固定床反应器的数学模型
- 格式:doc
- 大小:332.50 KB
- 文档页数:9
化学反应工程考试题库(分三个部分)(一)(综合章节)复习题一、填空题:1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质量传递、热量传递和动量传递,“一反”是指反应动力学。
2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升高有利于活化能高的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。
3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输入方法为脉冲示踪法和阶跃示踪法。
4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的两种最主要的方法为积分法和微分法。
5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴向扩散模型的唯一模型参数为Pe(或Ez / uL)。
6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳定性。
7.平推流反应器的E函数表达式为,()0,t tE tt t⎧∞=⎪=⎨≠⎪⎩,其无因次方差2θσ=0 ,而全混流反应器的无因次方差2θσ= 1 。
8.某反应速率常数的单位为m3 / (mol⋅ hr ),该反应为 2 级反应。
9.对于反应22A B R+→,各物质反应速率之间的关系为 (-r A):(-r B):r R= 1:2:2 。
10.平推流反应器和全混流反应器中平推流更适合于目的产物是中间产物的串联反应。
11.某反应的计量方程为A R S→+,则其反应速率表达式不能确定。
12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化50%需要30 min, 而在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105 (J / mol ) 。
13.反应级数不可能(可能/不可能)大于3。
14. 对于单一反应,在相同的处理量和最终转化率条件下,选择反应器时主要考虑 反应器的大小 ;而对于复合反应,选择反应器时主要考虑的则是 目的产物的收率 ; 15. 完全混合反应器(全混流反应器)内物料的温度和浓度 均一 ,并且 等于(大于/小于/等于)反应器出口物料的温度和浓度。
固定床反应器的数学模型1、概述凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器,其中尤以用气态的反应物料通过由固体催化剂所构成的床层进行反应的气-固相催化反应器占最主要的地位。
如炼油工业中的催化重整,异构化,基本化学工业中的氨合成、天然气转化,石油化工中的乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯等等。
此外还有不少非催化的气-固相反应,如水煤气的生产,氮与电石反应生成石灰氮(CaCN2)以及许多矿物的焙烧等,也都采用固定床反应器。
固定床反应器之所以成为气固催化反应器的主要形式,是由于具有床内的流体轴向流动可看作为平推流,在完成同样的生产任务时,所需的催化剂用量(或反应器体积)最小;床内流体的停留时间可严格控制,温度分布可适当调节,因而有利于提高化学反应的转化率和选择性;床内催化剂不易磨损,可以在高温高压下操作等优点,但固定床中传热较差,对于热效应大的反应过程,传热与控温问题就成为固定床技术中的难点和关键,为解决这一问题而提出了多种形式的床层结构。
2、固定床反应器的结构形式固定床反应器类型很多.按换热方式不同可分为:绝热式反应器和换热式反应器。
2.1绝热式反应器在反应器中的反应区(催化剂层)不与外界换热的称为绝热式反应器。
一般来说,反应热效应小;调节进A反应器的物料温度,就可使反应温度不致超出反应允许的温度范围的反应过程等可采用绝热式反应器。
绝热式反应器具有结构简单,反应空间利用率高,造价便宜等优点。
图1是绝热床反应器的示意图。
如果反应热效应较大,为了减小反应区内轴间温度分布不均,可将绝热反应器改成多段绝热式反应器,在各段之间进行加热或冷却,它可使各段反应区接近适宜温度。
图2是多段绝热床反应器的示意图。
总之,不论是吸热或放热的反应,绝热床的应用相当广泛。
