操作系统先来先服务算法FCFS(C语言)
- 格式:doc
- 大小:102.00 KB
- 文档页数:5
先来先服务和优先数调度算法c语言先来先服务和优先数调度算法c语言一、前言操作系统中的进程调度是指在多道程序环境下,按照一定的规则从就绪队列中选择一个进程,将CPU分配给它运行。
常用的进程调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。
本文将介绍两种常见的进程调度算法:先来先服务和优先数调度算法,并给出相应的C语言实现。
二、先来先服务算法1. 算法原理FCFS即First Come First Served,也称为FIFO(First In First Out),是一种非抢占式的进程调度算法。
按照任务到达时间的顺序进行处理,即谁先到达谁就被处理。
2. 算法流程(1)按照任务到达时间排序;(2)依次执行每个任务,直至所有任务都完成。
3. C语言实现下面是一个简单的FCFS程序:```c#include <stdio.h>struct process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间int waiting_time; // 等待时间};int main() {struct process p[10];int n, i, j;float avg_waiting_time = 0;printf("请输入进程数:");scanf("%d", &n);for (i = 0; i < n; i++) {printf("请输入第%d个进程的信息:\n", i + 1); printf("进程ID:");scanf("%d", &p[i].pid);printf("到达时间:");scanf("%d", &p[i].arrival_time);printf("执行时间:");scanf("%d", &p[i].burst_time);}for (i = 0; i < n; i++) {for (j = 0; j < i; j++) {if (p[j].arrival_time > p[j + 1].arrival_time) { struct process temp = p[j];p[j] = p[j + 1];p[j + 1] = temp;}}}int current_time = p[0].arrival_time;for (i = 0; i < n; i++) {if (current_time < p[i].arrival_time) {current_time = p[i].arrival_time;}p[i].waiting_time = current_time - p[i].arrival_time;current_time += p[i].burst_time;}printf("进程ID\t到达时间\t执行时间\t等待时间\n");for (i = 0; i < n; i++) {printf("%d\t%d\t%d\t%d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].waiting_time);avg_waiting_time += (float)p[i].waiting_time / n;}printf("平均等待时间:%f\n", avg_waiting_time);return 0;}```三、优先数调度算法1. 算法原理优先数调度算法是一种非抢占式的进程调度算法。
linux磁盘调度算法c语言-回复什么是磁盘调度算法?磁盘调度算法是操作系统中的一种重要算法,用于管理磁盘访问请求的顺序,以提高磁盘IO的效率。
在现代计算机系统中,磁盘是一种常用的存储设备,用于存储大量的数据。
然而,磁盘的读写速度相对较慢,而且磁盘上的数据是按照物理位置存储的,因此需要一种调度算法来决定磁盘访问请求的执行顺序,以减少磁头的移动,提高数据的读写效率。
磁盘调度算法的基本原理磁盘调度算法的基本原理是通过优化磁盘访问请求的顺序,减少寻道和旋转延迟,提高磁盘IO的效率。
以下是一些常见的磁盘调度算法:1. 先来先服务(FCFS)先来先服务是最简单的磁盘调度算法之一。
它按照磁盘访问请求的到达顺序来执行IO操作。
当一个请求完成后,才会执行下一个请求。
尽管这种算法简单,但由于没有考虑磁头的位置及磁盘的旋转延迟,可能导致磁头频繁移动,降低IO效率。
2. 最短寻道时间优先(SSTF)最短寻道时间优先是一种以最小化寻道时间为目标的磁盘调度算法。
它选择离当前磁头位置最近的请求进行执行。
这种算法可以减少寻道时间,提高磁盘IO效率。
然而,由于总是选择最短寻道时间的请求,可能导致某些请求长时间等待,造成请求的不公平性。
3. 扫描算法(SCAN)扫描算法又称电梯算法,模拟了磁头在磁盘上移动的方式。
它从一个方向开始,按磁道的顺序执行访问请求,当达到磁盘的边界时,改变方向并继续执行请求。
这种算法可以减少磁头的移动距离,提高IO效率。
但是,如果某些请求集中在边界附近,可能导致某些请求长时间等待。
4. 循环扫描算法(C-SCAN)循环扫描算法是扫描算法的一种变体,它避免了某些请求长时间等待的问题。
当磁头达到磁盘的边界时,不返回原来的方向,而是直接返回到磁盘的另一侧继续执行请求。
这样可以确保所有的请求都能被处理到,减少等待时间,提高IO效率。
编写一个简单的磁盘调度算法(SSTF)的C语言实现下面是一个简单的SSTF磁盘调度算法的C语言实现:include<stdio.h>include<stdlib.h>int main(){int n, head, sum = 0;printf("Enter the number of disk requests: ");scanf("d", &n);printf("Enter the initial position of head: ");scanf("d", &head);int *requests = (int *)malloc(sizeof(int) * n);printf("Enter the disk requests: ");for (int i = 0; i < n; i++){scanf("d", &requests[i]);}for (int i = 0; i < n; i++){int min = abs(head - requests[i]);int index = i;for (int j = i + 1; j < n; j++){if (abs(head - requests[j]) < min){min = abs(head - requests[j]);index = j;}}sum += abs(head - requests[index]);head = requests[index];int temp = requests[i];requests[i] = requests[index];requests[index] = temp;}printf("Total head movement: d\n", sum);free(requests);return 0;}以上C语言程序实现了SSTF磁盘调度算法。
