx y =⎧⎨=-⎩,可得((222x pk y k pk pk p k p =⎧⎪⎨=--+-=-⎪⎩,所以()2,-Q pk p ,所以21Q Q x ⊥轴,故A 正确;令0x =所以由()1110-=-x y y x p得212-=-=-+y y k p p(220,-+-N p k p ,而()0,P p,且222200pk p p pk k --+=-+=⇒=,故B 错误;因为()0,P p ,M 点的纵坐标为2p-,()2,-Q pk p ,所以322⎛⎫--= ⎪⎝⎭p p p ,()22---=p p p ,故M 为2PQ 近2Q 四等分点,故D 正确.故选:AD.12.AC【分析】根据奇函数()f x ,x ∈R ,且()()πf x f x =-,可确定函数()f x 的周期,即可判断A ;设()()cos f x g x x=确定函数()g x 的奇偶性与对称性即可判断函数B ,C ;根据()()cos sin 0f x x f x x '+>可判断函数()g x 在π0,2x ⎡⎫∈⎪⎢⎣⎭上的单调性,结合对称性与周期性即可得函数()g x 的大致图象,根据直线y kx =与()cos f x x若有3个交点,列不等式即可求k 的取值范围,即可判断D.【详解】解:因为()()πf x f x =-,所以()f x 的图象关于π2x =对称,又因为()f x 为奇函数,所以()()f x f x =--,则()()()πf x f x f x +=-=-,则()()()2ππf x f x f x +=-+=,故()f x 是周期为2π的函数,故A 正确;设()()cos f x g x x =,其定义域为ππ2π,2π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭,则()()()()()()()ππ0cos cos πcos cos f x f x f x f x g x g x xx x x -+-=+=+=--,所以()g x 关于π,02⎛⎫⎪⎝⎭中心对称,即()cos f x x关于π,02⎛⎫⎪⎝⎭中心对称,故C 正确;又()()()()()cos cos f x f x g x g x x x---===--,所以()g x 为上的奇函数,结合()()π0g x g x +-=可得()()π0g x g x --+-=,即()()πg x g x -=-故()cos f x x是周期为π的函数,故B 错误;当π0,2x ⎡⎫∈⎪⎢⎣⎭,所以()()()2cos sin 0cos f x x f x x g x x '+'=>,故()g x 在π0,2x ⎡⎫∈⎪⎢⎣⎭上单调递增,由于()g x 关于π,02⎛⎫ ⎪⎝⎭中心对称,所以()g x 在π,π2x ⎛⎤∈ ⎥⎝⎦上单调递增,且当π2x →时,()2cos f x x →,又函数()g x 的周期为π,则可得()g x 大致图象如下:若直线y kx =与()()cos f x g x x =若有3个交点,则03π225π22k k k ⎧⎪>⎪⎪<⎨⎪⎪≥⎪⎩或03π22π22k k k ⎧⎪<⎪⎪-≥⎨⎪⎪-<⎪⎩,解得445π3πk ≤<或44π3πk -<≤-,故4444,,π3π5π3πk ⎛⎤⎡⎫∈--⋃ ⎪⎥⎢⎝⎦⎣⎭,故D 错误.故选:AC.13.559【分析】将21x x-看作一项,利用展开式的通项,找两项中的常数项即可求解.【详解】261(2)x x-+的展开式的通项公式是26122316661C ()22C (1)C r r r r r s s r sr r T x xx ---+-=-⋅=-,令12230r s --=,则2312r s +=,故32r s =⎧⎨=⎩或60r s =⎧⎨=⎩或04r s =⎧⎨=⎩,所以261(2)x x-+的展开式中常数项为:3322660044636662C (1)C 2C 2C (1)C 4806415559⨯⨯-⨯+⨯+⨯⨯-⨯=++=,故答案为:559.14.[]15,85【分析】先根据MN 的最小值求出7CD =,即()()226849a b -+-=,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离4127CD =++=,即()()226849a b -+-=,由柯西不等式得:()()()()()2222268343648a b a b ⎡⎤-+-⋅+≥-+-⎡⎤⎣⎦⎣⎦,当且仅当6834a b --=,即5168,55a b ==时,等号成立,即()234502549a b +-≤⨯,解得:153485a b ≤+≤.故答案为:[]15,8515【分析】首先求出2AF 的方程,联立两直线方程,即可取出A 点坐标,由21AB AF BF ==,即可得到B 为A 、1F 的中点,得到B 点坐标,再代入双曲线方程,即可求出226c a =,从而求出双曲线的离心率.【详解】解:依题意()2,0F c ,所以2AF :()ay x c b=--,由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,解得2a x c ab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2,a ab A c c ⎛⎫ ⎪⎝⎭,所以2AF b =,又21AB AF BF ==,所以B 为A 、1F 的中点,所以2,22a c ab c B c ⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭,所以22222122a c b c c ab a ⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪ ⎝⎭⎝-⎭-=,即44224b a c a -=,即()()222222+4b a b a c a -=,所以2224b a a -=,即225b a =,即2225c a a -=,所以226c a =,则离心率ce a==16.[)4,∞+【分析】不妨设12x x <,把1212()()f x f x x x -->3化为()()11223f x x f x x <--3,构造函数()()3g x f x x =-,利用()g x 的导数()0g x '≥,求出k 的取值范围.【详解】不妨设1212,(0,),x x x x ∀∈+∞<,∵()()12123f x f x x x ->-,即()()1212)3(f x f x x x <--,()()11223f x x f x x <--3,构造函数()()3g x f x x =-,∴()g x 在(0)+∞,是单调递增函数,∴()()13sin 30g x f x k x x ''=-=++-≥,∴()1sin 3,0,k x x x ∞⎛⎫≥-++∈+ ⎪⎝⎭当0x >时,10x >,[]sin 1,1x ∈-,所以1sin 1x x+>-,所以1sin 34x x ⎛⎫-++< ⎪⎝⎭,所以k 的取值范围为[)4,∞+故答案为:[)4,∞+17.(1)π3【分析】(1)由向量的运算整理可得221122c b CB AO =-⋅uu r uuu r ,结合正弦定理、余弦定理和面积公式运算求解;(2)根据题意结合向量可得1233AD AB AC =+ ,再结合数量积可得221242999c bc b =++,利用基本不等式可得3bc ≤,再结合面积公式即可得结果.【详解】(1)取,AB AC 的中点,M N ,连接,OM ON ,则,OM AB ON AC ⊥⊥,可得:()cos cos NC AC AB AO AC AO AB AO OA A M A B O AB A A O C O OA =-=⋅-⋅=∠-∠⋅⋅uu r uuu r uu u r uuu r uuu r uu u r uuu r uuu r uuu r uu u r u u r uuu r uuu r222211112222AB AC c b =-=-uu u r uuu r由()2222342cos cos 23CB AO r A B a S ⋅+---=uu r uuu r ,可得()2222223141cos 1cos 11sin 22322r A B a c b bc A +--+--=⨯,则()()2222232sin 2s 1in sin 2122r A r B a c b b c A --=++,即222223sin 21221a b a b A c b c +-=-+,整理得2222sin b A c a bc +⨯-,由余弦定理222cos sin 23b c a A A bc +-==,可得tan A =∵()0,πA ∈,故π3A =.(2)由题意可得:()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,则22221214433999AD AB AC AB AB AC AC ⎛⎫=+=+⋅+ ⎪⎝⎭uuu r uu u r uuu r uu u r uu u r uuu r uuu r ,可得:221242999c bc b =++,则2218244bc c b bc -=+≥,当且仅当224c b =,即2c b =时等号成立,即3bc ≤,则11sin 322S bc A =≤⨯故S18.(1)有,理由见解析(2)14(3)78(4)分布列见解析,()2E x =,2x =时,概率最大,理由见解析【分析】(1)计算卡方,与10.828比较后得到结论;(2)先根据分层抽样求出1班和3班抽到的学生分布情况,再根据条件概率求出概率;(3)计算出1班和3班的总人数,以及数学评价优秀的学生总人数,求出相应的频率作为全校数学评价优秀的概率,求出随机抽取3人,抽到0人数学评价优秀的概率,再利用对立事件求概率公式计算出答案;(4)由题意得到18,4x B ⎛⎫⎪⎝⎭,从而求出分布列,数学期望,并利用不等式组,求出2x =时,概率最大.【详解】(1)22100(10204030)5010.828406050503K ⨯⨯-⨯==>⨯⨯⨯,故有99.9%的把握数学成绩与班级有关;(2)1班有40+20=60人,3班有10+30=40人,故抽取10人,从1班抽取人数为601066040⨯=+,从3班抽取的人数为401046040⨯=+,由于1班数学评价优秀和一般人数比为4:2,故抽取的6人中有4人数学评价优秀,2人评价一般,而3班数学评价优秀和一般的人数之比为1:3,故抽取的4人中有1人数学评价优秀,3人评价一般,设抽到甲辅导乙为事件A ,抽到丙辅导丁为事件B ,则()4455A 1A 5P A ==,()3355A 1A 20P AB ==,()()()1112054P AB P B A P A ==÷=;(3)1班和3班总人数为100人,其中两班学生数学评价优秀的总人数为104050+=,故频率为5011002=,以频率估计概率,全年级的数学评价优秀的概率为12,从全年级中随机抽取3人,抽到0人数学评价优秀的概率为30311C 128⎛⎫-= ⎪⎝⎭,所以从全年级中随机抽取3人,至少抽到一人数学成绩为优秀的概率为17188-=.(4)由题意得:3班的数学评价优秀概率为101404=,故18,4x B ⎛⎫⎪⎝⎭ ,所以分布列为8811C 144xxx -⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭,1,2,,8x = ;数学期望()1824E x =⨯=,2x =时,概率最大,理由如下:令8171881111C 1C14444xxx xx x -+-+⎛⎫⎛⎫⎛⎫⎛⎫-≥- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:54x ≥,令8191881111C 1C14444x xx xx x ----⎛⎫⎛⎫⎛⎫⎛⎫-≥- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:94x ≤,故5944x ≤≤,因为N x ∈,所以2x =.19.(1)()max A BCD V -3,此时13h R =,(2)存在K ,满足KC ⊥平面OAB ,理由见解析;1d =,223d R =.【分析】(1)设线段O O '的延长线与球的交点为1D ,则1A BCD D ABC V V --≤,设OAO θ'∠=,表示1D ABC -的体积,通过换元,利用导数求其最大值.(2)取AB 的中点E ,连接OE ,CE ,过C 作KC OE ⊥,根据线面垂直判定定理证明KC ⊥平面OAB ,再通过解三角形求1d ,2d .