溶出伏安法与循环伏安法讲解
- 格式:ppt
- 大小:828.00 KB
- 文档页数:19
循环伏安法1 定义:循环伏安法(Cyclic Voltammetry)以等腰三角形的脉冲电压加在工作电极上,控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化反应,记录电流-电势曲线。
单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀速变化(扫描速度为v=dE/dt ),扫描到第1个换向电位后,某些仪器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再扫描到最终电位)。
多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描多圈,最后扫描到最终电位。
Initial potential Vertex 1 potential Vertex 2 potential Final potentialDelay PotentialTime 初始电位、换向电位、扫描速度等是非常重要的实验设计参数。
一般要求扫3圈(首圈效应 + 2、3圈的重现性检查)。
2 特点:Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。
Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。
设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。
Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S型。
3 所得信息:Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa/i pc1;E pa/E pc nF。
Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。
但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV峰电流测量不太容易精确。
Ⅲ:判断其控制步骤和反应机理,若i p∝v,则此过程为表面控制,发生在电极表面;若i p∝v1/2,则此过程为扩散控制,发生在溶液中。
循环伏安法原理及结果分析循环伏安法(Cyclic Voltammetry,简称CV)是一种常用的电化学测试技术,广泛应用于材料科学、电化学、生物分析等领域。
本文将介绍循环伏安法的原理和结果分析。
一、循环伏安法原理循环伏安法通过在电化学系统中施加恒定电压,测量电流随时间的变化,从而获得电化学反应的动力学信息。
其原理基于伏安定律和法拉第定律。
伏安定律(Ohm's Law)描述了电压、电流和电阻之间的关系,即U = I * R。
根据伏安定律,当施加在电化学系统上的电势变化时,电化学反应导致的电流也会发生变化。
法拉第定律则是描述了电化学反应电流与反应物浓度之间的关系。
根据法拉第定律,当电化学反应进行时,电流的大小与反应物浓度成正比。
循环伏安法通过循环扫描电位来实现对电化学反应的观测。
其步骤包括:首先,以一定速率从初始电位变化至最大电位;然后,以相同的速率从最大电位回到初始电位;最后,以相同速率在这两个电位间进行循环。
在不同电位下测量的电流值可以描绘出循环伏安曲线。
二、循环伏安法结果分析1. 循环伏安曲线形状分析根据循环伏安曲线的形状,可以判断电化学反应的类型和反应程度。
典型的循环伏安曲线形状包括正向扫描、逆向扫描和氧化还原峰。
正向扫描对应于电化学氧化反应,逆向扫描对应于电化学还原反应。
氧化还原峰则是反应物被氧化和还原的过程。
2. 峰电位和峰电流分析峰电位是循环伏安曲线中峰值所对应的电位值,峰电流则是在峰电位处发生的电流峰值。
通过分析峰电位和峰电流的数值可以获得反应的动力学参数,如扩散系数、转变速率等。
峰电位的大小可以反映反应的可逆性,大于理论值时表明反应不可逆。
3. 转变速率常数和电荷转移系数分析转变速率常数(k0)与电极表面反应物的扩散速率和电荷传输速率密切相关,体现了反应过程的快慢。
电荷转移系数(α)则表示电化学反应中电荷转移的效率。
通过计算这两个参数,可以了解反应的速率控制步骤以及反应机理。
电化学分析—溶出伏安法一、办法原理溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析法。
溶出伏安法测定分为两个步骤:第一步为“电析”,即在一个恒电位下,将被测离子电解沉积,富集在工作电极上(实际只是溶液中被测离子的一部分被沉积),与电极上汞(普通工作电极有悬汞电极、银基汞膜电极或玻碳汞膜电极等)生成汞齐,反应式为: Mn++ne-+Hg=M(Hg) 其次步为“溶出”,即在富集结束后,普通静置30s或60s 后(静置的目的是使被测金属在汞膜中的浓度均一化,也使溶液中的对流作用基本静止),在工作电极上施加一个反向电压,使沉积在工作电极上的痕量物质重新溶出成为离子,测量溶出过程电流随电压变幻的曲线,称伏安曲线(或溶出极谱图)。