c语言实时调度算法
C语言中常用的实时调度算法有以下几种:
1. 先来先服务(FCFS)调度算法:按照任务到达的顺序来进行调度,先到达的任务先执行。
2. 最短作业优先(SJF)调度算法:根据任务的执行时间进行排序,执行时间最短的任务先执行。
3. 优先级调度算法:给每个任务分配一个优先级,优先级越高的任务优先执行。
4. 时间片轮转(Round Robin)调度算法:将任务按照先后顺序放入一个就绪队列中,每个任务执行一个时间片的时间(一般是一个固定的时间),然后切换到下一个任务,直到所有任务执行完毕。
5. 最早截止时间优先(EDF)调度算法:每个任务都有一个最后期限,按照最后期限的先后顺序进行调度,最后期限最早的任务优先执行。
6. 最高响应比优先(HRRN)调度算法:计算每个任务的响应比,响应比等于(等待时间 + 执行时间)/ 执行时间,响应比最高的任务优先执行。
这些调度算法都可以在C语言中实现,但需要注意实时系统的特殊需求,如任务的截止时间、优先级等。
操作系统实验_先来先服务的调度算法及短作业优先1.引言操作系统的调度算法是指在多进程环境中,操作系统为进程分配CPU 的顺序和策略。
先来先服务(FCFS)调度算法是最简单的调度算法之一,它按照进程到达的顺序为其分配CPU。
而短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU,执行时间越短的进程越先执行。
本文将分别介绍FCFS调度算法和SJF调度算法,并对其进行评价和比较。
2.先来先服务(FCFS)调度算法2.1调度原理FCFS调度算法的原理非常简单,按照进程到达的顺序为其分配CPU。
当一个进程进入就绪队列后,如果CPU空闲,则立即为其分配CPU。
如果CPU正忙,则进程进入等待队列,等待CPU空闲后再分配。
在该算法中,进程的运行时间不考虑,只考虑进程到达的时间。
2.2优点与缺点FCFS调度算法的主要优点是实现简单,无需对进程的运行时间进行估计。
但FCFS算法存在一定的缺点。
首先,长作业在短作业前面等待的时间较长,可能导致长作业的响应时间过长。
其次,如果有一个进程出现阻塞或响应时间过长,其后面的进程也会受到影响,造成整个系统的性能下降。
3.短作业优先(SJF)调度算法3.1调度原理短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU。
当一个进程进入就绪队列后,如果其执行时间比当前正在运行的进程短,则优先为该进程分配CPU。
如果当前没有运行的进程或者当前运行的进程执行完毕,则立即为该进程分配CPU。
在该算法中,进程的到达时间不考虑,只考虑进程的执行时间。
3.2优点与缺点SJF调度算法的主要优点是可以最大程度地减少平均等待时间,提高系统的吞吐量。
短作业可以快速执行完毕,从而让更多的作业得以执行。
但SJF算法存在一定的缺点。
首先,需要对进程的执行时间有一个准确的估计,对于实时系统或动态系统来说,估计执行时间可能会有一定的误差。
其次,在长作业激增的情况下,短作业可能会一直得不到CPU的分配,造成长时间的等待。
fcfs调度算法c语言实现-回复FCFS调度算法(First-Come, First-Served)是操作系统中的一种简单且常见的进程调度算法。
在该算法中,进程按照到达的先后顺序被依次执行,即先到先服务。
本文将详细介绍FCFS调度算法的实现原理和步骤,并通过C语言代码实现。
一、概述进程调度是操作系统中的重要组成部分,它负责按照一定的策略和规则决定哪个进程可以执行,并分配处理器时间给它。
FCFS调度算法是最简单的调度算法之一,它不考虑进程的优先级或执行时间,只关注进程到达的先后顺序。
二、FCFS调度算法的实现步骤下面是FCFS调度算法的实现步骤:1. 定义进程控制块(PCB)结构体:PCB是描述进程的数据结构,其中包括进程ID、到达时间、执行时间等信息。
可以使用C语言的结构体来定义PCB。
2. 输入进程信息:通过键盘输入进程的到达时间和执行时间,创建多个进程,并将它们存储在一个进程队列中。
3. 按到达时间排序:对进程队列按照到达时间进行排序,以确保进程按照到达的先后顺序执行。
可以使用C语言的排序算法(如冒泡排序)来实现。
4. 计算等待时间和周转时间:对于排好序的进程队列,逐个计算每个进程的等待时间和周转时间。
等待时间等于前面所有进程的执行时间之和,而周转时间等于等待时间加上执行时间。
5. 输出结果:打印每个进程的信息,包括进程ID、到达时间、执行时间、等待时间和周转时间。
同时,计算平均等待时间和平均周转时间并输出。
三、C语言实现代码以下是使用C语言实现FCFS调度算法的示例代码:c#include <stdio.h>typedef struct {int processId;int arrivalTime;int burstTime;int waitingTime;int turnaroundTime;} PCB;void sortByArrivalTime(PCB *processes, int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (processes[j].arrivalTime > processes[j +1].arrivalTime) {PCB temp = processes[j];processes[j] = processes[j + 1];processes[j + 1] = temp;}}}}void calculateWaitingTime(PCB *processes, int n) {processes[0].waitingTime = 0;for (int i = 1; i < n; i++) {processes[i].waitingTime = processes[i - 1].waitingTime + processes[i - 1].burstTime;}}void calculateTurnaroundTime(PCB *processes, int n) { for (int i = 0; i < n; i++) {processes[i].turnaroundTime = processes[i].waitingTime + processes[i].burstTime;}void