【详解】(1)当点D 为线段O O '的延长线与球的交点时,点D 到平面ABC 的距离最大,所以1A BCD D ABC D ABC V V V ---=≤,由球的截面性质可得'⊥O O 平面ABC ,设OAO θ'∠=,π02θ≤<,则sin ,cos OO OA AO OA θθ''==,又,OA R AO r '==,所以sin ,cos OO R r R θθ'==,所以sin DO R R θ'=+,在ABC 中,π3BAC ∠=,由正弦定理可得π2sin cos 3BC r θ==,由余弦定理可得222π2cos3AB AC AB AC BC +-⋅=,所以22AB AC AB AC BC ⋅-⋅≤,故223cos AB AC R θ⋅≤,所以ABC 的面积221πsin cos 23S AB AC θ=⋅≤,当且仅当AB AC =时等号成立,所以()()12232111cos sin cos sin 133D ABC V S D O R R R θθθθ-=⋅≤⋅⋅+=⋅⋅+',设()2cos sin 1y θθ=⋅+,令sin t θ=,则()()211y t t =-⋅+,01t ≤<所以()()2321311y t t t t '=--+=--+,当103t ≤<时,0y >' ,函数()()211y t t =-⋅+在10,3⎡⎫⎪⎢⎣⎭上单调递增,当113t <<时,0'<y ,函数()()211y t t =-⋅+在1,13⎛⎫ ⎪⎝⎭上单调递减,所以当13t =时,函数()()211y t t =-⋅+,01t ≤<取最大值,最大值为3227,所以13D ABC V -≤,所以()max A BCD V -为327R ,此时1sin 3h OO R R θ'===,(2)由(1)点D 与点1D 重合,33AB AC BC R ===,又π3BAC ∠=,取AB 的中点E ,连接OE ,CE ,则,OE AB CE AB ⊥⊥,OE CE E ⋂=,,OE CE ⊂平面OCE ,所以AB ⊥平面OCE ,过C 作KC OE ⊥,垂足为K ,因为KC ⊂平面OCE ,所以AB KC ⊥,AB OE E ⋂=,,AB OE ⊂平面OAB ,所以KC ⊥平面OAB ,由(1)AB BC AC ===,OA OB OC R ===,1133OO OA R '==,所以3OE R ==,CE ==,所以3O E '=,因为π2OO E CKE OEO CEK ''∠=∠=∠=∠,,所以CEK OEO ' ,所以EK CE EO OE =',所以3EK R =,所以2EK OE =,所以O 为EK 的中点,又EO OO '⊥,所以E 到直线OO '的距离为3EO R '=,过K 作KM OO '⊥,垂足为M ,故点K 到OO '的距离为KM ,所以K 到直线OO '的距离为13d KM EO R '===,因为OO '⊥平面ABC ,O '为垂足,所以点O 到平面ABC 的距离为13OO R '=,过K 作KN CE ⊥,垂足为N ,则//KN OO ',所以KN ⊥平面ABC ,故点K 到平面ABC 的距离为KN ,又223KN OO R '==所以点K 到平面ABC 的距离为223d R =.20.(1)()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(2)()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(3)裂项过程见解析,证明见解析.【分析】(1)写出n S 的表达式,两边同乘12,与原式相减,利用等比数列求和公式化简即可;(2)对()1212nn ⎛⎫+ ⎪⎝⎭进行裂项,结合裂项相消法求和;(3)对()21232nn c n n ⎛⎫=++ ⎪⎝⎭进行裂项,利用裂项相消法求和,由此证明结论.【详解】(1)因为()1212nn a n ⎛⎫=+ ⎪⎝⎭,所以()()123111111357212122222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()()12341111113572121222222nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()1123111111322221222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以()1111112212222n n n S n -+⎛⎫⎛⎫=+-+ ⎝⎝-⎪⎪⎭⎭,所以()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(2)因为()1212nn a n ⎛⎫=+ ⎪⎝⎭,设()()111122n nn a A n B An B --⎭⎛⎫⎛⎫⎡⎤=-++ ⎪ ⎪⎣⎦⎝⎝⎭,则()122nn a An A B ⎛⎫=-+ ⎪⎝⎭,所以2A =,5B =,故()()111232522n nn a n n -⎛⎫⎛⎫=++ ⎪⎝⎝-⎪⎭⎭所以()()112171111115723252292222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎝-⎭⎭-,所以()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(3)因为()21232nn c n n ⎛⎫=++ ⎪⎝⎭,设()()()122111122n nn c Dn En F D n E n F -⎛⎫⎛⎫⎡⎤=++++++ ⎪⎪⎣⎦-⎝⎭⎝⎭,则()2122nn c Dn E D n F D E ⎛⎫⎡⎤=+-+- ⎦⎝-⎪⎣⎭,则1,4,8D E F ===,所以()()122114861322n nn c n n n n -⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭-,即()()12211243422n nn c n n -⎛⎫⎛⎫⎡⎤⎡⎤=++++ ⎪⎪⎣⎦⎦⎝⎝-⎣⎭⎭,所以()()()()()()2111222222111111342444445434222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤=+++⋅⋅⋅+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭⎝-⎭⎝⎭⎝+--⎭++所以()21613132nn T n n ⎛⎫=++ -⎪⎝⎭,所以()()()22811152513613188182212nnn nn n n n n n S T ⎛⎫⎛⎫⎛⎫=-++-++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭+<⎝⎭21.(1)C 点轨迹方程为22143x y +=,轨迹形状是以12,F F 为焦点,4为长轴长的椭圆.(2)点P 的轨迹方程为:221()2113416x y ++=,其轨迹形状是以1(,0)2-为对称中心,焦点在x 轴上,长轴长为1的椭圆;点Q 的轨迹方程为:221()2113416x y -+=,其轨迹形状是以1(,0)2为对称中心,焦点在x 轴上,长轴长为1的椭圆.(3)点D 的轨迹方程为:22134y x +=,其轨迹形状是焦点在x 轴上,以11(,0),(,0)22-为焦点,以2为长轴长的椭圆.【分析】(1)根据椭圆的定义即可求解;(2)设出直线12,l l 的方程,与曲线方程联立,利用韦达定理和中点坐标公式即可求解;(3)根据(2)的结论,先得出340mt +=,再求出D 点的坐标,结合,m t 的关系式即可求解.【详解】(1)由题意可知:24F E =,1CF CE =,因为12221242CF CF CE CF EF F F +=+==>=,所以C 点的轨迹是以12,F F 为焦点,24a =为长轴长的椭圆,则2223b a c =-=,所以C 点轨迹方程为22143x y +=,轨迹形状是以12,F F 为焦点,4为长轴长的椭圆.(2)当直线1l 与x 轴重合时,点(0,0)P ;当直线1l 与x 轴不重合时,设直线1l 的方程为:1x ty =-,1122(,),(,)A x y B x y ,联立方程组221431x y x ty ⎧+=⎪⎨⎪=-⎩,整理可得:22(34)690t y ty +--=,则122634t y y t +=+,122934y y t -=+,所以212122268()223434t x x t y y t t -+=+-=-=++,则12212242343234P P x x x t y y t y t +-⎧==⎪⎪+⎨+⎪==⎪+⎩,消参可得:221212160x x y ++=,即221()21(0)13416x y x ++=≠,综上所述:点P 的轨迹方程为:221()2113416x y ++=,点P 的轨迹形状是以1(,0)2-为对称中心,焦点在x 轴上,长轴长为1的椭圆;同理当直线2l 与x 轴重合时,点(0,0)Q ;当直线2l 与x 轴不重合时,设直线2l 的方程为:1x my =+,3344(,),(,)M x y N x y ,联立方程组221431x y x my ⎧+=⎪⎨⎪=+⎩,整理可得:22(34)690m y my ++-=,则342634my y m -+=+,342934y y m -=+,所以234342268()223434m x x t y y m m -+=++=+=++,则34234242343234Q Qx x x m y y m y m +⎧==⎪⎪+⎨+-⎪==⎪+⎩,消参可得:221212160x x y -+=,即221()21(0)13416x y x -+=≠,综上所述:点Q 的轨迹方程为:221()2113416x y -+=,点Q 的轨迹形状是以1(,0)2为对称中心,焦点在x 轴上,长轴长为1的椭圆;(3)由(2)知:2243(,)3434tP t t -++,2243(,)3434m Q m m -++,因为//PQ x 轴,所以22333434t mt m -=++,即(34)()0mt m t ++=,又因为且12l l D ⋂=,所以340mt +=,也即43m t=-,联立12,l l 可得:11x ty x my =-⎧⎨=+⎩,解得:212D D t x t my t m ⎧=-⎪⎪-⎨⎪=⎪-⎩消参可得:24123(1)y x x ++=+,即22134y x +=,所以点D 的轨迹方程为:22134y x +=,其轨迹形状是焦点在x 轴上,以11(,0),(,0)22-为焦点,以2为长轴长的椭圆.22.(1)证明见解析;(2)(],1-∞-【分析】(1)利用同构,转化为()()1e ln e e kx kx f x x x =-.构造函数1ln ey t t =-,利用导数求出最小值,即可证明;(2)把()211e≥+f x 转化为()()ln 12e ln 1e 2x kx kx x +---+-≥--对()0,x ∀∈+∞恒成立.构造函数()e mg m m =-,利用导数判断出单调性,转化为2ln 1kx x +-≤-对()0,x ∀∈+∞恒成立,分离参数后,构造函数()()ln ,01xh x x x=-->,利用导数求出()min h x ,即可求解.【详解】(1)函数()11e ln -=-+kx f x x kx x 的定义域为()0,∞+.()11e ln-=-+kx f x x kx x 1e ln e kxx kx x =--()1e ln e ekx kx x x =-.令(),0e kxt x t =>,则1ln ey t t =-.因为11e e e t y t t -'=-=,所以当0<e t <时,0'<y ,1ln ey t t =-单减;当t e >时,0'>y ,1ln ey t t =-单增.所以1e ln e=0ey ≥⨯-,即0y ≥,所以()0f x ≥成立.(2)()211e≥+f x 即为121e ln e 1kx x kx x ---+≥+,亦即为ln 12e e ln 1e 2x kx kx x ----+≥+,可化为()()ln 12eln 1e 2x kx kx x +---+-≥--对()0,x ∀∈+∞恒成立.不妨设()e m g m m =-,则()e 1mg m '=-.当0m <时,()0g m '<,()e m g m m =-单减;当0m >时,()0g m '>,()e mg m m =-单增.所以当0ln 1kx x +-<时,有2ln 1kx x +-≤-对()0,x ∀∈+∞恒成立.即l 1n xk x--≤.令()()ln ,01x h x x x =-->,则()2ln xh x x'=.所以当01x <<时,()0h x '<,()h x 单减;当1x >时,()0h x '>,()h x 单增所以()()min 11h x h ==-.即1k ≤-.综上所述:k 的取值范围为(],1-∞-.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数证明不等式.。
