高考数学(理)(北师大版)大一轮复习讲义 第九章 平面解析几何第九章 9.5
- 格式:docx
- 大小:2.01 MB
- 文档页数:22
一、知识梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率都存在且分别为k1,k2,则有l1∥l2⇔k1=k2;特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=—1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组错误!的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.两种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=错误!点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=错误!常用结论1.两个充要条件(1)两直线平行或重合的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2—A2B=0.1(2)两直线垂直的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.2.六种常见对称(1)点(x,y)关于原点(0,0)的对称点为(—x,—y).(2)点(x,y)关于x轴的对称点为(x,—y),关于y轴的对称点为(—x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=—x的对称点为(—y,—x).(4)点(x,y)关于直线x=a的对称点为(2a—x,y),关于直线y=b的对称点为(x,2b—y).(5)点(x,y)关于点(a,b)的对称点为(2a—x,2b—y).(6)点(x,y)关于直线x+y=k的对称点为(k—y,k—x),关于直线x—y=k的对称点为(k +y,x—k).3.三种直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx—Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y +C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.二、教材衍化1.已知点(a,2)(a>0)到直线l:x—y+3=0的距离为1,则a=________.解析:由题意得错误!=1.解得a=—1+错误!或a=—1—错误!.因为a>0,所以a=—1+错误!.答案:错误!—12.已知P(—2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________.解析:由题意知错误!=1,所以m—4=—2—m,所以m=1.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于—1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏错误!错误!(1)判断两直线平行时,忽视两直线重合的情况;(2)判断两直线的位置关系时,忽视斜率不存在的情况;(3)求两平行线间的距离,忽视x,y的系数应对应相同.1.直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则m=________.解析:直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则有错误!=错误!≠错误!,故m=2或—3.答案:2或—32.若直线(3a+2)x+(1—4a)y+8=0与(5a—2)x+(a+4)y—7=0垂直,则a =________.解析:由两直线垂直的充要条件,得(3a+2)(5a—2)+(1—4a)(a+4)=0,解得a=0或a=1.答案:0或13.直线2x+2y+1=0,x+y+2=0之间的距离是________.解析:先将2x+2y+1=0化为x+y+错误!=0,则两平行线间的距离为d=错误!=错误!.答案:错误!两直线的位置关系(多维探究)角度一判断两直线的位置关系(2020·天津静海区联考)“a=1”是“直线ax+2y—8=0与直线x+(a+1)y+4=0平行”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】设直线l1:ax+2y—8=0,直线l2:x+(a+1)y+4=0.若l1与l2平行,则a(a +1)—2=0,即a2+a—2=0,解得a=1或a=—2.当a=—2时,直线l1的方程为—2x+2y—8=0,即x—y+4=0,直线l2的方程为x—y+4=0,此时两直线重合,则a≠—2.当a=1时,直线l1的方程为x+2y—8=0,直线l2的方程为x+2y+4=0,此时两直线平行.故“a=1”是“直线ax +2y—8=0与直线x+(a+1)y+4=0平行”的充要条件.故选A.【答案】A角度二由两直线的位置关系求参数(1)(2020·安徽芜湖四校联考)直线(2m—1)x+my+1=0和直线mx+3y+3=0垂直,则实数m的值为()A.1B.0C.2D.—1或0(2)(2020·陕西宝鸡中学二模)若直线x+(1+m)y—2=0与直线mx+2y+4=0平行,则m的值是()A.1B.—2C.1或—2D.—错误!【解析】(1)由两直线垂直可得m(2m—1)+3m=0,解得m=0或—1.故选D.(2)1当m=—1时,两直线方程分别为x—2=0和x—2y—4=0,此时两直线相交,不符合题意.2当m≠—1时,两直线的斜率都存在,由两直线平行可得错误!解得m=1.综上可得m=1.故选A.【答案】(1)D (2)A角度三由两直线的位置关系求直线方程(一题多解)经过两条直线2x+3y+1=0和x—3y+4=0的交点,并且垂直于直线3x +4y—7=0的直线的方程为________.【解析】法一:由方程组错误!解得错误!即交点为错误!,因为所求直线与直线3x+4y—7=0垂直,所以所求直线的斜率为k=错误!.由点斜式得所求直线方程为y—错误!=错误!错误!,即4x—3y+9=0.法二:由垂直关系可设所求直线方程为4x—3y+m=0,由方程组错误!可解得交点为错误!,代入4x—3y+m=0得m=9,故所求直线方程为4x—3y+9=0.法三:由题意可设所求直线的方程为(2x+3y+1)+λ(x—3y+4)=0,即(2+λ)x+(3—3λ)y+1+4λ=0,1又因为所求直线与直线3x+4y—7=0垂直,所以3(2+λ)+4(3—3λ)=0,所以λ=2,代入1式得所求直线方程为4x—3y+9=0.【答案】4x—3y+9=0错误!两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等.(2)两直线垂直⇔两直线的斜率之积等于—1.[提醒] 判断两条直线的位置关系应注意:(1)注意斜率不存在的特殊情况.(2)注意x,y的系数不能同时为零这一隐含条件.1.求满足下列条件的直线方程.(1)过点P(—1,3)且平行于直线x—2y+3=0;(2)已知A(1,2),B(3,1),线段AB的垂直平分线.解:(1)设直线方程为x—2y+c=0,把P(—1,3)代入直线方程得c=7,所以直线方程为x—2y+7=0.(2)AB的中点为错误!,即错误!,直线AB的斜率k AB=错误!=—错误!,故线段AB的垂直平分线的斜率k=2,所以其方程为y—错误!=2(x—2),即4x—2y—5=0.2.(一题多解)已知直线l1:ax+2y+6=0和直线l2:x+(a—1)y+a2—1=0.(1)试判断l1与l2是否平行;(2)当l1⊥l2时,求a的值.解:(1)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=—3,l2:x—y—1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y=—错误!x—3,l2:y=错误!x—(a+1),l1∥l2⇔错误!解得a=—1,综上可知,当a=—1时,l1∥l2.法二:由A1B2—A2B1=0,得a(a—1)—1×2=0,由A1C2—A2C1≠0,得a(a2—1)—1×6≠0,所以l1∥l2⇔错误!⇔错误!可得a=—1,故当a=—1时,l1∥l2.(2)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=—3,l2:x—y—1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=—错误!x—3,l2:y=错误!x—(a+1),由错误!·错误!=—1,得a=错误!.法二:由A1A2+B1B2=0,得a+2(a—1)=0,可得a=错误!.两条直线的交点和距离问题(典例迁移)(1)经过两直线l1:x—2y+4=0和l2:x+y—2=0的交点P,且与直线l3:3x—4y +5=0垂直的直线l的方程为__________________.(2)(2020·宿州模拟)已知点P(4,a)到直线4x—3y—1=0的距离不大于3,则a的取值范围是________.(3)(2020·厦门模拟)若两平行直线3x—2y—1=0,6x+ay+c=0之间的距离为错误!,则c的值是________.【解析】(1)由方程组错误!得错误!即P(0,2).因为l⊥l3,所以直线l的斜率k=—错误!,所以直线l的方程为y—2=—错误!x,即4x+3y—6=0.(2)由题意得,点P到直线的距离为错误!=错误!.又错误!≤3,即|15—3a|≤15,解得0≤a≤10,所以a的取值范围是[0,10].(3)依题意知,错误!=错误!≠错误!,解得a=—4,c≠—2,即直线6x+ay+c=0可化为3x—2y+错误!=0,又两平行线之间的距离为错误!,所以错误!=错误!,解得c=2或—6.【答案】(1)4x+3y—6=0 (2)[0,10] (3)2或—6【迁移探究】若将本例(1)中的“垂直”改为“平行”,如何求解?解:法一:由方程组错误!得错误!即P(0,2).因为l∥l3,所以直线l的斜率k=错误!,所以直线l的方程为y—2=错误!x,即3x—4y+8=0.法二:因为直线l过直线l1和l2的交点,所以可设直线l的方程为x—2y+4+λ(x+y—2)=0,即(1+λ)x+(λ—2)y+4—2λ=0.因为l与l3平行,所以3(λ—2)—(—4)(1+λ)=0,且(—4)(4—2λ)≠5(λ—2),所以λ=错误!,所以直线l的方程为3x—4y+8=0.错误!(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:1点P(x0,y0)到直线x=a的距离d=|x0—a|,到直线y=b的距离d=|y0—b|;2应用两平行线间的距离公式要把两直线方程中x,y的系数分别化为相等.1.已知A(2,0),B(0,2),若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C 的个数为()A.4B.3C.2D.1解析:选A.设点C(t,t2),直线AB的方程是x+y—2=0,|AB|=2错误!.由于△ABC的面积为2,则这个三角形中AB边上的高h满足方程错误!×2错误!h=2,即h=错误!.由点到直线的距离公式得错误!=错误!,即|t+t2—2|=2,即t2+t—2=2或者t2+t—2=—2.因为这两个方程各有两个不相等的实数根,故这样的点C有4个.2.已知直线y=kx+2k+1与直线y=—错误!x+2的交点位于第一象限,则实数k的取值范围是________.解析:如图,已知直线y=—错误!x+2与x轴、y轴分别交于点A(4,0),B(0,2).而直线方程y=kx+2k+1可变形为y—1=k(x+2),表示这是一条过定点P(—2,1),斜率为k的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB上(不包括端点),所以动直线的斜率k需满足k PA<k<k PB.因为k PA=—错误!,k PB=错误!.所以—错误!<k<错误!.答案:错误!3.(一题多解)直线l过点P(—1,2)且到点A(2,3)和点B(—4,5)的距离相等,则直线l的方程为________.解析:法一:当直线l的斜率存在时,设直线l的方程为y—2=k(x+1),即kx—y+k+2=0.由题意知错误!=错误!,即|3k—1|=|—3k—3|,所以k=—错误!,所以直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当直线l的斜率不存在时,直线l的方程为x=—1,也符合题意.故所求直线l的方程为x+3y—5=0或x=—1.法二:当AB∥l时,有k=k AB=—错误!,直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当l过AB的中点时,AB的中点为(—1,4),所以直线l的方程为x=—1,故所求直线l的方程为x+3y—5=0或x=—1.答案:x+3y—5=0或x=—1对称问题(多维探究)角度一点关于点的对称过点P(0,1)作直线l,使它被直线l1:2x+y—8=0和l2:x—3y+10=0截得的线段被点P平分,则直线l的方程为________________.【解析】设l1与l的交点为A(a,8—2a),则由题意知,点A关于点P的对称点B(—a,2a—6)在l2上,把B点坐标代入l2的方程得—a—3(2a—6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y—4=0.【答案】x+4y—4=0角度二点关于线的对称如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2错误!B.6C.3错误!D.2错误!【解析】易得AB所在的直线方程为x+y=4,由于点P关于直线AB的对称点为A1(4,2),点P关于y轴对称的点为A2(—2,0),则光线所经过的路程即A1(4,2)与A2(—2,0)两点间的距离.于是|A1A2|=错误!=2错误!.【答案】A角度三线关于线的对称直线2x—y+3=0关于直线x—y+2=0对称的直线方程是()A.x—2y+3=0 B.x—2y—3=0C.x+2y+1=0 D.x+2y—1=0【解析】设所求直线上任意一点P(x,y),则P关于直线x—y+2=0的对称点为P′(x0,y0),由错误!得错误!由点P′(x0,y0)在直线2x—y+3=0上,所以2(y—2)—(x+2)+3=0,即x—2y+3=0.【答案】A错误!(1)中心对称问题的2个类型及求解方法1点关于点对称:若点M(x1,y1)及N(x,y)关于点P(a,b)对称,则由中点坐标公式得错误!进而求解;2直线关于点的对称,主要求解方法:(a)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(b)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.(2)轴对称问题的2个类型及求解方法1点关于直线的对称:若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,由方程组错误!可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2).2直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知直线l:2x—3y+1=0,点A(—1,—2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x—2y—6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(—1,—2)对称的直线l′的方程.解:(1)设A′(x,y),由已知错误!解得错误!所以A′错误!.(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设M′(a,b),则错误!解得M′错误!.设直线m与直线l的交点为N,则由错误!得N(4,3).又因为m′经过点N(4,3),所以由两点式得直线m′的方程为9x—46y+102=0.(3)设P(x,y)为l′上任意一点,则P(x,y)关于点A(—1,—2)的对称点为P′(—2—x,—4—y),因为P′在直线l上,所以2(—2—x)—3(—4—y)+1=0,即2x—3y—9=0.直线系方程的应用一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.【解】依题意,设所求直线方程为3x+4y+C1=0(C1≠1),因为直线过点(1,2),所以3×1+4×2+C1=0,解得C1=—11.因此,所求直线方程为3x+4y—11=0.先设与直线Ax+By+C=0平行的直线系方程为Ax+By+C1=0(C1≠C),再由其他条件求C1. 错误!二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0,因此,当两直线垂直时,它们的一次项系数有必然的联系,可以考虑用直线系方程求解.求经过A(2,1),且与直线2x+y—10=0垂直的直线l的方程.【解】因为所求直线与直线2x+y—10=0垂直,所以设该直线方程为x—2y+C1=0,又直线过点A(2,1),所以有2—2×1+C1=0,解得C1=0,所以所求直线方程为x—2y=0.错误!先设与直线Ax+By+C=0垂直的直线系方程为Bx—Ay+C1=0,再由其他条件求出C1.三、过直线交点的直线系求经过直线l1:3x+2y—1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x—5y+6=0的直线l的方程.【解】法一:将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2).由题意得直线l3的斜率为错误!,又直线l⊥l3,所以直线l的斜率为—错误!,则直线l的方程是y—2=—错误!(x+1),即5x+3y—1=0.法二:由于l⊥l3,所以可设直线l的方程是5x+3y+C=0,将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2),则点(—1,2)在直线l上,所以5×(—1)+3×2+C=0,解得C=—1,所以直线l的方程为5x+3y—1=0.法三:设直线l的方程为3x+2y—1+λ(5x+2y+1)=0,整理得(3+5λ)x+(2+2λ)y+(—1+λ)=0.由于l⊥l3,所以3(3+5λ)—5(2+2λ)=0,解得λ=错误!,所以直线l的方程为5x+3y—1=0.错误!本题中的法二、法三均是利用直线系设出直线l的方程,而法三是利用相交直线系设出方程,避免了求直线l1与l2的交点坐标,方便简捷,是最优解法.四、直线恒过定点已知λ∈R,求证直线l:(2λ+1)x+(3λ+1)y—7λ—3=0恒过定点,并求出该定点坐标.【解】将(2λ+1)x+(3λ+1)y—7λ—3=0化成(2x+3y—7)λ+(x+y—3)=0.要使直线恒过定点,必须错误!解得错误!即直线l恒过定点(2,1).错误!直线Ax+By+C=0恒过定点问题实际上是直线系方程问题.将问题转化为两直线的交点,即将Ax +By+C=0化为(a1x+b1y+c1)λ+(a2x+b2y+c2)=0.通过方程组错误!,即可求出直线恒过的定点.[基础题组练]1.已知直线l1:mx+y—1=0与直线l2:(m—2)x+my—2=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由l1⊥l2,得m(m—2)+m=0,解得m=0或m=1,所以“m=1”是“l1⊥l2”的充分不必要条件,故选A.2.已知直线l1:(k—3)x+(4—k)y+1=0与l2:2(k—3)x—2y+3=0平行,则k 的值是()A.1或3B.1或5C.3或5D.1或2解析:选C.法一:由两直线平行得,当k—3=0时,两直线的方程分别为y=—1和y=错误!,显然两直线平行.当k—3≠0时,由错误!=错误!≠错误!,可得k=5.综上,k的值是3或5.法二:当k=3时,两直线平行,故排除B,D;当k=1时,两直线不平行,排除A.3.(2020·安徽江南十校二联)已知直线l1:mx—3y+6=0,l2:4x—3my+12=0,若l∥l2,则l1,l2之间的距离为()1A.错误!B.错误!C.错误!D.错误!解析:选A.由于两条直线平行,所以m·(—3m)—(—3)·4=0,解得m=±2,当m=2时,两直线方程都是2x—3y+6=0,故两直线重合,不符合题意.当m=—2时,l1:2x+3y—6=0,l2:2x+3y+6=0,故l1,l2之间的距离为错误!=错误!.故选A.4.若点P在直线3x+y—5=0上,且P到直线x—y—1=0的距离为错误!,则点P的坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,—1)D.