电磁感应现象实验报告
- 格式:doc
- 大小:24.50 KB
- 文档页数:10
电磁感应实验了解电磁感应现象电磁感应是电磁学中的重要概念之一,它指的是当导体中的磁通量发生变化时,会在导体中产生感应电动势和感应电流。
为了更好地了解电磁感应现象,我们可以进行一些简单的实验。
实验1: 导体在磁场中移动材料:磁铁、导体丝、变阻器、电流表、万用表操作步骤:1. 将磁铁放置在桌面上,保证其稳定。
2. 将导体丝的一端与变阻器相连,另一端与电流表相连。
3. 将导体丝沿着磁铁表面移动,观察电流表的变化。
4. 结合万用表,测量导体丝两端的电压,记录下来。
实验结果分析:在实验过程中,我们可以观察到当导体丝相对于磁场移动时,电流表指针发生偏转,显示出有电流通过导体丝。
根据右手定则,当导体丝与磁场垂直时,感应电流的方向与移动方向相同;当导体丝与磁场平行时,感应电流的方向与移动方向相反。
这一实验结果证明了当导体相对于磁场发生运动时,会在导体中产生感应电流。
同时,在移动过程中,导体丝两端的电压也发生变化,进一步验证了电磁感应的存在。
实验2: 磁通量与导体的关系材料:线圈、磁铁、变阻器、电流表、万用表操作步骤:1. 将线圈与变阻器相连,形成闭合回路。
2. 先保持线圈处于静止状态,测量电流表的示数。
3. 将磁铁放置在线圈周围,观察电流表的示数变化。
4. 结合万用表,测量线圈两端的电压,记录下来。
实验结果分析:在实验过程中,我们可以观察到当磁铁靠近线圈时,电流表的指针发生偏转,显示出有电流通过线圈。
根据右手定则,当磁铁靠近线圈时,线圈中的磁通量发生变化,从而在线圈中产生感应电流。
同时,测量线圈两端的电压也发生变化,进一步验证了电磁感应的存在。
实验3: 变化的磁场产生电流材料:线圈、铁芯、变阻器、电流表、磁铁、电源操作步骤:1. 将线圈与变阻器相连,并连接到电流表上。
2. 将铁芯插入线圈中。
3. 将电源与线圈相连,通电。
4. 在线圈中移除或插入磁铁,观察电流表的示数变化。
实验结果分析:在实验过程中,我们可以观察到当磁铁插入或移除线圈时,电流表的指针发生偏转,显示出有电流通过线圈。
电磁感应现象实验报告摘要:本次实验通过观察电磁感应现象,验证了法拉第电磁感应定律。
实验使用了线圈和磁铁,通过改变磁场的强度和方向,观察导线中感应出的电流变化情况。
结果表明,当磁场的强度或方向发生改变时,导线中会产生感应电流。
实验结果与理论推导相符,证明了法拉第电磁感应定律的正确性。
一、引言电磁感应现象是指当导体处在变化的磁场中,导体内部会感应出电动势和电流。
这是电磁学中的基本原理之一,由法拉第发现并归纳成定律。
本次实验旨在通过实际操作验证法拉第电磁感应定律。
二、实验仪器与材料1. 直流电源2. 线圈3. 磁铁4. 电流表5. 万用表6. 开关7. 连接线等三、实验过程1. 将直流电源正负极分别与线圈的两端相连,并将电流表接在线路中,观察是否有电流通过。
2. 将磁铁靠近线圈,观察电流表的指示情况。
3. 改变磁铁与线圈的相对位置和方向,再次观察电流表的指示情况。
4. 切断电路,将万用表调至电动势测量档位,连接线圈的两端,观察和记录电动势的数值。
四、实验结果与讨论通过实验观察和记录数据,我们可以得出以下结论:1. 当直流电源与线圈相连时,电流表指示存在直流电流通过。
2. 当将磁铁靠近线圈时,电流表指示发生了变化。
当磁铁靠近并远离线圈时,电流的方向也改变。
3. 当改变磁铁与线圈的相对位置和方向时,电流表指示发生了变化。
这进一步证实了法拉第电磁感应定律。
4. 通过万用表测量得到的电动势数值与实验观察结果相符,进一步验证了法拉第电磁感应定律。
五、结论本实验通过观察电流表的指示和万用表的测量结果,验证了法拉第电磁感应定律。
实验结果表明,当导体处在变化的磁场中时,导体内部会产生感应电动势和电流。
这一实验现象与理论推导相符,进一步验证了法拉第电磁感应定律的正确性。