一、等比数列选择题1.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .72.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 3.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 4.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-5.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里8.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .39.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-B .2-或1C .1D .211.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .813.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3714.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .215.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6416.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .317.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102319.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .520.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( ) A .14n - B .41n - C .12n -D .21n -二、多选题21.题目文件丢失! 22.题目文件丢失!23.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( )A .500n S <B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40024.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >25.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T26.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T28.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值29.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .1130.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列31.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;32.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-33.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19834.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( )A .数列n S n ⎧⎫⎨⎬⎩⎭的前10项和为100B .若1,a 3,a m a 成等比数列,则21m =C .若111625ni i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则116m n+的最小值为251235.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】先求出1a ,再当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减后化简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出n a ,可求得3a 的值【详解】解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减得1221n n n a a a -=-+,即121n n a a -=-,所以112(1)n n a a --=-,所以数列{}1n a -是以2-为首项,2为公比的等比数列,所以1122n n a --=-⨯,所以1221n n a -=-⨯+,所以232217a =-⨯+=-,故选:A 2.D【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 3.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 4.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 5.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 6.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 7.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列,由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 8.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案.【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 13.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 14.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 15.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 16.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 17.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 18.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 19.B 【分析】本题首先可设公比为q ,然后根据132185k a a a ++++=得出()2284k q a a ++=,再然后根据24242k a a a +++=求出2q,最后根据等比数列前n 项和公式即可得出结果. 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 【点睛】关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 20.D根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D.二、多选题 21.无 22.无23.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 24.AD根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 25.AD 【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】因为11a >,781a a ⋅>,87101a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 26.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥,又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 27.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 28.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n na a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n na q a a a q +-⨯--+++===--,故选项C 错误; 6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 29.AB 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+ (2))﹣n ()21212n n -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 30.BC 【分析】先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项. 【详解】由题意,根据等比中项的性质,可得 a 2a 3=a 1a 4=32>0,a 2+a 3=12>0, 故a 2>0,a 3>0. 根据根与系数的关系,可知a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根. 解得a 2=4,a 3=8,或a 2=8,a 3=4. 故必有公比q >0, ∴a 12a q=>0. ∵等比数列{a n }是递增数列,∴q >1. ∴a 2=4,a 3=8满足题意. ∴q =2,a 12a q==2.故选项A 不正确. a n =a 1•q n ﹣1=2n . ∵S n ()21212n -==-2n +1﹣2.∴S n +2=2n +1=4•2n ﹣1.∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确. S 8=28+1﹣2=512﹣2=510.故选项C 正确. ∵lga n =lg 2n =n .∴数列{lga n }是公差为1的等差数列.故选项D 不正确. 故选:BC 【点睛】本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题. 31.ABD 【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=,则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确. 故选:ABD . 【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 32.AC 【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知: 在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确;在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列, 2213a a a ∴=,()461r ∴=+,解得13r =-,故D 错误. 故选:AC . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 33.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.AB 【分析】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得111ni i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误.【详解】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002+.所以A 正确;1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以1111111116=1=455494132451ni i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.故选:AB. 【点睛】本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般. 35.ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1, ∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。
一、等比数列选择题1.在数列{}n a 中,32a =,12n n a a +=,则5a =( )A .32B .16C .8D .42.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312 C .15D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭5.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110246.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里 C .90里 D .96里 7.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2±B .2C .3±D .38.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( ) A .3B .505C .1010D .20209.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .611.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a 14a =,则14m n+的最小值为( ) A .53B .32C .43D .11612.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1113.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±14.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .215.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .716.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9817.