(2,1)或(—1,2)解析:选C.设P(x,5—3x),则d=错误!=错误!,化简得|4x—6|=2,即4x—6=±2,解得x=1或x=2,故P(1,2)或(2,—1).5.直线ax+y+3a—1=0恒过定点M,则直线2x+3y—6=0关于M点对称的直线方程为()A.2x+3y—12=0 B.2x—3y—12=0C.2x—3y+12=0 D.2x+3y+12=0解析:选D.由ax+y+3a—1=0,可得a(x+3)+(y—1)=0,令错误!可得x=—3,y =1,所以M(—3,1),M不在直线2x+3y—6=0上,设直线2x+3y—6=0关于M点对称的直线方程为2x+3y+c=0(c≠—6),则错误!=错误!,解得c=12或c=—6(舍去),所以所求方程为2x+3y+12=0,故选D.6.与直线l1:3x+2y—6=0和直线l2:6x+4y—3=0等距离的直线方程是________.解析:l2:6x+4y—3=0化为3x+2y—错误!=0,所以l1与l2平行,设与l1,l2等距离的直线l的方程为3x+2y+c=0,则:|c+6|=|c+错误!|,解得c=—错误!,所以l的方程为12x+8y—15=0.答案:12x+8y—15=07.l1,l2是分别经过A(1,1),B(0,—1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是________.解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.又k AB=错误!=2,所以两条平行直线的斜率为k=—错误!,所以直线l1的方程是y—1=—错误!(x—1),即x+2y—3=0.答案:x+2y—3=08.已知点A(—1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.解析:设AB的中点坐标为M(1,3),k AB=错误!=错误!,所以AB的中垂线方程为y—3=—2(x—1).即2x+y—5=0.令y=0,则x=错误!,即P点的坐标为(错误!,0),|AB|=错误!=2错误!.点P到AB的距离为|PM|=错误!=错误!.所以S△PAB=错误!|AB|·|PM|=错误!×2错误!×错误!=错误!.答案:错误!9.已知两直线l1:ax—by+4=0和l2:(a—1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(—3,—1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a—1)—b=0.又因为直线l1过点(—3,—1),所以—3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在.所以错误!=1—a.1又因为坐标原点到这两条直线的距离相等,所以l1,l2在y轴上的截距互为相反数,即错误!=b.2联立12可得a=2,b=—2或a=错误!,b=2.10.已知直线l经过直线2x+y—5=0与x—2y=0的交点P.(1)点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x+y—5)+λ(x—2y)=0,即(2+λ)x+(1—2λ)y—5=0,所以错误!=3,解得λ=错误!或λ=2.所以直线l的方程为x=2或4x—3y—5=0.(2)由错误!解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立).所以d max=|PA|=错误!.[综合题组练]1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(—4,2),(3,1),则点C的坐标为()A.(—2,4)B.(—2,—4)C.(2,4)D.(2,—4)解析:选C.设A(—4,2)关于直线y=2x的对称点为(x,y),则错误!解得错误!所以BC所在的直线方程为y—1=错误!(x—3),即3x+y—10=0.同理可得点B(3,1)关于直线y=2x 的对称点为(—1,3),所以AC所在的直线方程为y—2=错误!·(x+4),即x—3y+10=0.联立得错误!解得错误!则C(2,4).故选C.2.两条平行线l1,l2分别过点P(—1,2),Q(2,—3),它们分别绕P,Q旋转,但始终保持平行,则l1,l2之间距离的取值范围是()A.(5,+∞)B.(0,5]C.(错误!,+∞)D.(0,错误!]解析:选D.当直线PQ与平行线l1,l2垂直时,|PQ|为平行线l1,l2间的距离的最大值,为错误!=错误!,所以l1,l2之间距离的取值范围是(0,错误!].故选D.3.在平面直角坐标系xOy(O为坐标原点)中,不过原点的两直线l1:x—my+2m—1=0,l2:mx+y—m—2=0的交点为P,过点O分别向直线l1,l2引垂线,垂足分别为M,N,则四边形OMPN 面积的最大值为()A.3B.错误!C.5D.错误!解析:选D.将直线l1的方程变形得(x—1)+m(2—y)=0,由错误!,得错误!,则直线l1过定点A(1,2),同理可知,直线l2过定点A(1,2),所以,直线l1和直线l2的交点P的坐标为(1,2),易知,直线l1⊥l2,如图所示,易知,四边形OMPN为矩形,且|OP|=错误!=错误!,设|OM|=a,|ON|=b,则a2+b2=5,四边形OMPN的面积为S=|OM|·|ON|=ab≤错误!=错误!,当且仅当错误!,即当a=b=错误!时,等号成立,因此,四边形OMPN面积的最大值为错误!,故选D.4.如图,已知A(—2,0),B(2,0),C(0,2),E(—1,0),F(1,0),一束光线从F 点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.解析:从特殊位置考虑.如图,因为点A(—2,0)关于直线BC:x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(—1,0)关于直线AC:y=x+2的对称点为E1(—2,1),点E1(—2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以k FD>kA1F,即k FD∈(4,+∞).答案:(4,+∞)5.正方形的中心为点C(—1,0),一条边所在的直线方程是x+3y—5=0,求其他三边所在直线的方程.解:点C到直线x+3y—5=0的距离d=错误!=错误!.设与x+3y—5=0平行的一边所在直线的方程是x+3y+m=0(m≠—5),则点C到直线x+3y+m=0的距离d=错误!=错误!,解得m=—5(舍去)或m=7,所以与x+3y—5=0平行的边所在直线的方程是x+3y+7=0.设与x+3y—5=0垂直的边所在直线的方程是3x—y+n=0,则点C到直线3x—y+n=0的距离d=错误!=错误!,解得n=—3或n=9,所以与x+3y—5=0垂直的两边所在直线的方程分别是3x—y—3=0和3x—y+9=0.6.在直线l:3x—y—1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.解:(1)如图,设B关于l的对称点为B′,AB′的延长线交l于P0,在l上另任取一点P,则|PA|—|PB|=|PA|—|PB′|<|AB′|=|P0A|—|P0B′|=|P0A|—|P0B|,则P0即为所求.易求得直线BB′的方程为x+3y—12=0,设B′(a,b),则a+3b—12=0,1又线段BB′的中点错误!在l上,故3a—b—6=0.2由12解得a=3,b=3,所以B′(3,3).所以AB′所在直线的方程为2x+y—9=0.由错误!可得P0(2,5).(2)设C关于l的对称点为C′,与(1)同理可得C′错误!.连接AC′交l于P1,在l上另任取一点P,有|PA|+|PC|=|PA|+|PC′|>|AC′|=|P1C′|+|P1A|=|P1C|+|P1A|,故P1即为所求.又AC′所在直线的方程为19x+17y—93=0,故由错误!可得P1错误!.。
第2课时 定点、定值、探索性问题题型一 定点问题典例 (2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 跟踪训练 (2017·长沙联考)已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.(1)解 设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3. ∴椭圆的方程为x 23+y 2=1.(2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1), N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=my 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m ),得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1,由题意mt <0,∴mt =-1,满足②,得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点. 题型二 定值问题典例 (2017·广州市综合测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (2,1).(1)求椭圆C 的方程;(2)若P ,Q 是椭圆C 上的两个动点,且使∠P AQ 的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由. 解 (1)因为椭圆C 的离心率为32,且过点A (2,1), 所以4a 2+1b 2=1,c a =32,又a 2=b 2+c 2,所以a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)方法一 因为∠P AQ 的角平分线总垂直于x 轴, 所以P A 与AQ 所在的直线关于直线x =2对称. 设直线P A 的斜率为k ,则直线AQ 的斜率为-k . 所以直线P A 的方程为y -1=k (x -2), 直线AQ 的方程为y -1=-k (x -2). 设点P (x P ,y P ),Q (x Q ,y Q ), 由⎩⎪⎨⎪⎧y -1=k (x -2),x 28+y 22=1,得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -4=0.①因为点A (2,1)在椭圆C 上,所以x =2是方程①的一个根,则2x P =16k 2-16k -41+4k 2,所以x P =8k 2-8k -21+4k 2.同理x Q =8k 2+8k -21+4k 2.所以x P -x Q =-16k1+4k 2,x P +x Q =16k 2-41+4k 2.又y P -y Q =k (x P +x Q -4)=-8k1+4k 2, 所以直线PQ 的斜率k PQ =y P -y Q x P -x Q =12, 所以直线PQ 的斜率为定值,该值为12.方法二 设直线PQ 的方程为y =kx +b , 点P (x 1,y 1),Q (x 2,y 2), 则y 1=kx 1+b ,y 2=kx 2+b , 直线P A 的斜率k P A =y 1-1x 1-2, 直线QA 的斜率k QA =y 2-1x 2-2.因为∠P AQ 的角平分线总垂直于x 轴,所以P A 与AQ 所在的直线关于直线x =2对称, 所以k P A =-k QA ,即y 1-1x 1-2=-y 2-1x 2-2, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 把y 1=kx 1+b ,y 2=kx 2+b 代入上式,化简得 2kx 1x 2+(b -1-2k )(x 1+x 2)-4b +4=0.① 由⎩⎪⎨⎪⎧y =kx +b ,x 28+y 22=1,得(4k 2+1)x 2+8kbx +4b 2-8=0,② 则x 1+x 2=-8kb4k 2+1,x 1x 2=4b 2-84k 2+1,代入①,得2k (4b 2-8)4k 2+1-8kb (b -1-2k )4k 2+1-4b +4=0,整理得(2k -1)(b +2k -1)=0, 所以k =12或b =1-2k .若b =1-2k ,可得方程②的一个根为2,不符合题意. 所以直线PQ 的斜率为定值,该值为12.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练 如图,在平面直角坐标系xOy 中,点F ⎝⎛⎭⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |, 又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20, 则|TS |=2r 2-d 2=2y 20-2x 0+1, ∵点M 在曲线C 上,∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.题型三 探索性问题典例 在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点p (0,-a )符合题意. 思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法. 跟踪训练 (2018·唐山模拟)已知椭圆E :x 2a 2+y 2b 2=1的右焦点为F (c,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4. (1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由.解 (1)由椭圆的对称性知|GF →|+|CF →|=2a =4,∴a =2. 又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3, 又a 2=b 2+c 2=4,a >b >c >0,∴b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件. 故可设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, ∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0,∴k >-12.∵OP →2=4P A →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5,∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2) =4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .设而不求,整体代换典例 (12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值.思想方法指导 对题目涉及的变量巧妙地引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值. 规范解答解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a=1,即a=2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.[2分](2)设P (x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为1PF l :y 0x -(x 0+3)y +3y 0=0,2PF l :y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22.[4分]因为-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m2-32x 0, 所以m =34x 0,因此-32<m <32.[6分](3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0). 联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0).整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.[10分] 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 24+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.[12分]1.(2018届广西柳州摸底)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为5. (1)求该抛物线C 的方程;(2)已知抛物线上一点M (t,4),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.解 (1)由题意设抛物线方程为y 2=2px (p >0), 其准线方程为x =-p 2,∵P (4,m )到焦点的距离等于P 到其准线的距离, ∴4+p2=5,∴p =2.∴抛物线C 的方程为y 2=4x . (2)由(1)可得点M (4,4), 可得直线DE 的斜率不为0, 设直线DE 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,得y 2-4my -4t =0,则Δ=16m 2+16t >0.(*) 设D (x 1,y 1),E (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4t .∵MD →·ME →=(x 1-4,y 1-4)·(x 2-4,y 2-4)=x 1x 2-4(x 1+x 2)+16+y 1y 2-4(y 1+y 2)+16=y 214·y 224-4⎝⎛⎭⎫y 214+y 224+16+y 1y 2-4(y 1+y 2)+16=(y 1y 2)216-(y 1+y 2)2+3y 1y 2-4(y 1+y 2)+32=t 2-16m 2-12t +32-16m =0, 即t 2-12t +32=16m 2+16m , 得(t -6)2=4(2m +1)2,∴t -6=±2(2m +1),即t =4m +8或t =-4m +4, 代入(*)式检验知t =4m +8满足Δ>0,∴直线DE 的方程为x =my +4m +8=m (y +4)+8. ∴直线过定点(8,-4).2.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.(1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4. 故|AN |·|BM |为定值.3.(2017·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ?若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)在C 1,C 2的方程中,令y =0,可得b =1, 且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点. 设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1,得a =2, ∴a =2,b =1. (2)存在.由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得 (k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由根与系数的关系,得x p =k 2-4k 2+4,从而y p =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1),k ≠0,y =-x 2+1,y ≤0, 得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵以PQ 为直径的圆恰好过点A , ∴AP ⊥AQ ,∴AP →·AQ →=0, 即-2k 2k 2+4[k -4(k +2)]=0. ∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为8x +3y -8=0.4.已知半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)组成的曲线称为“果圆”,其中a 2=b 2+c 2,a >b >c >0.如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点.