溶出伏安曲线中各个峰值电位是定性分析的依据;各个峰值电流(峰高)是定量分析的依据(见图2-22)。
当分析阳离子时,用法的是阳极溶出伏安法,可测30余种金属元素,敏捷度很高,能测定10-7~10-9 mol/L的金属离子,在相宜条件下敏捷度甚至可达10-11~10-12 mol/L。
此法所用仪器比较容易,操作便利,是一种很好的痕量分析手段。
当分析阴离子时,用法的是阴极溶出伏安法,可测定能与金属离子生成难融化合物的阴离子、有机阴离子和具有特别官能团化合物。
图2-22 Cu、Pb、Cd的溶出伏安曲线二、试验装置试验装置2-23所示。
将含金属离子的试样加入电解池后,可先通入N2以除去溶解O2对测定的干扰。
电解富集时,开启搅拌器,此时双向开关的电源正极衔接饱和甘汞电极(阳极),负极衔接悬汞电极(阴极)。
电解完成后,停止搅拌并静置30s,迅速转换双向开关,使电源正极衔接悬汞电极(阳极),负极衔接饱和甘汞电极(阴极),使富集在悬汞电极上的金属举行阳极溶出,观看I、V变幻,直至溶出电流减至最小即完成测定。
实测的溶出伏安曲线2-22所示。
它是在1.5mol/L HCl底液中,Cu2+为5×10-17 mol/L、Pb2+为1×10-6 mol/L、Cd2+为5×10-17 mol/L,悬汞电极在-0.8V电解3min后,由阳极氧化电流获得的阳极溶出伏安曲线。
伏安法新进展及其应用示例伏安分析新技术是近年来迅速发展的高灵敏度的测试手段之一,1992年由捷克电化学专家海洛夫斯基教授创建的极谱学,半个世纪以来,在电子学发展的推动下,无论在理论、仪器与实验技术及应用方面都获得了很大发展。
以下在简要介绍方法原理的基础上,列举了研究论文示例,以使大家能够初步了解所学基础知识在前沿科学研究中的应用,激起学习兴趣。
1.循环伏安法循环伏安法(Cyclic Voltammetry)是一种常用的电化学研究方法。
通过快速线性扫描方式在电解池两电极之间施加等腰三角形脉冲电压,控制电压范围使电极上能交替发生还原和氧化反应,并记录电流-电势曲线。
根据曲线形状可以判断电极反应的可逆程度、氧化还原反应中间产物、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
例如:NiO在0.5V的电压下理论比电容可高达2573F/g,并且其价格低廉、化学和热稳定性较高,因此经常被用作超级电容器材料。
NiO的电化学性能随着其微观形貌的改变表现出明显的差异。
如图4是泡沫Ni和通过超声处理合成的纳米NiO负载在泡沫Ni上形成的NiO-Ni 作为工作电极的CV曲线。
图4(a)原始泡沫Ni和NiO涂覆的泡沫Ni的循环伏安曲线,扫速:5mV/s;(b)不同扫速的循环伏安曲线。
Pt为对电极,Ag/AgCl为参比电极,1M NaOH作为电解质溶液。
(Journal of Colloid and Interface Science,2016,471,136–144)由于NiO的法拉第氧化还原反应的影响,NiO-Ni的CV曲线表现出有两个强峰,这是典型的假电容行为。
在0.35V观察到了氧化峰,此时NiO转化为NiOOH,在0.19V时观察到可逆反应的还原峰。
常用的控制电势技术1、循环伏安法是一种常用的电化学研究方法,该方法控制工作电极的电极电势以不同的速率随时间以三角波形一次或多次反复扫描,从起始电压开始沿某一方向变化达到终止电压后又反方向回到起始电压,呈等腰三角形。
电势范围内,电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
根据CV曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用该法求解电极反应参数,判断其控制步骤和反应机理,研究双电层吸附现象和电极反应动力学,并观察整个电势扫描范围内可发生哪些反应极其性质如何。
对于一个新的电化学体系,首选的研究方法往往就是CV,可称之为“电化学的谱图”。
2、线性扫描伏安法将线性电压扫描(电压与时间为线性关系)施加于电解池的工作电极和辅助电极之间,称为线性扫描伏安法。
工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。
常用的电势扫描速率为0.001~0.1V/s,可单次扫描或多次扫描。
根据电流—电势曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析,更适合于有吸附性物质的测定。
3、脉冲伏安法脉冲形式是在线性增加的电压上施加振幅恒定的脉冲电压,在每个脉冲之前和结束时,测量两次电流,记录两次电流之差,从而有效地消除背景电流的影响。
以电流差值对电势作图,得到脉冲伏安图,其形状不同于普通伏安图,而是呈现峰行。
根据所施加脉冲电势方式的不同,一般可分为常规脉冲伏安法和示差脉冲伏安法。
4、方波伏安法是一种多功能、快速、高灵敏度和高效能的电分析方法,是一种大幅度的微分技术,施加在工作电极上的电势波形是由对称方波叠加在一个基础阶梯电势上,在每一方波循环中电流采样两次,分别在正向脉冲结束前和负向脉冲结束前。
由于方波电势调制的幅度较大,反向脉冲产生了产物的逆向反应,以两点的电流之差对阶梯电势作图。