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6418.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2B .1或2C .-2或2D .-2或1或219.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15820.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .22020二、多选题21.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 23.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1424.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列25.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8326.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列27.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 31.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---32.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( )A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 33.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知()21nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .1135.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解.【详解】 因为12n n a a +=, 所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 4.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 5.C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n nn a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 6.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 7.D 【分析】根据等比数列定义知3813q =,解得答案.【详解】4个数成等比数列,则3813q =,故3q =.故选:D. 8.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 11.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 12.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 13.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C.14.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 15.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 16.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=, 解之可得83d =,23q =,()22218183b a a q ∴-=⨯⨯=.故选:A. 17.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 18.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q ,当1q =时,4121422S a S a ==,不合题意; 当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 19.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 20.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.二、多选题21.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 22.ABC 【分析】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为()112n n n S na d -=+,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案.【详解】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()112n n n S na d -=+ 选项A.112n S n a d n -=+,则+1111+1222n n S S n n d a d a d n n -⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列,故A 正确. 选项B. ()1122na n da +-=,则112222n n n na a a d a ++-==(常数),所以数列{}2n a为等比数列,故B正确.选项C. 由,m n a n a m ==,得()()1111m na a m d na a n d m ⎧=+-=⎪⎨=+-=⎪⎩ ,解得11,1a m n d =+-=- 所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112n n n n S a d m -=+=,()112m m m m S a d n -=+=将以上两式相减可得:()()()2212dm n a m m n n n m ⎡⎤-+---=-⎣⎦()()()112dm n a m n m n n m -+-+-=-,又m n ≠所以()1112d a m n ++-=-,即()1112dm n a +-=-- ()()()()()()()111112m n m n m n d S m n a m n a m n a m n +++-=++=+++--=-+,所以D 不正确. 故选:ABC 【点睛】关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应用,解答本题的关键是利用通项公式得出()()1111m na a m d na a n d m ⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而判断选项C ,由前n 项和公式得到()112n n n n S a d m -=+=,()112m m m m S a d n -=+=,然后得出()1112dm n a +-=--,在代入m n S +中可判断D ,属于中档题. 23.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 24.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .25.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 26.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 27.BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC =, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-,所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;因为2a -1a =4,114n nn n a a a a +--=-, 所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.30.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误.当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误. 综上所述,正确的选项为BD.故选:BD【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.31.BD【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可.【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项 ∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或n n b n q =⋅,设{}n b 的前n 项和为n S , ①当n b q =时,n S nq =;②当n n b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1),2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n n n n n q q q S q q q q n q n q q ++--=+++-⨯=-⨯-+⋅⋅, 所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---, 故选:BD【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型.32.ABD【分析】 由()*123n n na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案.【详解】因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确.由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确. 因为1231n n a +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确, 故选:ABD【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题.33.BCD【分析】根据间隔递增数列的定义求解.【详解】A. ()1111111n k n n n k k n a a a a q q q a q +---+=-=--,因为1q >,所以当10a <时,n k n a a +<,故错误; B. ()()244441++n k n n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛⎫-=++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;C. ()()()()()()21212111n k n n k n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦,当n 为奇数时,()2110k k --+>,存在1k 成立,当n 为偶数时,()2110kk +-->,存在2k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确;D. 若{}n a 是间隔递增数列且最小间隔数是3,则()()()2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,则()220k t k +->,对于3k ≥成立,且()220k t k +-≤,对于k 2≤成立 即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立所以23t -<,且22t -≥解得45t ≤<,故正确.故选:BCD【点睛】本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.34.AB【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案.【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)=(21+22+…+2n )﹣n ()21212nn -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019;当n =10时,T n =2036>2019.∴n 的取值可以是8,9.故选:AB【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