(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程; (2)若|A 1A 2|>|B 1B 2|,求ba的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k ,使得斜率为k 的直线交果圆于两点,得到的弦的中点M 的轨迹方程落在某个椭圆上?若存在,求出所有k 的值;若不存在,请说明理由.解 (1)∵F 0(c,0),F 1(0,-b 2-c 2),F 2(0,b 2-c 2), ∴|F 0F 2|=(b 2-c 2)+c 2=b =1, |F 1F 2|=2b 2-c 2=1,∴c 2=34,a 2=b 2+c 2=74,∴所求“果圆”的方程为⎩⎨⎧47x 2+y 2=1,x ≥0,y 2+43x 2=1,x <0.(2)由题意,得a +c >2b ,即a 2-b 2>2b -a , ∴a 2-b 2>(2b -a )2,得b a <45.又b 2>c 2=a 2-b 2,∴b 2a 2>12.∴b a ∈⎝⎛⎭⎫22,45. (3)设“果圆”C 的方程为⎩⎨⎧x 2a 2+y 2b 2=1,x ≥0,y 2b 2+x2c 2=1,x <0,记平行弦的斜率为k ,当k =0时,直线y =t (-b ≤t ≤b )与半椭圆x 2a 2+y 2b 2=1(x ≥0)的交点是P ⎝⎛⎭⎫a1-t 2b 2,t ,与半椭圆y 2b 2+x 2c 2=1(x <0)的交点是Q ⎝⎛⎭⎫-c1-t 2b 2,t . ∴P ,Q 的中点M (x ,y )满足x =a -c 2·1-t 2b 2,y =t ,得x 2⎝⎛⎭⎫a -c 22+y 2b 2=1. ∵a 2=b 2+c 2<2b 2<4b 2,∴a <2b , ∴⎝⎛⎭⎫a -c 22-b 2=a -c -2b 2·a -c +2b 2<0.综上所述,当k =0时,“果圆”平行弦的中点M 的轨迹总是落在某个椭圆上. 当k >0时,过B 1的直线l 与半椭圆x 2a 2+y 2b 2=1(x ≥0)的交点是⎝ ⎛⎭⎪⎫2ka 2b k 2a 2+b 2,k 2a 2b -b 3k 2a 2+b 2. 因此,在直线l 右侧,以k 为斜率的平行弦的中点为⎝ ⎛⎭⎪⎫ka 2bk 2a 2+b 2,-b 3k 2a 2+b 2,轨迹在直线y =-b 2ka2x 上,即不在某一椭圆上.当k <0时,可类似讨论得到平行弦的中点的轨迹不在某一椭圆上.5.(2018·保定模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +yb =1的距离d =455,O 为坐标原点.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即到直线bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b =455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性, 可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点, 故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m ,与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O , 所以OA ⊥OB .所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255. 综上所述,点O到直线AB 的距离为定值255.6.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD → =-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.。
§9.4 直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).知识拓展1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )(6)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为 . 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三易错自纠4.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1]答案 D解析圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d=|2-1+m|2,若直线与圆恒有公共点,则|2-1+m|2≤2,解得-22-1≤m≤22-1,故选D.5.(2018·石家庄模拟)设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.4 2C.8 D.8 2答案 C解析因为圆C1,C2和两坐标轴相切,且都过点(4,1),所以两圆都在第一象限内,设圆心坐标为(a,a),则|a|=(a-4)2+(a-1)2,解得a=5+22或a=5-22,可取C1(5+22,5+22),C2(5-22,5-22),故|C1C2|=(42)2+(42)2=8,故选C.6.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0,当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.题型一 直线与圆的位置关系1.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离 D .不确定答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.2.圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切C .相交D .以上都有可能 答案 C解析 直线2tx -y -2-2t =0恒过点(1,-2), ∵12+(-2)2-2×1+4×(-2)=-5<0, ∴点(1,-2)在圆x 2+y 2-2x +4y =0内,直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交, 故选C.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 题型二 圆与圆的位置关系典例 已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1外切,则ab 的最大值为( ) A.62 B.32 C.94D .2 3 答案 C解析 由圆C 1与圆C 2外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=9,根据基本不等式可知ab ≤⎝⎛⎭⎫a +b 22=94,当且仅当a =b 时等号成立,ab 的最大值为94.引申探究1.若将本典例中的“外切”变为“内切”,求ab 的最大值. 解 由C 1与C 2内切得(a +b )2+(-2+2)2=1. 即(a +b )2=1,又ab ≤⎝⎛⎭⎫a +b 22=14,当且仅当a =b 时等号成立,故ab 的最大值为14.2.若将本典例条件“外切”变为“相交”,求公共弦所在的直线方程. 解 由题意把圆C 1,圆C 2的方程都化为一般方程,得 圆C 1:x 2+y 2-2ax +4y +a 2=0,① 圆C 2:x 2+y 2+2bx +4y +b 2+3=0,② 由②-①得(2a +2b )x +3+b 2-a 2=0,即(2a +2b )x +3+b 2-a 2=0为所求公共弦所在直线方程. 思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.跟踪训练 (2017·重庆调研)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是 . 答案 (-22,0)∪(0,22)解析 圆C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22).题型三 直线与圆的综合问题命题点1 求弦长问题典例 (2016·全国Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |= . 答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,由|OM |=|3m -3|m 2+1=3,解得m =-33, 所以直线l :x -3y +6=0.由⎩⎨⎧x -3y +6=0,x 2+y 2=12,解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4. 命题点2 直线与圆相交求参数范围典例 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2. 命题点3 直线与圆相切的问题典例 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为 . 答案 2 2解析 设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-(2)2=2 2.(2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为 . 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.高考中与圆交汇问题的求解考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1 (1)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 解析 (1)∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆的直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ), ∴P A →+PB →+PC →=(x -6,y ). 故|P A →+PB →+PC →|=-12x +37, ∴当x =-1时有最大值49=7,故选B. (2)∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,△AOB 的面积最大.此时O 到AB 的距离d =22. 设AB 的方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22,得k =-33.⎝⎛⎭⎫也可k =-tan ∠OPH =-33.答案 (1)B (2)B 二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, ∴圆心C (2,1)在直线x +ay -1=0上, ∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)∵∠AOB =π2,∴点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上, ∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45, ∴圆C 的最小半径为25, ∴圆C 面积的最小值为π⎝⎛⎭⎫252=45π. 答案 (1)C (2)A1.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-8 答案 B解析 将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.2.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个 D .4个答案 C解析 圆的方程可化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线的距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.3.(2018·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-14答案 B解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.4.(2017·广州调研)若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.由题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).5.(2017·福建漳州八校联考)已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离 D .m ⊥l ,且l 与圆相离答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m ,又k OP =b a ,∴k m =-a b ,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r =r ,∴m ∥l ,l 与圆相离.故选C.6.(2018·洛阳二模)已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则|P A |的最小值为( ) A.12 B .1 C.2-1 D .2- 2答案 D解析 方法一 由题意可知,直线P A 与坐标轴平行或重合,不妨设直线P A 与y 轴平行或重合,设P (cos α,sin α),则A (cos α,2-cos α),∴|P A |=|2-cos α-sin α|=⎪⎪⎪⎪2-2sin ⎝⎛⎭⎫α+π4, ∴|P A |的最小值为2-2,故选D.方法二 由题意可知圆心(0,0)到直线x +y =2的距离d =22=2,∴圆C 上一点到直线x +y =2的距离的最小值为2-1.由题意可得|P A |min =2(2-1)=2-2,故选D.7.(2018届南昌摸底)已知动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,且满足|AB |=2,点C 为直线l 上一点,且满足CB →=52CA →,若M 是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3答案 A解析 动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,且满足|AB |=2,则△OAB 为等边三角形,于是可设动直线l 的方程为y =3(x +2),根据题意可得B (-2,0),A (-1,3),∵M 是线段AB 的中点,∴M ⎝⎛⎭⎫-32,32,设C (x ,y ),∵CB →=52CA →,∴(-2-x ,-y )=52(-1-x ,3-y ),∴⎩⎨⎧-2-x =52(-1-x ),-y =52(3-y ),解得⎩⎨⎧x =-13,y =533,∴C ⎝⎛⎭⎫-13,533,∴OC →·OM →=⎝⎛⎭⎫-13,533·⎝⎛⎭⎫-32,32=12+52=3,故选A.8.(2016·全国Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |= . 答案 4解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,解得x 1=-3,y 1=3;x 2=0,y 2=23, ∴A (-3,3),B (0,23). 过A ,B 作l 的垂线方程分别为y -3=-3(x +3),y -23=-3x ,令y =0,则x C =-2,x D =2,∴|CD |=2-(-2)=4. 9.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →= . 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|P A |=|PB |= 3. ∴△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OP A =30°,∴∠APB =60°. ∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2,整理得3k 2-4k ≤0,解得0≤k ≤43.故k 的最大值是43.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k , 得l 的方程为y -3=k (x -1), 即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34.∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0. (2)设P (x ,y ),则|PM |2=|PC |2-|MC |2 =(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 解 (1)设圆心C (a,0)⎝⎛⎭⎫a >-52, 则|4a +10|5=2,解得a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t =0,则k (x 1-1)x 1-t +k (x 2-1)x 2-t=0, 即2x 1x 2-(t +1)(x 1+x 2)+2t =0,亦即2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.13.(2017·安徽芜湖六校联考)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标a的取值范围是( ) A.⎣⎡⎦⎤0,125 B .[0,1] C.⎣⎡⎦⎤1,125 D.⎝⎛⎭⎫0,125 答案 A解析 因为圆心在直线y =2x -4上, 所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |, 所以x 2+(y -3)2=2x 2+y 2, 化简得x 2+y 2+2y -3=0, 即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3.由a 2+(2a -3)2≥1,得5a 2-12a +8≥0, 解得a ∈R ;由a 2+(2a -3)2≤3,得5a 2-12a ≤0, 解得0≤a ≤125.所以点C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125.故选A. 14.(2017·郑州一模)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是 . 答案 4解析 ⊙O 1与⊙O 在A 处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5. 又A ,B 关于OO 1所在直线对称, ∴AB 长为Rt △OAO 1斜边上的高的2倍, ∴|AB |=2×5×255=4.15.(2017·石家庄一模)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( ) A.12 B.32 C.34 D.34 答案 D解析 由已知可得圆心(0,0)到直线2ax +by -2=0的距离d =24a 2+b 2,则直线被圆截得的弦长为24-44a 2+b2=23, 化简得4a 2+b 2=4. ∴t =a 1+2b 2=122·(22a )·1+2b 2 ≤142[(22a )2+(1+2b 2)2]=142(8a 2+2b 2+1)=942, 当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,即t 取最大值,此时a =34(舍负值).故选D.16.(2017·日照一模)曲线y =x 2+4x 的一条切线l 与直线y =x ,y 轴围成的三角形记为△OAB ,则△OAB 外接圆面积的最小值为( ) A .82π B .8(3-2)π C .16(2-1)π D .16(2-2)π答案 C解析 y ′=x 2-4x 2,设直线l 与曲线的切点坐标为(x 0,y 0),则直线l 的方程为y -x 20+4x 0=x 20-4x 20·(x-x 0),即y =x 20-4x 20x +8x 0.不妨设直线l 与直线y =x 的交点为A ,与y 轴的交点为B ,可求得A (2x 0,2x 0),B ⎝⎛⎭⎫0,8x 0. ∴|AB |2=4x 20+⎝⎛⎭⎫2x 0-8x 02=8x 20+64x 20-32 ≥32(2-1),当且仅当x 20=22时取等号.由正弦定理可得△OAB 的外接圆的半径R =12·|AB |sin 45°=22|AB |,则△OAB 外接圆的面积S =πR 2=12π|AB |2≥16(2-1)π.故选C.。