特别对大型的,高温的或高压的反应器,希望结构简单,同样大小的装置内能容纳尽可能多的催化剂以增加生产能力(少加换热空间),而绝热床正好能符合这种要求。
不过绝热床的温度变化总是比较大的,而温度对反应结果的影响也是举足轻重的,因此如何取舍,要综合分析并根据实际情况来决定。
此外还应注意到绝热床的高/径比物料气产物催化剂不宜过大,床层填充务必均匀,并注意气流的预分布,以保证气流在床层内的均匀分布。
图1 绝热式反应器图2 多段绝热床反应器的示意图2.2换热式反应器为了改善热效应大的反应过程反应区内的温度条件,可在反应区内进行热交换,这种反应器称为换热式反应器。
换热式反应器又有自热式和外热式两种。
自热式是以原料气体来加热或冷却反应区(图3),外热式则是用载热体加热或冷却反应区换热式反应器以列管式为多,通常在管内放催化剂,管外走热载体(图4)。
列管的管径一般取25~50mm为宜,催化剂的粒径应小于管径的8倍,以防管壁处出现沟流。
图3图4 自热式反应器示意图3、固定床反应器的数学模型反应器是整个化工生产过程的核心装置,其中固定床反应器是应用较为广泛的反应设备,建立能准确描述其特性的数学模型,不但可以给反应器设计和最优化操作提供理论依据,更减少了工作量。
实现其优化操作,具有重要意义。
描述固定床反应器的数学模型按其传递过程的不同可分为拟均相模型和非均相模型两大类。
拟均相模型不考虑流体与催化剂间的传热、传质阻力,把流体和催化剂看成均相物系,催化剂粒子和流体之间没有温度和浓度上的差别。
拟均相模型又可分为拟均相一维模型和拟均相二维模型(表1)。
非均相模型则考虑了流体与催化剂外表面间的温度梯度和浓度梯度,须对流体和催化剂分别列出物料衡算式。
表1 固定床反应器的数学模型拟均相模型 非均相模型 一维 基本模型 (A-Ⅰ) +相间梯度 (B-Ⅰ) +轴向混合 (A-Ⅱ) +颗粒内梯度(B-Ⅱ) 二维 +径向混合 (A-Ⅲ)+径向梯度 (B-Ⅲ)3.1拟均相基本模型(A-I)(拟均相一维活塞流模型)将实际非均相反应系统简化为均相系统处理。
适用于:(1)化学反应为控制步骤;(2)流固相间或固相内部存在传递阻力;“拟均相”是只指将实际上为非均相的反应系统简化为均相系统处理,即认为流体相和固体相之间不存在浓度差和温度差。
“一维”的含义是只在流动方向上存在浓度梯度和温度梯度,而垂直于流动方向的同一截面上各点的浓度和温度均相等。
“活塞流”的含义则是在流动方向上不存在任何形式的返混。
物料衡算方程:当为等摩尔反应时,能量衡算方程: 管内: 管外:流动阻力方程:()()()d d d d A A A B A AB A N N N r V N r Vρρ=++--=-()()d d d d AB A A B A uA c r A z u c r z ρρ-=--=-()()()d 4d g pR B A c tT Uu c H r T T z d ρ∆ρ=----()d 4d c c c pcc tT Uu c T T z d ρ=-2d d g k pu pf z d ρ-=边界条件:对于绝热反应器:对反应物流和载热体并流的列管式反应器:求解方法用龙格库塔法。
对反应物流和载热体逆流的列管式反应器:求解方式:打靶法。
3.2拟均相轴向分散模型(A-Ⅱ)反应物流通过固体颗粒床层是不断分流和汇合,并作绕流流动,造成一定程度的轴向混合(返混),用分散模型描述。
管内物料衡算方程: 管内能量衡算方程::管外EB 和流动阻力方程同拟均相基本模型。
边界条件:与拟均相基本模型相比,引入轴向混合项的作用主要在于:(1)降低转化率;(2)当轴向混合足够大时,反应器可能存在多重定态。
对于反应速率随床层轴向距离单调减小的情形,如果进口条件满足下面两式,可忽略轴向混合影响的判据:0000, , , , A A c c z c c T T p p z L T T ======处处0000, , , A A z c c T T p p ====处00000, , , , A A c c z c c T T T T p p =====处()22d d d d A Aea B A c u c D r z zρ-=-()()()22d d 4d d ea g p R B A c tT T Uu c H r T T z z d λρ∆ρ-+=----()()000d 0, d d d d d ,0d d AA A ea g p eaA c z u c c D z Tu c T T zp p c Tz L z zρλ=-=--=-====处处3.3拟均相二维模型(A-Ⅲ)对于管径较粗或反应热较大,造成径向位置处反应速率和反应物浓度的差别, 需采用二维模型,同时考虑轴向及径向分布。