第42课 等比数列1. 等差数列与等比数列对比一栏表2.若数列{}n a 为等比数列,则有 (1)13521,,,,,n a a a a - 同号(2)2462,,,,,n a a a a 同号例1.(1)(2013全国高考)已知数列}{n a 满足12430,3n n a a a ++==-,则数列{}n a 的前10项的和等于( )A .106(13)--- B .101(13)9--C .103(13)-- D .103(13)-+【答案】C【解析】∵12430,3n n a a a ++==-,∴2130a a +=,即14a =, ∵113n na a +=-,∴数列}{n a 为等比数列,∴11001014[1()]3(311313)S ----==+. (2)(2014十校联考)等比数列}{n a 中,已知262,8a a ==,则4a =( ) A .4± B .4 C .4- D .16 【答案】B【解析】242616a a a =⋅=,∴44a =±.∵224220a a q q =⋅=>,∴44a =.等差数列等比数列定义(符号表示)通项公式求和公式当1q =时, 当1q ≠时 中项公式性 质 1若m n p q +=+,则若2m n p +=,则若m n p q +=+,则 若2m n p +=,则 2232,,n n n n n S S S S S --仍是232,,n n n n n S S S S S --仍是(3)(2013济南质检)在等比数列}{n a 中,135a a +=, 2410a a +=,则7a =( ) A .64 B .32 C .16 D .128 【答案】A 【解析】∵24132a a q a a +==+,135a a +=,∴21(1)5a q +=,即11a =,∴6671264a a q ===.例2. 已知数列}{n a 满足:21=a 且12(1)nn n n a a a n++=+(*∈N n ).(1)求证:数列⎭⎬⎫⎩⎨⎧-1n a n 为等比数列;(2)求数列{}n a 的通项公式. 【证明】(1)∵21=a 且12(1)nn n n a a a n++=+(*∈N n ),∴111111()2(1)22n n n n n n n a n a n n n n a a a a a n+-+-+++-=-==++∴1111(1)2n nn na a ++-=-, ∴数列⎭⎬⎫⎩⎨⎧-1n a n 为等比数列. (2) ∵11111122a -=-=-,∴11111()()()222n nn n a --=-=-, ∴ 221n n nn a ⋅=-. 练习:(2014十校联考)已知n S 是数列{}n a 的前n 项和,且12a =,当2n ≥时,有132n n S S -=+.(1)求证:{1}n S +是等比数列;(2)求数列{}n a 的通项公式.【解析】(1)∵132n n S S -=+,∴1113213(1)n n n S S S --+=++=+,∴1131n n S S -+=+.又∵11113S a +=+=,∴数列{1}n S +是以3为首项,3为公比的等比数列. (2)由(1)得11333n n n S -+=⨯=,∴31n n S =-.当2n ≥时,111(31)(31)23n n n n n n a S S ---=-=---=⋅.又当1n =时,12a =也满足上式,∴数列{}n a 的通项公式为123n n a -=⋅.例3. (2013·四川卷)在等差数列{}n a 中,a a +=138,且a 4为a 2和a 9的等比中项,求数 列{}n a 的首项、公差及前n 项和.解析:设该数列公差为d ,前n 项和为n S ,由已知可得,a d =+1228 ,()()()a d a d a d +=++211138 .所以,a d =+14 ,1()30d d a =- , 解得a =14,d =0 或a =11,d =3 ,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以,数列{}n a 的前n 项和()*n S n n =∈4N 或()2*32n n S nn -∈=N 练习:已知数列}{n a 是公差为2的等差数列,且521,,a a a 成等比数列,则2a = ( )A . -2 B. -3C .2D . 3第42课 等比数列的课后作业1.等比数列,33,66x x x ++,…的第四项等于( )A .24-B .0C .12D .24 【答案】A【解析】∵2(33)(66)x x x +=+,解得1x =-(舍去),或3x =-, ∴13a =-,26a =-,∴2q =,∴33413224a a q ==-⨯=-.2.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为( )A .56B .42C .28D .14 【答案】C【解析】∵等差数列}{n a 中,34512a a a ++=, ∴44a =,174747()7272822a a a S a +⨯==== 3.在递增等比数列{}n a 中,22a =,434a a -=,则公比q =( ) A .1- B .1 C .2 D .21解:2432,4a a a =-= 2224q q ∴-=,220q q --=,2q = 或1q =-{}n a 递增,2q ∴=,选C4.设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a =( )A .2B .3C .4D .5 【答案】B【解析】∵3420a a +=,∴3(2)0a q +=,∴2q =-,∴23111(1)3S a q q a a ++==.5.在等比数列}{n a 中,245a a +=, 3510a a +=,则8a =( ) A .64 B .32 C .16 D .128【答案】A 【解析】∵35242a a q a a +==+,245a a +=,21(1)5a q q +=,即112a =,∴7681264a a q ===.6.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A .12 B .13 C .14 D .157.在等差数列}{n a 中,前n 项和为n S ,已知12932a a +=,则=11S ( ) A.33 B.35 C.45 D.668.已知等差数列{}n a 满足:18130,58a a a >=,则前n 项和n S 取最大值时,n 的值为( ) A .20 B .21 C .22 D .23【答案】B【解析】∵等差数列{}n a 满足,18130,58a a a >=, ∴115(7)8(12)a d a d +=+,∴1361d a =-. 令1(1)n a a n d =+-113(1)()061a n a =+--≥,得6412133n ≤=, ∴数列{}n a 前21项都是正数,以后各项都是负数, 故n S 取最大值时,n 的值为21.9. 已知数列}{n a 是等比数列,且22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .16(14)n -- B .16(12)n -- C .32(14)3n -- D .32(12)3n -- 【答案】C 【解析】∵35218a q a ==,∴12q =,14a =,∵21114n n n n a a q a a +-==,128a a =,∴1223118[1()]324(14)1314n n n n a a a a a a -+-++⋅⋅⋅+==--.10.公差不为零的等差数列{}n a 中,39S = ,且125a a a ,, 成等比数列,则数列{}n a 的公差为________A.1B.2C.3D.4解:由已知,得1231112215211119332931202(4)()a a a a d a a d d a a a a a d a d ⎧++=+⨯⨯⨯=⎧==⎧⎧⎪⎪⇒⇒⎨⎨⎨⎨==⋅=⎪⎩⎩⎩⎪+=+⎩或 02d d ≠∴=11. (2014·苏锡常镇调研)在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为________.解析:43+3 设这五个数构成的等比数列的公比为q ,则q >0.又a 1=1,a 5=9,所以q4=9,q =3,所以a 2=3,a 3=3,a 4=33,故插入的三个数的和为a 2+a 3+a 4=43+3. 12.已知数列}{n a 的前n 的和为n S ,且11=a ,n n S a 211=+(n=1,2,3,…) (1)求证:数列{}n S 是等比数列,并求n S 的表达式; (2)求数列{}n a 的通项公式 解:(1)112n n a S +=,112n n n S S S +∴-=, 132n n S S +∴=,即132n n S S += ,∴数列{}n S 是等比数列 其中,首项111S a == ,公比32q =,13()2n n S -∴= (2)当2n ≥时,12213313()()()2222n n n n n n a S S ----=-=-=⋅ ,而121131()223a -⋅=≠ 所以,数列{}n a 的通项公式为21113()222n n n a n -=⎧⎪=⎨⋅≥⎪⎩13.已知数列{}n a 中,321=a ,)(121++∈+=N n a a a n n n 。
河北省衡水市深州中学2023-2024学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知复数z 满足(i 是虚数单位),则( )A. B. C. D.2.设,若,则( )A.1B.-2C.3D.-13.已知数列是等比数列,且,,则( )A.3B.6C.3或-3D.6或-6的渐近线方程为( )A. B.C. D.5.已知直线与圆相交于A ,B 两点,且,则实数( )6.在数列中,,,则的前2024项和为( )7.如图,在四棱锥中,底面ABCD ,底面ABCD为正方形,,E 为CD 的中点,F 为PC 的中点,则异面直线BF 与PE 所成角的正弦值为( )234i z z +=+z =14i-64i-62i-32i-3()f x ax x =+(1)4f '-=a ={}n a 712a =153a =11a =2118x -=y =y x =3y x=±13y x=±340x y a ++=22:(2)9C x y -+=120ACB ︒∠=a =272{}n a 13a =11(1)1nn na a n a ++=≥-{}n a P ABCD -PA ⊥PA BC =8.已知F 是椭圆的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q,则椭圆E 的离心率为( )二、多项选择题9.已知为等差数列的前n 项和,且,,则下列结论正确的是( )A. B.为递减数列 C.D.10.已知函数,则下列结论正确的是( )A.函数存在极小值B.C.当时,D.若函数有且仅有两个零点,则且11.已知抛物线,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点,则下列说法正确的是( )A.抛物线C 的准线方程为B.若,则的面积为C.D.的周长的最小值为12.如图,在棱长为2的正方体中,点E 是棱的中点,点P 是底面上的一点,且平面,则下列说法正确的是( )A. B.存在点P ,使得2222:1(0)x y E a b a b+=>>120PFQ =︒n S {}n a 17a =-212S =-29n a n =-{}n a 360a a +=71S a =()e x f x x =()y f x =111543f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0x <()0f x <()()g x f x kx =-0k >1k ≠2:12C y x =(4,3)M 3x =-||7PF =PMF △32-|||PF PM -PMF △7+1111ABCD A B C D -11D C ABCD 1//D P 11A C B 11D P DB ⊥1A P BE⊥C.的最大值为6三、填空题13.曲线在点处的切线方程为___________.14.若动点到点的距离和动点M 到直线的距离相等,则点M 的轨迹方程是_________.15.若数列满足,,,则的通项公式是_____________.16.已知椭圆的左、右焦点分别为,,M 为C 上任意一点,N 为圆上任意一点,则四、解答题17.已知等差数列的其前n 项和为,,.(1)求的通项公式;(2)若的前n 项和.18.已知圆的圆心F 是抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 交抛物线C 于A ,B 两点,且点是弦的中点,求直线l 的方程.19.在数列中,(1)若是等比数列;(2)求数列的前项和.20.如图,在三棱柱中,,,且,为锐角.1D 1PE ⋅()2ln 2y x x x =++()1,2(,)M x y (2,0)F 2x =-{}n a 112a =12(1)n n a a n n +=+≥)n ∈N {}n a 22:143x y C +=1F 2F 2:(5)E x -2(4)1y +-=||MN MF -{}n a n S 26227a a +=540S ={}n a n b =}n b n T 2220x y x ++=(2,1)P --AB {}n a 1a =*1*1,2,,32,21,.3n n n a n k k a n k k +⎧=∈⎪⎪=⎨⎪+=-∈⎪⎩N N 21n n b a -=}n b {}n a 2n 2n S 111ABC A B C -12AA AC ==AB =4BC =11AC B C ⊥1A AC ∠(1)证明:;(2)若二面角与平面所成角的正弦值.21.