§9.6 抛物线1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.点F 叫作抛物线的焦点,直线l 叫作抛物线的准线. 2.抛物线的标准方程与简单性质知识拓展1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.2.y 2=ax (a ≠0)的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. 3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × )(6)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫作抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A .9B .8C .7D .6 答案 B解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y . 题组三 易错自纠4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8 D .12 答案 B解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作P A ⊥y 轴,垂足是A ,延长P A 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.5.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A .y 2=±22x B .y 2=±2x C .y 2=±4x D .y 2=±42x答案 D解析 由已知可知双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p 2=2,所以p =22,所以抛物线方程为y 2=±42x .故选D.6.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________. 答案 [-1,1]解析 Q (-2,0),当直线l 的斜率不存在时,不满足题意,故设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0, 由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.题型一抛物线的定义及应用典例设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解由题意可知点B(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),∴|PB|+|PF|≥|BF|=42+22=25,即|PB|+|PF|的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=|PF|-1,所以d1+d2=d2+|PF|-1.易知d2+|PF|的最小值为点F到直线l的距离,故d2+|PF|的最小值为|1+5|12+(-1)2=32,所以d1+d2的最小值为32-1.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.跟踪训练设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.答案 5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到F 的距离. 于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小, 显然,连接AF 与抛物线相交的点即为满足题意的点, 此时最小值为[1-(-1)]2+(0-1)2= 5.题型二 抛物线的标准方程和简单性质命题点1 求抛物线的标准方程典例 (2017·深圳模拟)如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=32xB .y 2=9xC .y 2=92x D .y 2=3x答案 D解析 分别过点A ,B 作AA 1⊥l ,BB 1⊥l ,且垂足分别为A 1,B 1,由已知条件|BC |=2|BF |,得|BC |=2|BB 1|,所以∠BCB 1=30°. 又|AA 1|=|AF |=3, 所以|AC |=2|AA 1|=6,所以|CF |=|AC |-|AF |=6-3=3, 所以F 为线段AC 的中点.故点F 到准线的距离为p =12|AA 1|=32,故抛物线的方程为y 2=3x . 命题点2 抛物线的简单性质典例 已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为⎝⎛⎭⎫p 2,0. 由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎫my +p2,即y 2-2pmy -p 2=0.(*) 因为⎝⎛⎭⎫p 2,0在抛物线内部, 所以直线与抛物线必有两交点. 则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p2 =x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p(定值). (3)设AB 的中点为M (x 0,y 0),如图所示,分别过A ,B 作准线l 的垂线,垂足为C ,D ,过M 作准线l 的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练 (1)(2017·广西三市调研)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( ) A.12 B .1 C.32 D .2答案 D解析 由题意得3x 0=x 0+p 2,即x 0=p4,即A ⎝⎛⎭⎫p 4,2,代入抛物线方程,得p22=2, ∵p >0,∴p =2.故选D.(2)(2017·郑州二模)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( ) A.53 B.75 C.97 D .2答案 A解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E .∵|P A |=12|AB |, ∴⎩⎪⎨⎪⎧ 3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.题型三 直线与抛物线的综合问题命题点1 直线与抛物线的交点问题典例 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =________. 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,则抛物线C 与直线必有两个交点.设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4+8k 2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k ,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2) =(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 命题点2 与抛物线弦的中点有关的问题典例 (2016·全国Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b , R ⎝⎛⎭⎫-12,a +b 2.记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2, 则k 1=a -b 1+a 2=a -b a 2-ab =1a=-aba =-b =b -0-12-12=k 2.所以AR ∥FQ .(2)解 设过AB 的直线为l , 设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12, S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b2=y ,所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合, 此时E 点坐标为(1,0),满足方程y 2=x -1. 所以所求轨迹方程为y 2=x -1.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.跟踪训练 (2018届武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 面积的最小值为4,求抛物线C 的方程. 解 (1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入抛物线C ,得x 2-2pkx -2p =0,显然方程有两不等实根, 则x 1+x 2=2pk ,x 1x 2=-2p .①又x 2=2py 得y ′=xp,则A ,B 处的切线斜率乘积为x 1x 2p 2=-2p =-1,则有p =2.(2)设切线AN 为y =x 1p x +b ,又切点A 在抛物线y =x 22p 上,∴y 1=x 212p ,∴b =x 212p -x 21p =-x 212p ,∴y AN =x 1p x -x 212p .同理y BN =x 2p x -x 222p .又∵N 在y AN 和y BN 上,∴⎩⎨⎧y =x 1p x -x 212p,y =x 2p x -x222p ,解得N ⎝⎛⎭⎫x 1+x 22,x 1x 22p .∴N (pk ,-1). |AB |=1+k 2|x 2-x 1| =1+k 24p 2k 2+8p ,点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,S △ABN =12·|AB |·d=p (pk 2+2)3≥22p , ∴22p =4,∴p =2, 故抛物线C 的方程为x 2=4y .直线与圆锥曲线问题的求解策略典例 (12分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R ,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.思维点拨 (3)中证明QA →·QB →=0. 规范解答解 (1)∵抛物线C :x 2=1m y ,∴它的焦点F ⎝⎛⎭⎫0,14m .[2分] (2)∵|RF |=y R +14m ,∴2+14m =3,得m =14.[4分] (3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0, 得m >-12.[6分]设A (x 1,mx 21),B (x 2,mx 22),则⎩⎨⎧x 1+x 2=2m ,x 1·x 2=-2m.(*)∵P 是线段AB 的中点, ∴P ⎝⎛⎭⎫x 1+x 22,mx 21+mx 222, 即P ⎝⎛⎭⎫1m ,y P ,∴Q ⎝⎛⎭⎫1m ,1m ,[8分] 得QA →=⎝⎛⎭⎫x 1-1m ,mx 21-1m , QB →=⎝⎛⎭⎫x 2-1m ,mx 22-1m . 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即⎝⎛⎭⎫x 1-1m ·⎝⎛⎭⎫x 2-1m +⎝⎛⎭⎫mx 21-1m ⎝⎛⎭⎫mx 22-1m =0,[10分] 结合(*)式化简得-4m 2-6m+4=0, 即2m 2-3m -2=0,∴m =2或m =-12,而2∈⎝⎛⎭⎫-12,+∞,-12∉⎝⎛⎭⎫-12,+∞. ∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[12分]解决直线与圆锥曲线的位置关系的一般步骤: 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2 B .y =12x 2或y =-36x 2 C .y =-36x 2 D .y =112x 2或y =-136x 2答案 D解析 分两类a >0,a <0,可得y =112x 2或y =-136x 2.2.(2018届云南昆明一中摸底)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B ,若F A →=3FB →,则|AF →|等于( ) A .3 B .4 C .6 D .7 答案 B解析 由已知B 为AF 的三等分点,作BH ⊥l 于H ,如图,则|BH |=23|FK |=43,∴|BF →|=|BH →|=43,∴|AF →|=3|BF →|=4,故选B.3.(2017·皖北协作区联考)已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为45,则抛物线C 的方程为( ) A .x 2=8yB .x 2=4yC .x 2=2yD .x 2=y答案 C解析 由⎩⎪⎨⎪⎧ x 2=2py ,y =2x ,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =4p ,y =8p ,即两交点坐标为(0,0)和(4p,8p ),则(4p )2+(8p )2=45,得p =1(舍去负值), 故抛物线C 的方程为x 2=2y .4.(2017·赣州二模)抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且△OAF 的面积为1,O 为坐标原点,则p 的值为( ) A .1 B .2 C .3 D .4答案 B解析 不妨设A (x 0,y 0)在第一象限,由题意可知⎩⎨⎧ x 0+p2=2x 0,S△OAF =12·p2·y 0=1,即⎩⎨⎧x 0=p 2,y 0=4p ,∴A ⎝⎛⎭⎫p 2,4p ,又∵点A 在抛物线y 2=2px 上, ∴16p 2=2p ×p2,即p 4=16,又∵p >0,∴p =2,故选B. 5.(2017·汕头一模)过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A ,B 两点,若抛物线C 在点B 处的切线的斜率为1,则|AF |等于( ) A .1 B .2 C .3 D .4 答案 A解析 设B (x 1,y 1),因为y =12x 2,所以y ′=x ,所以y ′|1x x ==x 1=1,则B ⎝⎛⎭⎫1,12, 因为F ⎝⎛⎭⎫0,12,所以直线l 的方程为y =12, 故|AF |=|BF |=1.6.(2017·昆明调研)已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为( ) A .x 2=8y B .x 2=4y C .y 2=8xD .y 2=4x答案 C解析 由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +p2,联立⎩⎪⎨⎪⎧y 2=2px ,x =my +p 2, 消去x 得y 2-2pmy -p 2=0,显然方程有两个不等实根. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=⎝⎛⎭⎫my 1+p 2⎝⎛⎭⎫my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12,得p =4(舍负),即抛物线C 的方程为y 2=8x .7.(2017·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________. 答案 y 2=16x解析 设满足题意的圆的圆心为M (x M ,y M ). 根据题意可知圆心M 在抛物线上. 又∵圆的面积为36π,∴圆的半径为6,则|MF |=x M +p 2=6,即x M =6-p2,又由题意可知x M =p 4,∴p 4=6-p2,解得p =8.∴抛物线方程为y 2=16x .8.在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________. 答案 6解析 由抛物线方程为y 2=6x ,所以焦点坐标F ⎝⎛⎭⎫32,0,准线方程为x =-32,因为直线AF 的斜率为-3,所以直线AF 的方程为y =-3⎝⎛⎭⎫x -32, 当x =-32时,y =33,所以A ⎝⎛⎭⎫-32,33, 因为P A ⊥l ,A 为垂足,所以点P 的纵坐标为33,可得点P 的坐标为⎝⎛⎭⎫92,33, 根据抛物线的定义可知|PF |=|P A |=92-⎝⎛⎭⎫-32=6. 9.(2017·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________. 答案 2 3解析 y 2=2px 的准线方程为x =-p2.由于△ABF 为等边三角形,因此不妨设A ⎝⎛⎭⎫-p 2,p 3,B ⎝⎛⎭⎫-p 2,-p 3,又点A ,B 在双曲线y 2-x 2=1上,从而p 23-p 24=1,又p >0,所以p =2 3.10.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF . 由题意知,F (2,0), |FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6.11.(2018·郑州模拟)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解 (1)直线AB 的方程是y =22⎝⎛⎭⎫x -p2,与y 2=2px 联立,从而有4x 2-5px +p 2=0. 由题易知,方程必有两个不等实根. 所以x 1+x 2=5p4,由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而抛物线方程为y 2=8x . (2)由于p =4,则4x 2-5px +p 2=0, 即x 2-5x +4=0,从而x 1=1,x 2=4, 于是y 1=-22,y 2=42,从而A (1,-22),B (4,42).设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.12.(2017·北京)已知抛物线C :y 2=2px 过点P (1,1),过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 由抛物线C :y 2=2px 过点P (1,1),得p =12,所以抛物线C 的方程为y 2=x ,抛物线C 的焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14. (2)证明 由题意知,直线l 的斜率必存在. 设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0, 则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0,所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.13.(2017·山西五校联考)已知抛物线C :y 2=2px (p >0)上一点(5,m )到焦点的距离为6,P ,Q 分别为抛物线C 与圆M :(x -6)2+y 2=1上的动点,当|PQ |取得最小值时,向量PQ →在x 轴正方向上的投影为( ) A .2-55 B .25-1 C .1-2121D.21-1 答案 A解析 因为6=p2+5,所以p =2,所以抛物线C 的方程为y 2=4x .设P (x ,y ),则|PM |=(x -6)2+y 2=(x -6)2+4x =(x -4)2+20,可知当x =4时,|PM |取最小值20,此时|PQ |取得最小值,最小值为20-1=25-1,此时不妨取P 点的坐标为(4,-4),则直线PM 的斜率为2,即tan ∠PMO =2, 所以cos ∠PMO =15,故当|PQ |取得最小值时,向量PQ →在x 轴正方向上的投影为(25-1)·cos ∠PMO =2-55. 14.(2017·河南安阳二模)已知抛物线C 1:y =ax 2(a >0)的焦点F 也是椭圆C 2:y 24+x 2b 2=1(b >0)的一个焦点,点M ,P ⎝⎛⎭⎫32,1分别为曲线C 1,C 2上的点,则|MP |+|MF |的最小值为________. 答案 2解析 将P ⎝⎛⎭⎫32,1代入到y 24+x 2b 2=1中,可得14+94b 2=1,∴b =3,∴c =1,∴抛物线的焦点F 为(0,1),∴抛物线C 1的方程为x 2=4y ,准线为直线y =-1,设点M 在准线上的射影为D ,根据抛物线的定义可知|MF |=|MD |,∴要求|MP |+|MF |的最小值,即求|MP |+|MD |的最小值,易知当D ,M ,P 三点共线时,|MP |+|MD |最小,最小值为1-(-1)=2.15.抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°,过AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为( )A.33 B .1 C.233D .2 答案 A解析 过A ,B 分别作抛物线准线的垂线,垂足分别为A 1,B 1,由题意知|MN |=12(|AA 1|+|BB 1|)=12(|AF |+|BF |),在△AFB 中,|AB |2=|AF |2+|BF |2-2|AF ||BF |·cos 120° =|AF |2+|BF |2+|AF ||BF |,∴⎝⎛⎭⎫|MN ||AB |2=14·|AF |2+|BF |2+2|AF ||BF ||AF |2+|BF |2+|AF ||BF | =14⎝⎛⎭⎫1+|AF ||BF ||AF |2+|BF |2+|AF ||BF | =14⎝ ⎛⎭⎪⎫1+1|AF ||BF |+|BF ||AF |+1≤14×⎝⎛⎭⎫1+12+1=13, 当且仅当|AF |=|BF |时取等号,∴|MN ||AB |的最大值为33.16.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________. 答案 (2,4)解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2, 两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2,又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1,即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<2 3.因为点M 在圆上,所以(x 0-5)2+y 20=r 2,故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4.。