5、溶出伏安法溶出分析是一种非常灵敏的常用于测量痕量金属离子的分析方法,它将富集与溶出过程有效地结合,提高了信躁比,降低了检测限,在合适条件下可以同时测定四种以上浓度低至10-10mol/L的痕量元素。
一、循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。
该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
1.基本原理如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。
因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。
如果电活性物质可逆性差,则氧化波及还原波的高度就不同,对称性也较差。
循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。
工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。
2.循环伏安法的应用循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。
但该法很少用于定量分析。
(1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极及阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。
若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。
(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。
3、循环伏安法的用途(1)、判断电极表面微观反应过程(2)、判断电极反应的可逆性(3)、作为无机制备反应“摸条件”的手段(4)、为有机合成“摸条件”(5)、前置化学反应(CE)的循环伏安特征(6)、后置化学反应(EC)的循环伏安特征(7)、催化反应的循环伏安特征二、循环伏安法相关问题:1、利用循环伏安确定反应是否为可逆反应(一般这两个条件即可)①.氧化峰电流及还原峰电流之比的绝对值等于1.[有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫描速度对峰电位没有影响,但扫描速率越大其电化学反应电流也就越大.]②.氧化峰及还原峰电位差约为59/n mV, n为电子转移量(温度一般是293K).[但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差.]2、判断扩散反应或者是吸附反应:改变扫描速率,看峰电流是及扫描速率还是它的二次方根成正比。
循环伏安法1 定义:循环伏安法(Cyclic Voltammetry)以等腰三角形的脉冲电压加在工作电极上,控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化反应,记录电流-电势曲线。
单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀速变化(扫描速度为v=dE/dt ),扫描到第1个换向电位后,某些仪器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再扫描到最终电位)。
多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描多圈,最后扫描到最终电位。
2 特点:Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。
Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。
设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。
Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S型。
3 所得信息:Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa/i pc≈1;E pa/E pc≈2.3RT/nF。
Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。
但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV峰电流测量不太容易精确。
Ⅲ:判断其控制步骤和反应机理,若i p∝v,则此过程为表面控制,发生在电极表面;若i p∝v1/2,则此过程为扩散控制,发生在溶液中。
循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势Epa 和阴极峰电势Epc,并给出峰电位差△Ep和峰电流之比。
对于可逆波,Epc =E1/2-1.109RT/nFE pa =E1/2+1.109RT/nF△Ep=2.219RT/nF=58/n mV(25℃)4.应用:循环伏安法最为重要的应用是定性表征伴随氧化还原反应的前行或后行化学反应。