printResult(PCB *processes, int n) {printf("Process\tArrival Time\tBurst Time\tWaitingTime\tTurnaround Time\n");for (int i = 0; i < n; i++) {printf("d\td\t\td\t\td\t\td\n", processes[i].processId, processes[i].arrivalTime,processes[i].burstTime, processes[i].waitingTime, processes[i].turnaroundTime);}int totalWaitingTime = 0;int totalTurnaroundTime = 0;for (int i = 0; i < n; i++) {totalWaitingTime += processes[i].waitingTime;totalTurnaroundTime += processes[i].turnaroundTime;}printf("Average waiting time: .2f\n", (float) totalWaitingTime / n);printf("Average turnaround time: .2f\n", (float) totalTurnaroundTime / n);}int main() {int n;printf("Enter the number of processes: ");scanf("d", &n);PCB processes[n];printf("Enter the arrival time and burst time of each process:\n");for (int i = 0; i < n; i++) {printf("Process d: ", i + 1);scanf("dd", &processes[i].arrivalTime,&processes[i].burstTime);processes[i].processId = i + 1;}sortByArrivalTime(processes, n);calculateWaitingTime(processes, n);calculateTurnaroundTime(processes, n);printResult(processes, n);return 0;}以上代码首先定义了PCB结构体,然后通过键盘输入进程的到达时间和执行时间,创建进程队列。
c语言实现进程调度算法进程调度算法是操作系统中的一个重要组成部分,用于决定在多道程序环境下,选择哪个进程来占用CPU并执行。
C语言是一种通用的编程语言,可以用于实现各种进程调度算法。
这里我将分别介绍三种常见的进程调度算法:先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)和轮转法调度算法(RR),并给出用C语言实现的示例代码。
首先,我们来看先来先服务调度算法(FCFS)。
此算法根据到达时间的先后顺序,按照先来后到的顺序进行处理。
下面是基于C语言的先来先服务调度算法实现示例代码:```c#include<stdio.h>struct Process};void FCFS(struct Process proc[], int n)for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}FCFS(proc, n);return 0;```其次,我们来看最短作业优先调度算法(SJF),该算法选择执行时间最短的进程先执行。
下面是基于C语言的最短作业优先调度算法实现示例代码:```c#include<stdio.h>struct Process};void SJF(struct Process proc[], int n)for (int i = 0; i < n; i++)for (int j = 0; j < i; j++)}shortest_job = i;for (int j = i + 1; j < n; j++)shortest_job = j;}}}for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}SJF(proc, n);return 0;```最后,我们来看轮转法调度算法(RR),该算法分配一个时间片给每个进程,当时间片用完后,将CPU分配给下一个进程。
操作系统五种进程调度算法的代码一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是操作系统处理进程调度时比较常用的算法,它的基本思想是按照进程的提交时间的先后顺序依次调度进程,新提交的进程会在当前运行进程之后排队,下面通过C语言代码来实现先来先服务(FCFS)调度算法:#include <stdio.h>#include <stdlib.h>//定义进程的数据结构struct Processint pid; // 进程标识符int at; // 到达时间int bt; // 执行时间};//进程调度函数void fcfs_schedule(struct Process *processes, int n)int i, j;//根据进程的到达时间排序for(i = 0; i < n; i++)for(j = i+1; j < n; j++)if(processes[i].at > processes[j].at) struct Process temp = processes[i]; processes[i] = processes[j];processes[j] = temp;//获取各个进程执行完毕的时间int ct[n];ct[0] = processes[0].at + processes[0].bt; for(i = 1; i < n; i++)if(ct[i-1] > processes[i].at)ct[i] = ct[i-1] + processes[i].bt;elsect[i] = processes[i].at + processes[i].bt; //计算各个进程的周转时间和带权周转时间int tat[n], wt[n], wt_r[n];for(i = 0; i < n; i++)tat[i] = ct[i] - processes[i].at;wt[i] = tat[i] - processes[i].bt;wt_r[i] = wt[i] / processes[i].bt;printf("P%d:\tAT=%d\tBT=%d\tCT=%d\tTAT=%d\tWT=%d\tWT_R=%f\n", processes[i].pid, processes[i].at, processes[i].bt, ct[i], tat[i], wt[i], wt_r[i]);//主函数int mainstruct Process processes[] ={1,0,3},{2,3,5},{3,4,6},{4,5,2},{5,6,4}};fcfs_schedule(processes, 5);return 0;输出:。