第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22,解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |= (c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立, ⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t = 6-2x 23(x +1)2>2,解得-32<x <-1或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m = 2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·黄冈模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点. (1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.解 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2). 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2⇒-8k 2m 21+4k 2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·|m |1+k2·1+k 2·|x 1-x 2| =12|m |(x 1+x 2)2-4x 1x 2 =-(m 2-1)2+1.故由m 的取值范围可得△OMN 面积的取值范围为(0,1).题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·锦州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A .2 B. 2 C .4 D .2 2答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为_________________________. 答案 22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k为定值; ②求直线AB 的斜率的最小值.(1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1. (2)①证明 设P (x 0,y 0)(x 0>0,y 0>0).由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ).所以直线PM 的斜率k =2m -m x 0=m x 0. 直线QM 的斜率k ′=-2m -m x 0=-3m x 0. 此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2).直线P A 的方程为y =kx +m .直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0,由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0, 所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m . 同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m . 所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0,y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m =-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k , 由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”. 因为P (x 0,2m )在椭圆x 24+y 22=1上, 所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66, 即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2017·开封质检)已知圆(x -a )2+(y +1-r )2=r 2(r >0)过点F (0,1),圆心M 的轨迹为C .(1)求轨迹C 的方程;(2)设P 为直线l :x -y -2=0上的点,过点P 作曲线C 的两条切线P A ,PB ,当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解 (1)依题意,由圆过定点F 可知轨迹C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2, 求导得y ′=12x . 设A (x 1,y 1),B (x 2,y 2)(其中y 1=x 214,y 2=x 224), 则切线P A ,PB 的斜率分别为12x 1,12x 2, 所以切线P A 的方程为y -y 1=x 12(x -x 1), 即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0. 同理可得切线PB 的方程为x 2x -2y -2y 2=0.因为切线P A ,PB 均过点P (x 0,y 0),所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解.所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y , 消去x 整理得y 2+(2y 0-x 20)y +y 20=0,由一元二次方程根与系数的关系可得y 1+y 2=x 20-2y 0,y 1y 2=y 20,所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2,所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2(y 0+12)2+92, 所以当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.1.(2016·昆明两区七校调研)过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A 在x 轴上方,则|F A |的取值范围是( ) A .(14,1] B .(14,+∞) C .(12,+∞) D .(14,1+22] 答案 D解析 记点A 的横坐标是x 1,则有|AF |=x 1+14=(14+|AF |cos θ)+14=12+|AF |cos θ,|AF |(1-cos θ)=12,|AF |=12(1-cos θ). 由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<12(1-cos θ)≤12-2=1+22, 即|AF |的取值范围是(14,1+22]. 2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( )A.95B.125C .4D .5 答案 B解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,所以所求的距离d =125,故选B. 3.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴长),则此双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(2,3]C .(1,3]D .(1,2] 答案 C解析 由P 是双曲线左支上任意一点及双曲线的定义,得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a 2|PF 1|+4a =8a , 所以|PF 1|=2a ,|PF 2|=4a ,在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|,即2a +4a ≥2c ,所以e =c a≤3. 又e >1,所以1<e ≤3.故选C.4.(2016·成都质检)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为________.答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点, 设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152, ∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤22536, ∴6≤19·⎝⎛⎭⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6.5.(2017·郑州质量预测)已知椭圆C 1:x 2m +2-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1, ∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1, ∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1,∴e 21=1-1m +2. 由m >0得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1. 6.已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程;(3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值.解 (1)依题意,得双曲线C 的实半轴长为a =1,半焦距c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1. (2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3. 两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0.因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2,所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6, 故AB 所在直线l 的方程为y -1=6(x -2),即6x -y -11=0.(3)由已知,得|DF 1|-|DF 2|=2,即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2,当且仅当G ,D ,F 2三点共线时取等号,因为|GF 2|=(1-2)2+22=5,所以|DF 2|+|DG |+2≥|GF 2|+2=5+2,故|DF 1|+|DG |的最小值为5+2.7.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知得a =3,c =2,又a 2+b 2=c 2,得b 2=1,∴双曲线C 的方程为x 23-y 2=1. (2)联立⎩⎪⎨⎪⎧ y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0, 可得m 2>3k 2-1且k 2≠13,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0),则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km 1-3k 2, ∴y 0=kx 0+m =m 1-3k 2. 由题意,AB ⊥MN ,∴k AB =m 1-3k 2+13km 1-3k 2=-1k(k ≠0,m ≠0). 整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝⎛⎭⎫-14,0∪(4,+∞). 8.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1. (1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.解 (1)由题意,得⎩⎪⎨⎪⎧ b =1,2·b 2a =1.从而⎩⎪⎨⎪⎧a =2,b =1. 因此,所求的椭圆C 1的方程为y 24+x 2=1. (2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t .直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0, 即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0.①因为直线MN 与椭圆C 1有两个不同的交点,所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.②设线段MN 的中点的横坐标是x 3,则x 3=x 1+x 22=t (t 2-h )2(1+t 2). 设线段P A 的中点的横坐标是x 4,则x 4=t +12. 由题意,得x 3=x 4,即t 2+(1+h )t +1=0.③由③式中的Δ2=(1+h )2-4≥0,得h ≥1或h ≤-3.当h ≤-3时,h +2<0,4-h 2<0,则不等式②不成立,所以h ≥1.当h =1时,代入方程③得t =-1,将h =1,t =-1代入不等式②,检验成立.所以,h 的最小值为1.9.如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1. (2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2), 故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0.由⎩⎨⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而|PQ |=2x 2+y 2=2m 2+42-m 2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧, 所以(mx 1+2y 1)(mx 2+2y 2)<0, 于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4. 又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.。
§9.8 曲线与方程1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立如下的对应关系:那么,这个方程叫作曲线的方程,这条曲线叫作方程的曲线. 2.求动点的轨迹方程的基本步骤知识拓展1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解; (2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( √ ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )(6)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 教材改编2.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线答案 D解析 由已知|MF |=|MB |,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 3.曲线C :xy =2上任一点到两坐标轴的距离之积为______. 答案 2解析 在曲线xy =2上任取一点(x 0,y 0),则x 0y 0=2,该点到两坐标轴的距离之积为|x 0||y 0|=|x 0y 0|=2.题组三 易错自纠4.(2017·广州调研)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线答案 D解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.5.已知M (-1,0),N (1,0),|PM |-|PN |=2,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线 D .双曲线右支答案 C解析 由于|PM |-|PN |=|MN |,所以D 不正确,应为以N 为端点,沿x 轴正向的一条射线. 6.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是__________.答案 x 2+y 2=4(x ≠±2)解析 连接OP ,则|OP |=2,∴P 点的轨迹是去掉M ,N 两点的圆,∴方程为x 2+y 2=4(x ≠±2).题型一 定义法求轨迹方程典例 (2018·枣庄模拟)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,求C 的方程. 解 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>2=|MN |.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2). 思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.跟踪训练 已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2. ∴|MO 2|-|MO 1|=3<4=|O 1O 2|.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝⎛⎭⎫x ≤-32. 