已知数列的前n 项和,且.(1)求数列的通项公式;(2)若不等式对任意恒成立,求的取值范围.22.已知椭圆.(1)求椭圆C 的方程;(2)若直线与椭圆C 交于A ,B 两点,点P 是y 轴上的一点,过点A 作直线的垂线,垂足为M ,是否存在定点P ,使得为定值?若存在,求出点P 的坐标;若不存在,请说明理由.1AB AA ⊥1A AB C --1AC 1AB C {}n a 21n n nS a n =+14a ={}n a ()2235n n n a λ--<-*n ∈N λ2222:1(0)x y C a b a b +=>>:1l y kx =+PB PB PM ⋅参考答案1.答案:A解析:设,所以,所以,所以.故选A.2.答案:A解析:,解得.故选:A.3.答案:B解析:设数列的公比为,则,所以.故选B.4.答案:B解析:渐近线方程为.故选:B.5.答案:D解析:因为,所以点C 到直线故选:D.6.答案:C解析:因为,所以,而,所以数列是以4为周期的周期数列,i(,)z a b a b =+∈R 2i 2(i)3i 34i z z a b a b a b +=++-=-=+1,4a b ==-14i z =-2()31,(1)314f x ax f a ''=+-=+=1a ={}n a q 8157a a q =8q =4=41176a q ==y x =120ACB ︒∠=AB ===1113,(1)1nn na a a n a ++==≥-23131(2)2,131(2)a a ++-==-==---4113113⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭5=1123112+=-51a a ={}n a所以的前2024项和故选:C.7.答案:A解析:如图,底面,底面为正方形,、、所在直线两两垂直,以A 为坐标原点,分别以、、所在直线为x ,y ,z 轴建立空间直角坐标系,设,则,,,,,,异面直线与故选:A.8.答案:C解析:设椭圆右焦点为,连接,,根据椭圆对称性可知四边形因为,可得,,{}n a 202412T a a =++()320241234506a a a a a a ++=+++= PA ⊥ ABCD ABCD ∴AB AD AP ∴AB AD AP 2PA BC ==(2,0,0)B (1,1,1)F (0,0,2)P (1,2,0)E (1,1,1)BF ∴=-(1,2,2)PE =- cos ,||||BF PE BF PE BF PE ⋅<>===⋅∴BF =F 'PF 'QF 'PFF 'QF PF =120PFQ ∠=︒60FPF ∠='42PF PF a ''==1232a由余弦定理可得即故椭圆离心率故选:C.9.答案:ACD解析:设等差数列的公差为d ,因为,,所以,解得,所以,故A 正确;因为,所以为递增数列,故B 错误;由,,有,故C 正确;,故D 正确.故选:ACD.10.答案:ACD解析:,当时,,函数单调递增;当时,,函数单调递减,故函数在处取得极小值,也是最小值,没有极大值,A 正确;当时,函数,B 错误:当时,,易知C 正确;由得,若函数有两个零点,只需且,D 正确.故选:ACD.11.答案:ACD解析:抛物线C 的准线方程为,故A 正确;设,所以,所以,所以,解得当时,的面积为时,的面积为()2222(2)2cos 60c PF PF PF PF PF PF '''=+-︒=+222974444c a a a =-=7.16=e ==={}n a 17a =-212S =-22112(7)5a S a =-=---=-2d =1(1)72(1)29n a a n d n n =+-=-+-=-20d =>{}n a 33a =-63a =360a a +=7767(7)272S ⨯=⨯-+⨯=-()(1)e x f x x '=+1x >-()0f x '>()f x 1x <-()0f x '<()f x 1x =-1x >-(f x 14>>111543f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0x <e 0x x <()f x kx =()e 0x x k -=()g x 0k >1k ≠3x =-()00,P x y 0||37PF x =+=04x =20y 01248x ==0y =±(4,P PMF △(4,-PMF △错误;的延长线与抛物线C 的交点处时,故C 正确;过点P 作C 的准线的垂线,垂足为,所以的周长,所以当且仅当与的准线垂直时,取得最小值,故D 正确.故选:ACD.12.答案:ACD解析:以D 为坐标原点,,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则,,,,,,所以,,,所以,所以平面,又平面,所以.故A 正确;设,所以,所以,即.所以,,,解得,又,故B 错误;,,所以,,所以.故D 正确.故选:ACD.||||||PF PM FM -≤=P 'PMF △||||||L PF PM MF =++=||||PP PM MF '++min 7L =+MP 'C DA DC 1DD (0,0,0)D 1(2,0,2)A (2,2,0)B 1(0,2,2)C 1(2,2,2)B (0,1,2)E 1(2,2,2)DB = 11(2,2,0)AC =- 1(0,2,2)BA =- 111110,0DB A C DB BA ⋅=⋅=1DB ⊥11A C B 1//D P 11A C B 11DB D P ⊥(,,0)(02,02)P x y x y ≤≤≤≤1(,,2)D P x y =-11(,,2)(2,2,2)2240D P DB x y x y ⋅=-⋅=+-=2y x =-(,2,0)(02)(2,1,2)P x x x BE -≤≤⋅=--1(2,2,2)(02)A P x x x =---≤≤1(2,1,2)(2,2,2)0BE A P x x ⋅=--⋅---= 2x =-0≤2x ≤1D P ===2x ≤≤minP= 1(2,2,2)PA x x =--(,1,2)PE x x =--21(2)()(1)(2)4256PA PE x x x x x x ⋅=--+--+=-+02x ≤≤123,68PA PE ⎡⎤⋅∈⎢⎥⎣⎦13.答案:解析:因为,所以曲线在点处的切线方程为,即.14.答案:解析:动点到点的距离与它到直线的距离相等,由抛物线定义可知动点的轨迹为抛物线,该抛物线以为焦点,以为准线,开口向右,所以抛物线方程为.15.答案:解析:因为,所以,,,,所以,又也满足上式,所以.16.答案:解析:由题意知,,,当且仅当M ,N ,E 共线时取等号,所以,20x y -=(21)ln y x x '=++12y x '==∣()2ln 2y x x x =++(1,2)22(1)y x -=-20x y -=28y x=(,)M x y (2,0)F 2x =-(,)M x y (2,0)F 2x =-2y 8x =212n a n n =-+1112,2(1,)n n a a a n n n +==+≥∈N 212a a -=324a a -= 12(1)n n a a n --=-2n ≥()()()121321n n n a a a a a a a a -=+-+-++- 2(1)12242(1)122122n n n n n -=++++-=+⨯=-+ 2n ≥112a =212n a n n =-+5-2(1,0)F (5,E 124MF MF +=||||1MN ME ≥-()12222||||4||4(||1)45MN MF MN MF MN MF ME MF EF -=--=+-≥-+-≥-当且仅当M,N,E ,共线时取等号,故.17.答案:(1)解析:(1)设等差数列的公差为d ,因为,,所以解得所以;(2)由(1)知,所以.18.答案:(1)(2)解析:(1)圆的方程可化为,故圆心的坐标为,设抛物线C 的方程为,所以,所以,所以抛物线C 的方程为.2F 2EF ==||MN MF -5-31n -{}n a 26227a a +=540S =()261115112253727,54551040,2a a a d a d a d dS a a d ⎧+=+++=+=⎪⎨⨯=+=+=⎪⎩12,3,a d =⎧⎨=⎩1(1)23(1)31n a a n d n n =+-=+-=-1111(31)(32)33132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭121111111111325573132323264n n T b b b n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+ 24y x =-230x y -+=2220x y x ++=22(1)1x y ++=(1,0)F -22(0)y px p =->12p-=-2p =24y x =-(2)设,,则两式相减,得,即,因为点是的中点,所以,所以.所以直线l 的方程为,即.19.答案:(1)见解析(2)解析:(1)证明:,因为(2)由(1)可知,所以所以20.答案:(1)见解析()11,A x y ()22,B x y 21122244y x y x ⎧=-⎨=-⎩()2212124y y x x -=--()()()1212124y y y y x x +-=--(2,1)P --AB 122y y +=-1242k y y -==+12(2)y x +=+230x y -+=14133n n ⎛⎫-+ ⎪⎝⎭12122121111121111333333333n n n n n n b a a a a b ++--⎛⎫⎛⎫=-=-=+-=-= ⎪ ⎪⎝⎭⎝⎭1113b a =-=n b 1111333n n n b -⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭2113nn a -⎛⎫=+ ⎪⎝⎭2123421211332121222333n n n n n S a a a a a a a a a a a a ---=++++++=++++++++= ()21321211111122233333333n n a a a n n -⎡⎤⎛⎫⎛⎫++++=++++++=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 2111331112412211333333313n n n n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦+++++=⨯+=-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-解析:(1)证明:连接,如图所示.因为,所以四边形是菱形,所以,又,,,平面,所以平面,又平面,所以,又,所以.在中,,所以,所以,又,,平面,所以平面,又平面,所以;(2)因为,,所以二面角的大小为,即以A 为坐标原点,,所在的直线分别为x 轴,y 轴,垂直于,所在的直线为z 轴,建立空间直角坐标系,如图所示.所以,,,,所以,,设平面的一个法向量为,所以令,解得,所以平面的一个法向量为,又,设直线与平面所成角为,所以1AC 1AA AC =11AA C C 11A C AC ⊥11AC B C ⊥11A C B C C = 1AC 1B C ⊂11A B C 1AC ⊥11A B C 11A B ⊂11A B C 111AC A B ⊥11//AB A B 1AC AB ⊥ABC △2AC =AB =4=222AC AB BC +=AC AB ⊥1AC AC A = AC 1AC ⊂11AA C C AB ⊥11AA C C 1AA ⊂11AA C C 1AB AA ⊥1AB AA ⊥AC AB ⊥1A AB C --1A AC ∠1A AC ∠=AB AC AB AC (0,0,0)A 1A 1C (0,2,0)C B (0,2,0)AC = 111AB AB BB AB AA =+=+=+= 1AB C (,,)n x y z = 120,0,n AC y n AB y ⎧⋅==⎪⎨⋅=++=⎪⎩ 1x =y =0,2z =-1AB C (1,0,2)n =- 1AC = 1AC 1AB C θsin θ=111cos ,||n AC n AC n AC ⋅===所以直线与平面21.答案:(1)(2)解析:(1)由题意得,①-②得,,符合此式,.(2)对任意恒成立,即恒成立,记,所以当时,,当,即随着的增大,递减,1AC 1AB C ()21n n a n =+378λ<()112121,2n n n n n S a n n S a n n --⎧=⎪+⎪⎨-⎪=≥⎪⎩①②()112121n n n n n n S S a a a n ----=-+()2121n n n n n a a a n n --=-+2=()()12112113222421212n n n n n n a a a n n a a n n a a a n n ---+=⋅⋅⋅⋅=⨯⨯⨯⨯⨯⨯⨯=+≥- 14a =()21n n a n =+()()()()223123512n n n n n n λ--=+-<-+*n ∈N 5λ->∈*N n b =1102=-<2n ≥0n b >==32b >n ≥111151223236n =+<+=<-n n b所以的最大值为.(2)存在点,使得为定值解析:(1)由题意知解得,;(2)设,,,由得,所以所以所以存在点,使得为定值.n b 3b =λ->378<214y +=10,4P ⎛⎫ ⎪⎝⎭PB PM ⋅ 222224431,,c a a bc a b ⎧=⎪⎪⎪⎪+=⎨⎪⎪⎪=-⎪⎩26a =2b =214y +=(0,)P t ()11,A x y ()22,B x y 221,641,x y y kx ⎧+=⎪⎨⎪=+⎩()()2222223690,363623144720k x kx k k k ++-=∆=++=+>12x x +=12x =()()1122(),,PB PM PB PA AM PB PA PB AM PB PA x y t x y t ⋅=⋅+=⋅+⋅=⋅=-⋅- ()()()()()2221212121229111(1)(1)1(1)23x x kx t kx t k x x k t x x t k k t k ⎛⎫=++-+-=++-++-=+-+-⋅ ⎪+⎝⎭226(1)23k t k ⎛⎫-+-= ⎪+⎝⎭==10,4P ⎛⎫ ⎪⎝⎭PB PM ⋅。