在列管反应器的某反应管中,以反应管轴线为中心线,取以半径为r ,径向厚度为dr ,轴向高度为dz 的环状微元体,如图5所示图5 拟均相二维模型对微元体作组分A 的物料衡算:气相主体流动自z 面进入微元体的组分A 的量为: 气相主体流动自(z+dz )面流出微元体的组分A 的量为:从r 面扩散进入微元体的组分A 的量:()()ma A PB A Pe uc d r <<-00ρ()()()()ha Pg W PB A Pe c u T T d r H <<--∆-ρρ00Ardruc π2⎪⎭⎫⎝⎛∂∂+dz z c c rdru A A π2rc rdzD A er∂∂-π2从r +dr 面扩散出微元体的组分A 的量: 组分A 在微元体内的反应量:在定态条件下:进入微元体的量-出微元体的量=微元体反应的量3.4考虑颗粒界面梯度的活塞流非均相模型(B-I)对于热效应很大而且速率极快的反应,可能需要考虑流体相和固体相之间的浓度差和温度差。
气相衡算方程:固相衡算方程:边界条件:)()(222dr rc r c dzD dr r AA er ∂∂+∂∂+-π()A B r rdrdz -ρπ2()()()H r r T r rT z Tc u r r c r r c D z c u A B er p g A B A A er A∆--+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂--⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂ρλρρ112222能量守恒方程:物料衡算方程:000,000=∂∂=∂∂=∂∂====rT r T rcz r T T c c r z sA A A 为任意值处,,为任意值处,,边界条件:()()()d d d 4d Ag A As g p s c t c uk a c c z T U u c ha T T T T z d ρ-=-=---()()()()(),,g A As A As s B s A As s B k a c c r c T ha T T r c T H ρρ∆-=-⎡⎤⎣⎦-=--⎡⎤⎣⎦000, , A A z c c T T ===处求解方式:先通过迭代求解固相式后再代入气相式进行数值解微分方程。
3.4考虑颗粒界面梯度和颗粒内梯度的活塞流非均相模型(B-Ⅱ)当催化剂颗粒内的传热、传质阻力很大时,颗粒内不同位置的反应速率是不均匀的。
气相衡算方程:固相衡算方程:气相方程的边值条件:固相方程的边值条件:3.4非均相二维模型(B-Ⅲ)迄今结构最复杂的固定床反应器数学模型,既考虑了沿反应器轴向和径向的浓度分布和温度分布,也考虑了气固相间和固相内部的浓度差和温度差。
该模型在考虑床层内部和床层与器壁的传热时,都对气相和固相的贡献作了区分。
气相衡算方程:)(dzd As A g Ac c a k c u-=-)(4)(dz dT C tS pg T T D UT T ha c u ---=ρ0)),(()d dc (d d D As22e =--s s As A T c r ρξξξξ0)),()(()d dT (d d s22e =-∆-+s s As A T c r H ρξξξξλ00,0T T c c z A A ===处,)(d dc -2As A Asec c a k Dd g p -==ξξ处,0d dT d dc 0sAs ===ξξξ处,)T T (d dT s se-=-ha ξλ固相衡算方程:边值条件:()()s er p g As A g A A er AT T ha r T r r T z T c u c c a k r c r r c D z c u -=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-1122f 22λρ()()As A g B A c c a k r -=-ρη()()()T T ha r T r r T H r s serB A -=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∆--122λρη()()rT T T h rT T T h rcz d t r T r T rcz r T T c c r z s s er s w s wer w wA t sA A A ∂∂=-∂∂=-=∂∂==∂∂=∂∂=∂∂====λλf f000,200,0,,0为任意值处,为任意值处,为任意值处,。