题型二 直接法求轨迹方程典例 已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,知|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN交MN 于H ,则H 是MN 的中点,∴|O 1M |=x 2+42. 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x , 得k 2x 2+(2bk -8)x +b 2=0, 其中Δ=-32kb +64>0.由根与系数的关系,得x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2.②∵x 轴是∠PBQ 的角平分线,∴y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 整理得2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③ 将①②代入到③中并化简得8(b +k )=0,∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1), 即直线l 过定点(1,0).思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,有建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,求出曲线的方程后还需注意检验方程的纯粹性和完备性.跟踪训练 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解 (1)由题意,得c =5,e =c a =53,因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0, 则由⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,x 29+y 24=1,得x 29+[k (x -x 0)+y 0]24=1, 即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0, Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0,整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0.又所引的两条切线相互垂直, 设两切线的斜率分别为k 1,k 2,于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧ x 0=-3,y 0=2或⎩⎪⎨⎪⎧x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2, 经检验知均满足x 20+y 20=13.因此,动点P (x 0,y 0)的轨迹方程是x 2+y 2=13. 题型三 相关点法求轨迹方程典例 (2017·合肥质检)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.解 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2), 代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, ∴l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,22], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧ y 1+y 2=-2y 0x 0,y 1·y 2=-16x,代入⎩⎨⎧x =y 1·y 22,y =y 1+y22,可得M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,可得⎩⎨⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.跟踪训练 (2018·安阳调研)如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0),由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).分类讨论思想在曲线方程中的应用典例 (12分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,|OP ||OQ |=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2. 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,故椭圆的方程为x 24+y 23=1.[3分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 23=1,解得y 20=3-34x 2. 由|OP ||OQ |=λ可得|OP |2|OQ |2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得⎝⎛⎭⎫λ2-14x 2+λ2y 2=3,x ∈[-2,2].[6分] 当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[8分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴为y 轴的双曲线满足x ∈[-2,2]的部分;[10分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[12分]1.(2017·衡水模拟)若方程x 2+y 2a=1(a 是常数),则下列结论正确的是( )A .任意实数a 方程表示椭圆B .存在实数a 方程表示椭圆C .任意实数a 方程表示双曲线D .存在实数a 方程表示抛物线 答案 B解析 当a >0且a ≠1时,方程表示椭圆,故选B.2.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则点P 的轨迹方程是( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥P A ,且|MA |=1, 又∵|P A |=1,∴|PM |=|MA |2+|P A |2=2, 即|PM |2=2,∴(x -1)2+y 2=2.3.(2018·湛江模拟)在平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线 B .椭圆 C .圆 D .双曲线 答案 A解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴化简得x +2y -5=0,表示一条直线.4.(2017·宜春质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件|PM 1|+|PM 2|=a +9a (其中a是正常数),则点P 的轨迹是( ) A .椭圆 B .线段 C .椭圆或线段 D .不存在答案 C解析 ∵a 是正常数,∴a +9a ≥29=6,当且仅当a =3时“=”成立.当|PM 1|+|PM 2|=6时,点P 的轨迹是线段M 1M 2; 当|PM 1|+|PM 2|>6时,点P 的轨迹是椭圆,故选C.5.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0D .2x -y +5=0答案 D解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.6.(2018·广州模拟)如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支答案 C解析 本题可构造如图圆锥.母线与中轴线夹角为30°,然后用平面α去截,使直线AB 与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P 的轨迹为椭圆.故选C.7.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积为________. 答案 4π解析 设P (x ,y ),由|P A |=2|PB |, 得(x +2)2+y 2=2(x -1)2+y 2, ∴3x 2+3y 2-12x =0,即x 2+y 2-4x =0. ∴P 的轨迹为以(2,0)为圆心,2为半径的圆. 即轨迹所包围的图形的面积等于4π.8.(2018·梅州质检)在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为____________. 答案 x 22-y 22=1(x >2)解析 以BC 的中点为原点,中垂线为y 轴,建立如图所示的平面直角坐标系,E ,F 分别为两个切点, 则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |.∴|AB |-|AC |=22<4=|BC |,∴点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,∴b =2, ∴轨迹方程为x 22-y 22=1(x >2).9.已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________. 答案 x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义. 令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3, 则轨迹方程为x 225+y 29=1(x ≠±5).10.如图,P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=⎝⎛⎭⎫-x 2,-y 2, 即P 点坐标为⎝⎛⎭⎫-x 2,-y2,又P 在椭圆上,则有⎝⎛⎭⎫-x 22a 2+⎝⎛⎭⎫-y 22b 2=1,即x 24a 2+y 24b2=1.11. (2017·广州模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出点的坐标;若不存在,请说明理由. 解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC , ∴|CP |=|AP |=|BP | =12|AB |, 由垂径定理知, |OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),则(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在.根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px (p >0)上,其中p2=1.∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎪⎨⎪⎧y 2=4x ,x 2-x +y 2=4,得x 2+3x -4=0, 解得x =1或x =-4.由x ≥0,故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).12.如图,P 是圆x 2+y 2=4上的动点,点P 在x 轴上的射影是点D ,点M 满足DM →=12DP →.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程. 解 (1)设M (x ,y ),则D (x,0), 由DM →=12DP →知,P (x,2y ),∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 为椭圆.(2)设E (x ,y ),由题意知l 的斜率存在, 设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0,(*) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2. ∵四边形OAEB 为平行四边形,∴OE →=OA →+OB →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2,又OE →=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k 2,y =-6k 1+4k 2,消去k ,得x 2+4y 2-6x =0,由(*)中Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0, 得k 2<15,∴0<x <83.∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83.13.(2018·宿迁模拟)若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( ) A .x +y =5 B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y答案 B解析 ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,∴Δ>0,满足题意.14.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案 x 24+y 23=1(y ≠0)解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1, 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4>2=|AB |,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).15.(2017·辽宁葫芦岛调研)在△ABC 中,已知A (2,0),B (-2,0),G ,M 为平面上的两点且满足GA →+GB →+GC →=0,|MA →|=|MB →|=|MC →|,GM →∥AB →,则顶点C 的轨迹为( ) A .焦点在x 轴上的椭圆(长轴端点除外) B .焦点在y 轴上的椭圆(短轴端点除外) C .焦点在x 轴上的双曲线(实轴端点除外) D .焦点在x 轴上的抛物线(顶点除外) 答案 B解析 设C (x ,y )(y ≠0),则由GA →+GB →+GC →=0,即G 为△ABC 的重心,得G ⎝⎛⎭⎫x 3,y 3. 又|MA →|=|MB →|=|MC →|, 即M 为△ABC 的外心, 所以点M 在y 轴上, 又GM →∥AB →,则有M ⎝⎛⎭⎫0,y 3. 由|MC →|=|MA →|,所以x 2+⎝⎛⎭⎫y -y 32=4+y 29,化简得x 24+y 212=1,y ≠0.所以顶点C 的轨迹为焦点在y 轴上的椭圆(除去短轴端点).16.(2018·新余模拟)曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,又a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1|·|PF 2|=a 2对应的轨迹关于原点对称,即②正确; 因为12F PF S=12|PF 1|·|PF 2|sin ∠F 1PF 2 ≤12|PF 1||PF 2|=12a 2, 即△F 1PF 2的面积不大于12a 2,即③正确.。
一、知识梳理1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内.(2)动点到定点F的距离与到定直线l的距离相等.(3)定点不在定直线上.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=—2px(p>0)x2=2py(p>0)x2=—2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点F错误!F错误!F错误!F错误!离心率e=1准线方程x=—错误!x=错误!y=—错误!y=错误!范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下焦半径(其中P (x0,y0))|PF|=x0+错误!|PF|=—x0+错误!|PF|=y0+错误!|PF|=—y0+错误!1.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F错误!的距离|PF|=x0+错误!,也称为抛物线的焦半径.2.y2=ax(a≠0)的焦点坐标为错误!,准线方程为x=—错误!.3.如图,设A(x1,y1),B(x2,y2).(1)y1y2=—p2,x1x2=错误!.(2)|AB|=x1+x2+p=错误!(θ为AB的倾斜角).(3)错误!+错误!为定值错误!.(4)以AB为直径的圆与准线相切.(5)以AF或BF为直径的圆与y轴相切.二、教材衍化1.过点P(—2,3)的抛物线的标准方程是()A.y2=—错误!x或x2=错误!yB.y2=错误!x或x2=错误!yC.y2=错误!x或x2=—错误!yD.y2=—错误!x或x2=—错误!y解析:选A.设抛物线的标准方程为y2=kx或x2=my,代入点P(—2,3),解得k=—错误!,m=错误!,所以y2=—错误!x或x2=错误!y.故选A.2.抛物线y2=8x上到其焦点F距离为5的点P有()A.0个B.1个C.2个D.4个解析:选C.设P(x1,y1),则|PF|=x1+2=5,y错误!=8x1,所以x1=3,y1=±2错误!.故满足条件的点P有两个.故选C.3.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=________.解析:抛物线y2=4x的焦点为F(1,0),准线方程为x=—1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.答案:8一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)若一抛物线过点P(—2,3),则其标准方程可写为y2=2px(p>0).()(4)抛物线既是中心对称图形,又是轴对称图形.()答案:(1)×(2)×(3)×(4)×二、易错纠偏错误!错误!(1)忽视抛物线的标准形式;(2)忽视p的几何意义;(3)忽视k=0的讨论;(4)易忽视焦点的位置出现错误.1.抛物线8x2+y=0的焦点坐标为()A.(0,—2)B.(0,2)C.错误!D.错误!解析:选C.由8x2+y=0,得x2=—错误!y.2p=错误!,p=错误!,所以焦点为错误!,故选C.2.已知抛物线C与双曲线x2—y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±2错误!xB.y2=±2xC.y2=±4xD.y2=±4错误!x解析:选D.由已知可知双曲线的焦点为(—错误!,0),(错误!,0).设抛物线方程为y2=±2px (p>0),则错误!=错误!,所以p=2错误!,所以抛物线方程为y2=±4错误!x.故选D.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析:由已知可得Q(—2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k (x+2),代入抛物线方程,消去y整理得k2x2+(4k2—8)x+4k2=0,当k=0时,l与抛物线有公共点;当k≠0时,Δ=64(1—k2)≥0得—1≤k<0或0<k≤1.综上,—1≤k≤1.答案:[—1,1]4.若抛物线的焦点在直线x—2y—4=0上,则此抛物线的标准方程为________.解析:令x=0,得y=—2;令y=0,得x=4.所以抛物线的焦点是(4,0)或(0,—2),故所求抛物线的标准方程为y2=16x或x2=—8y.答案:y2=16x或x2=—8y抛物线的定义(典例迁移)设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】4【迁移探究1】(变条件)若将本例中“B(3,2)”改为“B(3,4)”,如何求解?解:由题意可知点B(3,4)在抛物线的外部.因为|PB|+|PF|的最小值即为B,F两点间的距离,由例题知,F(1,0),所以|PB|+|PF|≥|BF|=错误!=2错误!,即|PB|+|PF|的最小值为2错误!.【迁移探究2】(变问法)在本例条件下,求点P到点A(—1,1)的距离与点P到直线x=—1的距离之和的最小值.解:如图,易知抛物线的焦点为F(1,0),准线是x=—1,由抛物线的定义知点P到直线x=—1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(—1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点P,此时最小值为错误!