一、等比数列选择题1.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项 3.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )A .2±B .2C .3±D .34.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭5.12的等比中项是( )A .-1B .1C.2D.2±6.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭7.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -8.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .69.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( )A .1:3B .3:1C .3:5D .5:310.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-B .2-或1C .1D .211.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .412.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1113.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1214.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6415.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .916.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列17.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .318.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )A .32B .31C .16D .1519.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-20.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .36二、多选题21.题目文件丢失!22.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比23.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列24.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---25.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥26.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A.12B.12- C.12+ D.12-+ 27.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( )A .数列{}n S 递增,且1n S <B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为128.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-129.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8D .-1230.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T31.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列B .数列{}1n n a a +是等比数列C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a << C .n S 的最大值为7SD .n T 的最大值为6T33.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=34.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路35.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 2.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 3.D 【分析】根据等比数列定义知3813q =,解得答案.【详解】4个数成等比数列,则3813q =,故3q =.故选:D. 4.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 5.D 【分析】利用等比中项定义得解. 【详解】23111()()(2222-==±,12∴与12的等比中项是2± 故选:D 6.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---,要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 7.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D. 8.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a ,因为10a ≠,所以0n a ≠,即12n na a +=,所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =, 所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 11.A 【分析】利用已知条件化简,转化求解即可.【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 12.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 13.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 15.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =, 5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 16.C 【分析】根据等比数列的定义和判定方法逐一判断. 【详解】对于A ,若24nna =,则2nn a =±,+1+12n n a =±,则12n na a +=±,即后一项与前一项的比不一定是常数,故A 错误;对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2m nm n a a +⋅=可得0n a ≠,则+1+12m n m n a a +⋅=,所以1+1222n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;对于D ,由31211n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若()10,0n n na q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2210n n n n a a a a ++=≠,则数列{}n a 为等比数列;(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 17.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 18.B 【分析】先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q,所以211a a q==,又因为1111nna q S qq,所以()551123112S -==-.故选:B. 19.A【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 20.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B .二、多选题 21.无22.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 23.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 24.BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题, 25.ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k 时,21)2k k ->21)k k ->,则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 26.AB 【分析】因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2111qq q q -=-+,因为1q ≠,所以21q q =+,因为0q >,所以解得q =, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即321q q =+,整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=,因为0q >,所以解得12q -+=,综上q =或q =, 故选:AB 27.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可【详解】 解:因为112a =,所以1(1)2f =, 所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==, 故选:AC 【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 28.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确; 若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.29.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 30.AD 【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】因为11a >,781a a ⋅>,87101a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 31.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 32.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 33.BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以 231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22nn n n n T ++==, 故D 正确. 故选:BD 【点晴】本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 34.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确;对于D ,由于4561111924281632a a a ⎛⎫++=⨯++=⎪⎝⎭,所以D 正确, 故选:ACD【点睛】 此题考查等比数的性质,等比数数的前项n 的和,属于基础题.35.ACD【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案.【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a m a i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++ 11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22n n n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD.【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。