#include <stdio.h>struct fcfs //定义进程的结构体{char name[10]; //进程名float arrivetime; //到达时间float servicetime; //服务时间float starttime; //开始时间float finishtime; //完成时间float zztime; //周转时间float dqzztime; //带权周转时间};fcfs a[100]; //定义先来先服务算法进程的最大数量void Finput(fcfs *p,int N) //输入函数{int i;printf("输入进程的名称、到达时间、服务时间:(例如: x 0 100)\n");for(i=0;i<=N-1;i++){printf("输入第%d进程的名称、到达时间、服务时间:",i+1);scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetime);}}//输出函数void FPrint(fcfs *p,float arrivetime,float servicetime,float starttime,float finishtime,float zztime,float dqzztime,int N){int k;printf("\n执行顺序:\n");printf("%s",p[0].name);for(k=1;k<N;k++){printf("-%s",p[k].name);}printf("\n进程名\tarrive\tservice\tstart\tfinish\tzz\tdqzz\n\n");for(k=0;k<=N-1;k++){printf("%s\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t\n\n",p[k].name,p[k].arrivetime,p[k].ser vicetime,p[k].starttime,p[k].finishtime,p[k].zztime,p[k].dqzztime);}}void Fsort(fcfs *p,int N) //按到达时间排序,先到达排在前面{for(int i=0;i<=N-1;i++)for(int j=0;j<=i;j++)if(p[i].arrivetime<p[j].arrivetime){fcfs temp;temp=p[i];p[i]=p[j];p[j]=temp;}}//运行结果void Fdeal(fcfs *p, float arrivetime,float servicetime,float starttime,float finishtime,float &zztime,float &dqzztime,int N){int k;for(k=0;k<=N-1;k++){if(k==0){p[k].starttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+p[k].servicetime;}else{p[k].starttime=p[k-1].finishtime; //开始时间=前一个进程的完成时间p[k].finishtime=p[k-1].finishtime+p[k].servicetime; //结束时间=前一个进程的完成时间+现在进程的服务时间}}for(k=0;k<=N-1;k++){p[k].zztime=p[k].finishtime-p[k].arrivetime; //周转时间=完成时间-到达时间p[k].dqzztime=p[k].zztime/p[k].servicetime; //带权周转时间=周转时间/服务时间}}//先来先服务void FCFS(fcfs *p,int N){float arrivetime=0,servicetime=0,starttime=0,finishtime=0,zztime=0,dqzztime=0;Fsort(p,N);Fdeal(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztime,N);FPrint(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztime,N);}void main() //主函数{int N;printf("------先来先服务调度算法------\n");printf("输入进程数:");scanf("%d",&N);Finput(a,N);FCFS(a,N);}。
【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。
也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。
FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。
简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。
2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。
通常后来的短作业不抢先正在执⾏的作业。
也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。
当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。
3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。
第⼀次写,有很多不⾜的地⽅。
希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。
#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。
只能说我的拼英。
emm,。
尴尬。
int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。