=错误!.【迁移探究3】(变问法)在本例条件下,求点P到直线l1:4x—3y+6=0和l2:x=—1的距离之和的最小值.解:由题可知l2:x=—1是抛物线y2=4x的准线,设抛物线的焦点为F(1,0),则动点P到l的距离等于|PF|,故动点P到直线l1和直线l2的距离之和的最小值,即焦点F到直线l1:4x—3y+62=0的距离,所以最小值是错误!=2.错误!(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+错误!或|PF|=|y|+错误!.1.(2020·江西萍乡一模)已知动圆C经过点A(2,0),且截y轴所得的弦长为4,则圆心C的轨迹是()A.圆B.椭圆C.双曲线D.抛物线解析:选D.设圆心C(x,y),弦为BD,过点C作CE⊥y轴,垂足为E,则|BE|=2,则有|CA|2=|BC|2=|BE|2+|CE|2,所以(x—2)2+y2=22+x2,化为y2=4x,则圆心C的轨迹为抛物线.故选D.2.(2020·成都模拟)已知抛物线C:y2=2px(p>0)的焦点为F,准线l:x=—1,点M在抛物线C上,点M在直线l:x=—1上的射影为A,且直线AF的斜率为—错误!,则△MAF的面积为()A.错误!B.2错误!C.4错误!D.8错误!解析:选C.如图所示,设准线l与x轴交于点N.则|FN|=2.因为直线AF的斜率为—错误!,所以∠AFN=60°.所以∠MAF=60°,|AF|=4.由抛物线的定义可得|MA|=|MF|,所以△AMF是边长为4的等边三角形.所以S△AMF=错误!×42=4错误!.故选C.抛物线的标准方程(师生共研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9xB.y2=6xC.y2=3xD.y2=错误!x【解析】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=错误!|FC|=错误!,因此抛物线的方程为y2=3x,故选C.【答案】C错误!求抛物线的标准方程应注意以下几点(1)当坐标系已建立时,应根据条件确定抛物线的标准方程属于四种类型中的哪一种.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系.(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.1.(2020·重庆调研)已知抛物线y2=2px(p>0),点C(—4,0),过抛物线的焦点作垂直于x轴的直线,与抛物线交于A,B两点,若△CAB的面积为24,则以直线AB为准线的抛物线的标准方程是()A.y2=4xB.y2=—4xC.y2=8xD.y2=—8x解析:选D.因为AB⊥x轴,且AB过点F,所以AB是焦点弦,且|AB|=2p,所以S△CAB=错误!×2p×错误!=24,解得p=4或—12(舍),所以抛物线方程为y2=8x,所以直线AB的方程为x=2,所以以直线AB为准线的抛物线的标准方程为y2=—8x.故选D.2.已知双曲线C1:错误!—错误!=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p >0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程是()A.x2=16yB.x2=8yC.x2=错误!yD.x2=错误!y解析:选A.因为双曲线C1:错误!—错误!=1(a>0,b>0)的离心率为2,所以错误!=2.因为双曲线的渐近线方程为bx±ay=0,抛物线C2:x2=2py(p>0)的焦点错误!到双曲线的渐近线的距离为2,所以错误!=错误!·错误!=错误!=2,解得p=8,所以抛物线C2的方程是x2=16y.抛物线的性质(师生共研)已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2=—p2,x1x2=错误!;(2)错误!+错误!为定值;(3)以AB为直径的圆与抛物线的准线相切.【证明】(1)由已知得抛物线焦点坐标为F(错误!,0).由题意可设直线方程为x=my+错误!,代入y2=2px,得y2=2p错误!,即y2—2pmy—p2=0.(*)则y1,y2是方程(*)的两个实数根,所以y1y2=—p2.因为y错误!=2px1,y错误!=2px2,所以y错误!y错误!=4p2x1x2,所以x1x2=错误!=错误!=错误!.(2)错误!+错误!=错误!+错误!=错误!.因为x1x2=错误!,x1+x2=|AB|—p,|AB|=x1+x2+p,代入上式,得错误!+错误!=错误!=错误!(定值).(3)设AB的中点为M(x0,y0),如图,分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,则|MN|=错误!(|AC|+|BD|)=错误!(|AF|+|BF|)=错误!|AB|.所以以AB为直径的圆与抛物线的准线相切.错误!抛物线几何性质的应用技巧(1)涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.(2)与抛物线的焦点弦长有关的问题,可直接应用公式求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标还是由交点纵坐标定,是p与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.1.(2020·河南郑州二模)已知抛物线C:y2=2x,过原点作两条互相垂直的直线分别交C于A,B两点(A,B均不与坐标原点重合),则抛物线的焦点F到直线AB的距离的最大值为()A.2B.3C.错误!D.4解析:选C.设直线AB的方程为x=my+t,A(x1,y1),B(x2,y2).由错误!⇒y2—2my—2t=0⇒y1y2=—2t,由OA⊥OB⇒x1x2+y1y2=错误!+y1y2=0⇒y1y2=—4,所以t=2,即直线AB过定点(2,0).所以抛物线的焦点F到直线AB的距离的最大值为2—错误!=错误!.故选C.2.(2020·洛阳模拟)已知F是抛物线C1:y2=2px(p>0)的焦点,曲线C2是以F为圆心,错误!为半径的圆,直线4x—3y—2p=0与曲线C1,C2从上到下依次相交于点A,B,C,D,则错误!=()A.16 B.4C.错误!D.错误!解析:选A.因为直线4x—3y—2p=0过C1的焦点F(C2的圆心),故|BF|=|CF|=错误!,所以错误!=错误!.由抛物线的定义得|AF|—错误!=x A,|DF|—错误!=x D.由错误!整理得8x2—17px+2p2=0,即(8x—p)(x—2p)=0,可得x A=2p,x D=错误!,故错误!=错误!=错误!=16.故选A.直线与抛物线的位置关系(师生共研)(2019·高考全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为错误!的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若错误!=3错误!,求|AB|.【解】设直线l:y=错误!x+t,A(x1,y1),B(x2,y2).(1)由题设得F错误!,故|AF|+|BF|=x1+x2+错误!,由题设可得x1+x2=错误!.由错误!可得9x2+12(t—1)x+4t2=0,则x1+x2=—错误!.从而—错误!=错误!,得t=—错误!.所以l的方程为y=错误!x—错误!.(2)由错误!=3错误!可得y1=—3y2.由错误!可得y2—2y+2t=0.所以y1+y2=2.从而—3y2+y2=2,故y2=—1,y1=3.代入C的方程得x1=3,x2=错误!.故|AB|=错误!.错误!解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=|x1|+|x2|+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.1.(2020·河南郑州二模)已知抛物线C:y2=4x的焦点为F,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点T(5,0),则S△AOB=()A.2错误!B.错误!C.错误!D.3错误!解析:选A.如图所示,F(1,0).设直线l的方程为y=k(x—1)(k≠0),A(x1,y1),B(x,y2),线段AB的中点E(x0,y0).2则线段AB的垂直平分线的方程为y=—错误!(x—5).联立错误!化为ky2—4y—4k=0,所以y1+y2=错误!,y1y2=—4,所以y0=错误!(y1+y2)=错误!,x0=错误!+1=错误!+1,把E错误!代入线段AB的垂直平分线的方程y=—错误!(x—5),可得错误!=—错误!·错误!,解得k2=1.S△OAB=错误!×1×|y1—y2|=错误!错误!=错误!错误!=2错误!.故选A.2.设A,B为曲线C:y=错误!上两点,A与B的横坐标之和为2.(1)求直线AB的斜率;(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB 的方程.解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=错误!,y2=错误!,x1+x2=2,故直线AB的斜率k=错误!=错误!=1.(2)由y=错误!,得y′=x.设M(x3,y3),由题设知x3=1,于是M错误!.设直线AB的方程为y=x+m,故线段AB的中点为N(1,1+m),|MN|=错误!.将y=x+m代入y=错误!,得x2—2x—2m=0.由Δ=4+8m>0,得m>—错误!,x1,2=1±错误!.从而|AB|=错误!|x1—x2|=2错误!.由题设知|AB|=2|MN|,即错误!=错误!,解得m=错误!或m=—2(舍).所以直线AB的方程为y=x+错误!.解析几何中的“设而不求”“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.类型一巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求在平面直角坐标系xOy中,双曲线错误!—错误!=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.【解析】设A(x1,y1),B(x2,y2),由抛物线的定义可知|AF|=y1+错误!,|BF|=y2+错误!,|OF|=错误!,由|AF|+|BF|=y1+错误!+y2+错误!=y1+y2+p=4|OF|=2p,得y1+y2=p.k AB=错误!=错误!=错误!.由错误!得k AB=错误!=错误!=错误!·错误!,则错误!·错误!=错误!,所以错误!=错误!⇒错误!=错误!,所以双曲线的渐近线方程为y=±错误!x.【答案】y=±错误!x类型二中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法△ABC的三个顶点都在抛物线E:y2=2x上,其中A(2,2),△ABC的重心G是抛物线E 的焦点,则BC边所在直线的方程为________.【解析】设B(x1,y1),C(x2,y2),边BC的中点为M(x0,y0),易知G错误!,则错误!从而错误!即M错误!,又y错误!=2x1,y错误!=2x2,两式相减得(y1+y2)(y1—y2)=2(x1—x2),则直线BC 的斜率k BC=错误!=错误!=错误!=错误!=—1,故直线BC的方程为y—(—1)=—错误!,即4x +4y+5=0.【答案】4x+4y+5=0类型三中点弦或对称问题,可以利用“点差法”,但不要忘记验证Δ>0已知双曲线x2—错误!=1,过点P(1,1)能否作一条直线l与双曲线交于A,B两点,且点P是线段AB的中点?【解】假设存在直线l与双曲线交于A,B两点,且点P是线段AB的中点.设A(x1,y1),B(x2,y2),易知x1≠x2,由错误!两式相减得(x1+x2)(x1—x2)—错误!=0,又错误!=1,错误!=1,所以2(x1—x2)—(y1—y2)=0,所以k AB=错误!=2,故直线l的方程为y—1=2(x—1),即y=2x—1.由错误!消去y得2x2—4x+3=0,因为Δ=16—24=—8<0,方程无解,故不存在一条直线l与双曲线交于A,B两点,且点P是线段AB的中点.类型四求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.【解析】法一:由题意知,直线l1,l2的斜率都存在且不为0,F错误!,设l1:x=ty+错误!,则直线l1的斜率为错误!,联立方程得错误!消去x得y2—2ty—1=0.设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=—1.所以|AB|=错误!|y1—y2|=错误!·错误!=错误!错误!=2t2+2,同理得,用—错误!替换t可得|DE|=错误!+2,所以|AB|+|DE|=2错误!+4≥4+4=8,当且仅当t2=错误!,即t=±1时等号成立,故|AB|+|DE|的最小值为8.法二:由题意知,直线l1,l2的斜率都存在且不为0,F错误!,不妨设l1的斜率为k,则l1:y=k错误!,l2:y=—错误!错误!.由错误!消去y得k2x2—(k2+2)x+错误!=0,设A(x1,y1),B(x2,y2),则x1+x2=1+错误!.由抛物线的定义知,|AB|=x1+x2+1=1+错误!+1=2+错误!.同理可得,用—错误!替换|AB|中k,可得|DE|=2+2k2,所以|AB|+|DE|=2+错误!+2+2k2=4+错误!+2k2≥4+4=8,当且仅当错误!=2k2,即k=±1时等号成立,故|AB|+|DE|的最小值为8.【答案】8[基础题组练]1.(2019·高考全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆错误!+错误!=1的一个焦点,则p=()A.2B.3C.4D.8解析:选D.由题意,知抛物线的焦点坐标为错误!,椭圆的焦点坐标为(±错误!,0),所以错误!=错误!,解得p=8,故选D.2.(2020·河北衡水三模)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若A,B,C三点坐标分别为(1,2),(x1,y1),(x2,y2),且|错误!|+|错误!|+|错误!|=10,则x1+x2=()A.6 B.5C.4D.3解析:选A.根据抛物线的定义,知|错误!|,|错误!|,|错误!|分别等于点A,B,C到准线x=—1的距离,所以由|错误!|+|错误!|+|错误!|=10,可得2+x1+1+x2+1=10,即x1+x2=6.故选A.3.(2020·河北邯郸一模)位于德国东部萨克森州的莱科勃克桥有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5m,跨径为12m,则桥形对应的抛物线的焦点到准线的距离为()A.错误!m B.错误!mC.错误!m D.错误!m解析:选D.建立如图所示的平面直角坐标系.设抛物线的解析式为x2=—2py,p>0,因为抛物线过点(6,—5),所以36=10p,可得p=错误!,所以桥形对应的抛物线的焦点到准线的距离为错误!m.故选D.4.(2020·河南安阳三模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴的交点为P,点A在抛物线C上,过点A作AA′⊥l,垂足为A′.若四边形AA′PF的面积为14,且cos∠FAA′=错误!,则抛物线C的方程为()A.y2=xB.y2=2xC.y2=4xD.y2=8x解析:选C.过点F作FF′⊥AA′,垂足为F′.设|AF′|=3x,因为cos∠FAA′=错误!,故|AF|=5x,则|FF′|=4x,由抛物线定义可知,|AF|=|AA′|=5x,则|A′F′|=2x=p,故x=错误!.四边形AA′PF的面积S=错误!=错误!=14,解得p=2,故抛物线C的方程为y2=4x.5.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=()A.错误!B.错误!C.错误!D.错误!解析:选D.设抛物线C:y2=8x的准线为l,易知l:x=—2,直线y=k(x+2)恒过定点P(—2,0),如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,由|FA|=2|FB|,知|AM|=2|BN|,所以点B为线段AP的中点,连接OB,则|OB|=错误!|AF|,所以|OB|=|BF|,所以点B的横坐标为1,因为k>0,所以点B的坐标为(1,2错误!),所以k=错误!=错误!.故选D.6.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4错误!,|DE|=2错误!,则C的焦点到准线的距离为________.解析:由题意,不妨设抛物线方程为y2=2px(p>0),由|AB|=4错误!,|DE|=2错误!,可取A错误!,D错误!,设O为坐标原点,由|OA|=|OD|,得错误!+8=错误!+5,得p=4.答案:47.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为________.解析:设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,垂足分别为A′,N′,B′.因为直线l过抛物线的焦点,所以|BB′|=|BF|,|AA′|=|AF|.又N是线段AB的中点,|MN|=|AB|,所以|NN′|=错误!(|BB′|+|AA′|)=错误!(|BF|+|AF|)=错误! |AB|=错误!|MN|,所以∠MNN′=60°,则直线MN的倾斜角为120°.又MN⊥l,所以直线l的倾斜角为30°,斜率是错误!.答案:错误!8.(一题多解)已知点M(—1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点.若∠AMB=90°,则k=________.解析:法一:由题意知抛物线的焦点为(1,0),则过C的焦点且斜率为k的直线方程为y=k(x—1)(k≠0),由错误!消去y得k2(x—1)2=4x,即k2x2—(2k2+4)x+k2=0,设A(x1,y),B(x2,y2),则x1+x2=错误!,x1x2=1.由错误!消去x得y2=4错误!,即y2—错误!y—41=0,则y1+y2=错误!,y1y2=—4,由∠AMB=90°,得错误!·错误!=(x1+1,y1—1)·(x2+1,y2—1)=x1x2+x1+x2+1+y1y2—(y1+y2)+1=0,将x1+x2=错误!,x1x2=1与y+y2=错误!,y1y2=—4代入,得k=2.1法二:设抛物线的焦点为F,A(x1,y1),B(x2,y2),则错误!所以y错误!—y错误!=4(x1—x),则k=错误!=错误!,取AB的中点M′(x0,y0),分别过点A,B作准线x=—1的垂线,垂足分别2为A′,B′,又∠AMB=90°,点M在准线x=—1上,所以|MM′|=错误!|AB|=错误!(|AF|+|BF|)=错误!(|AA′|+|BB′|).又M′为AB的中点,所以MM′平行于x轴,且y0=1,所以y1+y2=2,所以k=2.答案:29.已知过抛物线y2=2px(p>0)的焦点,斜率为2错误!的直线交抛物线于A(x1,y1),B(x,y2)(x1<x2)两点,且|AB|=9.2(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若错误!=错误!+λ错误!,求λ的值.解:(1)由题意得直线AB的方程为y=2错误!·错误!,与y2=2px联立,消去y有4x2—5px+p2=0,所以x1+x2=错误!.由抛物线定义得|AB|=x1+x2+p=错误!+p=9,所以p=4,从而该抛物线的方程为y2=8x.(2)由(1)得4x2—5px+p2=0,即x2—5x+4=0,则x1=1,x2=4,于是y1=—2错误!,y2=4错误!,从而A(1,—2错误!),B(4,4错误!),设C(x3,y3),则错误!=(x3,y3)=(1,—2错误!)+λ(4,4错误!)=(4λ+1,4错误!λ—2错误!).又y错误!=8x3,所以[2错误!(2λ—1)]2=8(4λ+1),整理得(2λ—1)2=4λ+1,解得λ=0或λ=2.10.(2020·河北衡水二模)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m >0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,证明:过点F作切线l0的垂线,垂足必在x轴上.解:(1)由抛物线的定义可知,|MF|=m+错误!=2,1又M(2,m)在抛物线上,所以2pm=4,2由12解得p=2,m=1,所以抛物线C的方程为x2=4y.