一、等比数列选择题1.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .162.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或64.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q <<B .61a >C .121T >D .131T >5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭6.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13nS n = C .13(1)n a n n =--D .{}3n S 是等比数列7.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n8.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .89.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭11.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .412.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .25013.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -14.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .415.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .816.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6D .317.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )A .32B .31C .16D .1518.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 19.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-20.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45B .54C .99D .81二、多选题21.题目文件丢失!22.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为124.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-125.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列26.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2827.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥28.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( )A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T30.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--31.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1035.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C . 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解. 【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C.4.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 5.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 6.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3nn n S =+-=,所以13n S n=,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 7.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2,进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 8.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 11.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 12.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 13.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D. 14.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===.故选:C 15.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.D 【分析】由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】k a 是1a 与2k a 的等比中项212k k a a a ∴=,()()2111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦()()223423k d d k d ∴+=⨯+,3k ∴=.故选:D 【点睛】本题考查等差数列与等比数列的基础知识,属于基础题. 17.B 【分析】先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q,所以211a a q==,又因为1111nna q S qq,所以()551123112S -==-.故选:B. 18.D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 19.D【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 20.C 【分析】利用等比数列的通项与基本性质,列方程求解即可 【详解】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C二、多选题 21.无22.BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题, 23.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =,所以1(1)2f =, 所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==, 故选:AC 【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 24.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.25.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a aq a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,363a q a =,在1q ≠时,两者不相等,错误; C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD .结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 26.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28.【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 27.ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132nn n S -==--,所以131+2+2(3+3)132nn n S -==-, 因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 28.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 29.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 30.AB 【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n nS n n +-=-=---.故选:AB. 31.BD 【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或nn b n q =⋅,设{}n b 的前n 项和为n S ,①当n b q =时,n S nq =;②当nn b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1), 2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n n n n n q q q S q q q q n q n q q++--=+++-⨯=-⨯-+⋅⋅,所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---,故选:BD 【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 32.ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 33.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”; 对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.AD【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确.【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-,∴a 9•a 1021712()3a =-<0,故A 正确;∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误;由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12 可得等差数列{b n }一定是递减数列,即d <0,即有a 9>b 9>b 10,故D 正确.故选:AD【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知: 在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误; 在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+, ()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=, 1a ,2a ,3a 成等比数列, 2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
等比数列1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q 推广:n mn m n n n m n m m ma a a a q q q a a ---=⇔=⇔= 3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A ab =± 注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}nn n a A B A B a =⋅⋅≠⇔为等比数列6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n mn m a a q-=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。