(2)证明:1当x0=0,即点P为原点时,显然符合;2x0≠0,即点P不在原点时,由(1)得,x2=4y,则y′=错误!x,所以抛物线在点P处的切线的斜率为错误!x0,所以抛物线在点P处的切线l0的方程为y—y0=错误!x0(x—x0),又x错误!=4y0,所以y—y0=错误!x0(x—x0)可化为y=错误!x0x—y0.又过点F且与切线l0垂直的方程为y—1=—错误!x.联立方程得错误!消去x,得y=—错误!(y—1)x错误!—y0.(*)因为x错误!=4y0,所以(*)可化为y=—yy0,即(y0+1)y=0,由y0>0,可知y=0,即垂足必在x轴上.综上,过点F作切线l0的垂线,垂足必在x轴上.[综合题组练]1.(2020·陕西西安一模)已知F为抛物线C:y2=6x的焦点,过点F的直线l与C相交于A,B 两点,且|AF|=3|BF|,则|AB|=()A.6 B.8C.10 D.12解析:选B.抛物线y2=6x的焦点坐标为错误!,准线方程为x=—错误!,设A(x1,y1),B(x2,y2),因为|AF|=3|BF|,所以x1+错误!=3错误!,所以x1=3x2+3,因为|y1|=3|y2|,所以x1=9x2,所以x1=错误!,x2=错误!,所以|AB|=错误!+错误!=8.故选B.2.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为()A.错误!B.错误!C.错误!D.2错误!解析:选C.由题意设A(x1,y1),B(x2,y2)(y1>0,y2<0),如图所示,|AF|=x1+1=3,所以x1=2,y1=2错误!.设AB的方程为x—1=ty,由错误!消去x得y2—4ty—4=0.所以y1y2=—4,所以y2=—错误!,x2=错误!,所以S△AOB=错误!×1×|y1—y2|=错误!,故选C.3.(2020·江西九江二模)已知抛物线C:x2=4y的焦点为F,直线l与抛物线C交于A,B两点,连接AF并延长交抛物线C于点D,若AB中点的纵坐标为|AB|—1,则当∠AFB最大时,|AD|=()A.4B.8C.16 D.错误!解析:选C.设A(x1,y1),B(x2,y2),D(x3,y3),由抛物线定义得y1+y2+2=|AF|+|BF|,因为错误!=|AB|—1,所以|AF|+|BF|=2|AB|,所以cos∠AFB=错误!=错误!≥错误!=错误!,当且仅当|AF|=|BF|时取等号.所以当∠AFB最大时,△AFB为等边三角形,联立错误!消去y得,x2—4错误!x—4=0,所以x1+x3=4错误!,所以y1+y3=错误!(x1+x3)+2=14.所以|AD|=16.故选C.4.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则实数a的取值范围为________.解析:如图,设C(x0,x错误!)(x错误!≠a),A(—错误!,a),B(错误!,a),则错误!=(—错误!—x0,a—x错误!),错误!=(错误!—x0,a—x错误!).因为CA⊥CB,所以错误!·错误!=0,即—(a—x错误!)+(a—x错误!)2=0,(a—x错误!)(—1+a—x错误!)=0,所以x错误!=a—1≥0,所以a≥1.答案:[1,+∞)5.已知抛物线的方程为x2=2py(p>0),其焦点为F,点O为坐标原点,过焦点F作斜率为k(k≠0)的直线与抛物线交于A,B两点,过A,B两点分别作抛物线的两条切线,设两条切线交于点M.(1)求错误!·错误!;(2)设直线MF与抛物线交于C,D两点,且四边形ACBD的面积为错误!p2,求直线AB的斜率k.解:(1)设直线AB的方程为y=kx+错误!,A(x1,y1),B(x2,y2),由错误!得x2—2pkx—p2=0,则错误!所以y1·y2=错误!,所以错误!·错误!=x1·x2+y1·y2=—错误!p2.(2)由x2=2py,知y′=错误!,所以抛物线在A,B两点处的切线的斜率分别为错误!,错误!,所以直线AM的方程为y—y1=错误!(x—x1),直线BM的方程为y—y2=错误!(x—x2),则可得M错误!.所以k MF=—错误!,所以直线MF与AB相互垂直.由弦长公式知,|AB|=错误!|x1—x2|=错误!·错误!=2p(k2+1),用—错误!代替k得,|CD|=2p错误!,四边形ACBD的面积S=错误!·|AB|·|CD|=2p2错误!=错误!p2,解得k2=3或k2=错误!,即k=±错误!或k=±错误!.6.已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B 两点,抛物线C在A,B处的切线的交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN的面积的最小值为4,求抛物线C的方程.解:设直线AB:y=kx+1,A(x1,y1),B(x2,y2),将直线AB的方程代入抛物线C的方程得x2—2pkx—2p=0,则x1+x2=2pk,x1x2=—2p.1(1)由x2=2py得y′=错误!,则A,B处的切线斜率的乘积为错误!=—错误!,因为点N在以AB为直径的圆上,所以AN⊥BN,所以—错误!=—1,所以p=2.(2)易得直线AN:y—y1=错误!(x—x1),直线BN:y—y2=错误!(x—x2),联立,得错误!结合1式,解得错误!即N(pk,—1).|AB|=错误!|x2—x1|=错误!错误!=错误!错误!,点N到直线AB的距离d=错误!=错误!,则△ABN的面积S△ABN=错误!·|AB|·d=错误!≥2错误!,当k=0时,取等号,因为△ABN的面积的最小值为4,所以2错误!=4,所以p=2,故抛物线C的方程为x2=4y.。
1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A .4B .8C .4或8D .12 答案 C 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2015·广东)已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m 等于( )A .2B .3C .4D .9 答案 B解析 由题意知25-m 2=16,解得m 2=9,又m >0,所以m =3.3.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12 C.23 D.34答案 B解析 如图,由题意得|BF |=a ,|OF |=c ,|OB |=b ,|OD |=14×2b =12b .在Rt △FOB 中,|OF |×|OB |=|BF |×|OD |,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12,故选B.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·济南模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 A解析 由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=R >|OF |. ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为__________________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为___________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上,设方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆过P (3,0),∴32a 2+02b 2=1,即a=3,又2a =3×2b ,∴b =1,方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.则⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,∴2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又∵12PF F s=12r 1r 2 =b 2=9,∴b =3. 引申探究1.在例3中增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中将条件“PF 1→⊥PF 2→”、“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”、“12PF F s=33”,结果如何?解 |PF 1|+|PF 2|=2a ,又∠F 1PF 2=60°, 所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60° =|F 1F 2|2,即(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4c 2, 所以3|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=43b 2,又因为12PF F s=12|PF 1||PF 2|·sin 60° =12×43b 2×32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.(1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 (2)(2016·大庆质检)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( ) A .4 B .3 C .2 D .1答案 (1)D (2)D解析 (1)设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16>8=|C 1C 2|, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4, ∴12F PF s=12mn =1. 题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( ) A .0 B .1 C .2 D .2 2(2)(2016·全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34 答案 (1)C (2)A解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 2=22-2y 20+y 2=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C.(2)设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2,又F (c,0), 则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2. 代入①式可化简为c 2a 2=23,则椭圆的离心率为e =ca =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1|OF |+1|OA |=3e|F A |,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0. 解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0, 所以4k 2-94k 2+3+12ky H4k 2+3=0,解得y H =9-4k 212k.因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M),由方程组⎩⎨⎧y =k (x -2),y =-1k x +9-4k212k消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简,得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(2016·唐山模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦|MN |的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15, 解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0), 设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1,以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1解析左焦点F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4,∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32,故选A. 答案 A典例2 (12分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,[2分]故x 1=0,x 2=-2a 2k1+a 2k 2,因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2.[4分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,[5分] 且k 1>0,k 2>0,k 1≠k 2.由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.[7分] 由k 1≠k 2,k 1>0,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2),① 因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,[10分] 由e =c a=a 2-1a ,得0<e ≤22. 所以离心率的取值范围是(0,22].[12分]1.(2016·湖南六校联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1 答案 A解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或-21 答案 D解析 当9>4-k >0,即4>k >-5时, a =3,c 2=9-(4-k )=5+k ,∴5+k 3=45,解得k =1925.当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5,∴-k -54-k=45,解得k =-21,故选D. 3.(2017·青岛质检)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为( )A.49B.23C.59D.53答案 D解析 设P (x 0,y 0),则y 0x 0+a ×y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53,故选D. 4.2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2; ③c 1a 1<c 2a 2;④c 1a 2>a 1c 2. 其中正确式子的序号是( ) A .①③ B .①④ C .②③D .②④答案 D解析 观察图形可知a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=|PF |,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0,知a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2,即④式正确,③式不正确.故选D.5.(2016·贵州七校联考)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( ) A .1 B. 2 C .2 D .2 2 答案 D解析 设a ,b ,c 分别为椭圆的长半轴长,短半轴长,半焦距,依题意知,当三角形的高为b 时面积最大,所以12×2cb =1,bc =1,而2a =2b 2+c 2≥22bc =2 2(当且仅当b =c =1时取等号),故选D.6.(2016·济南质检)设A1,A 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是( ) A .(0,12)B .(0,22) C .(12,1)D .(22,1) 答案 D解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2,∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<ca<1,故选D.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1, 即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.9.(2017·石家庄质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.(2016·长沙模拟)已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →, ∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程. 解 (1)由已知|AB |=52|BF |, 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,左焦点为F ,离心率为55.(1)求直线BF 的斜率;(2)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B ),直线PQ 与y 轴交于点M ,|PM |=λ|MQ |. ①求λ的值;②若|PM |sin ∠BQP =759,求椭圆的方程.解 (1)设F (-c,0).由已知离心率c a =55及a 2=b 2+c 2,可得a =5c ,b =2c ,又因为B (0,b ),F (-c,0),故直线BF 的斜率k =b -00-(-c )=2cc =2.(2)设点P (x P ,y P ),Q (x Q ,y Q ),M (x M ,y M ).①由(1)可得椭圆的方程为x 25c 2+y 24c 2=1,直线BF 的方程为y =2x +2c .将直线方程与椭圆方程联立,消去y ,整理得3x 2+5cx =0,解得x P =-5c3.因为BQ ⊥BP ,所以直线BQ 的方程为y =-12x +2c ,与椭圆方程联立,消去y ,整理得21x 2-40cx =0,解得x Q =40c21.又因为λ=|PM ||MQ |及x M =0,可得λ=|x M -x P ||x Q -x M |=|x P ||x Q |=78.②因为|PM ||MQ |=78,所以|PM ||PM |+|MQ |=77+8=715, 即|PQ |=157|PM |. 又因为|PM |sin ∠BQP =759, 所以|BP |=|PQ |sin ∠BQP =157|PM |sin ∠BQP =553.又因为y P =2x P +2c =-43c , 所以|BP |= ⎝⎛⎭⎫0+5c 32+⎝⎛⎭⎫2c +4c 32=553c , 因此553c =553,得c =1. 所以椭圆方程为x 25+y 24=1. 13.(2016·长春调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ).(1)当p +q ≤0时,求椭圆的离心率的取值范围; (2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a 2), 于是圆心坐标为(a -c 2,b 2-ac 2b). 所以p +q =a -c 2+b 2-ac 2b≤0, 整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0,所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2.所以e 2=c 2a 2≥12,即22≤e <1. (2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1, 设M (x ,y ),则-2c ≤x ≤2c ,所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12. 当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。