六、实验心得通过本次实验,我深刻理解了电磁感应现象及其背后的法拉第电磁感应定律。
实验操作的整个过程对我来说是一个很好的锻炼,使我更加熟悉了实验仪器的使用和实验过程的规范。
电磁感应现象的研究报告研究报告:电磁感应现象的研究摘要:本研究报告旨在深入探讨电磁感应现象的原理、应用和未来发展方向。
通过对电磁感应现象的实验研究和理论分析,我们对电磁感应现象的本质有了更深刻的理解,并发现了一些新的应用领域。
本报告通过对相关文献的综述和实验数据的分析,提出了一些未来研究的方向和可能的应用前景。
1. 引言电磁感应现象是指当导体或线圈处于磁场中时,会产生感应电动势和感应电流的现象。
这一现象的发现和研究对电磁学的发展起到了重要的推动作用。
电磁感应现象的研究不仅在理论上具有重要意义,而且在实际应用中也有广泛的应用。
2. 电磁感应的原理电磁感应现象的基本原理是法拉第电磁感应定律。
根据该定律,当导体中的磁通量发生变化时,会在导体中产生感应电动势。
这一原理可以通过实验验证,并可以用数学模型进行描述。
此外,根据楞次定律,感应电流的方向总是使得产生的磁场与变化前的磁场方向相反,从而维持磁场的稳定。
3. 电磁感应的应用电磁感应现象在许多领域都有广泛的应用。
其中最常见的应用是发电机和变压器。
发电机利用电磁感应原理将机械能转化为电能,而变压器则利用电磁感应原理实现电能的传输和变换。
此外,电磁感应还被应用于感应加热、电磁炉、电动机等领域。
这些应用不仅提高了能源利用效率,而且促进了科技的发展。
4. 电磁感应的未来发展在未来,电磁感应现象的研究仍然具有重要意义。
首先,我们可以进一步深入研究电磁感应的机理和规律,以便更好地理解其本质。
其次,我们可以探索新的应用领域,如电磁感应在生物医学领域的应用、电磁感应在环境保护中的应用等。
最后,我们可以通过优化电磁感应设备的设计和制造工艺,提高其效率和性能。
结论:本研究报告对电磁感应现象的原理、应用和未来发展进行了深入的研究。
通过实验和理论分析,我们对电磁感应现象的本质有了更深刻的理解,并发现了一些新的应用领域。
未来的研究可以进一步深入探索电磁感应的机理和规律,并探索新的应用领域。
电磁感应电流实验报告一、实验目的本实验旨在探究电磁感应现象中产生感应电流的条件和规律,深入理解电磁感应的基本原理,并通过实验数据的测量和分析,验证法拉第电磁感应定律。
二、实验原理1、电磁感应现象当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势,若回路闭合,则会产生感应电流。
2、法拉第电磁感应定律感应电动势的大小与穿过回路的磁通量的变化率成正比,即$E =n\frac{\Delta\Phi}{\Delta t}$,其中$E$为感应电动势,$n$为线圈匝数,$\Delta\Phi$为磁通量的变化量,$\Delta t$为变化所用的时间。
三、实验器材1、条形磁铁2、闭合线圈3、灵敏电流计4、导线若干5、开关6、滑动变阻器四、实验步骤1、连接电路将灵敏电流计、闭合线圈、开关、滑动变阻器用导线连接成一个闭合回路。
2、观察磁铁不动时的电流计指针保持条形磁铁静止,观察灵敏电流计的指针,发现指针不偏转,说明此时回路中没有感应电流产生。
3、观察磁铁插入线圈时的电流计指针将条形磁铁的 N 极迅速插入线圈,观察灵敏电流计的指针,发现指针发生偏转,表明回路中产生了感应电流。
且插入速度越快,指针偏转角度越大。
4、观察磁铁拔出线圈时的电流计指针将条形磁铁的 N 极迅速从线圈中拔出,观察灵敏电流计的指针,指针再次发生偏转,但偏转方向与插入时相反,说明此时产生的感应电流方向与插入时相反。
5、改变磁铁插入线圈的速度分别以不同的速度将条形磁铁的 N 极插入线圈,观察灵敏电流计指针的偏转角度。
发现插入速度越快,指针偏转角度越大,即感应电流越大。
6、改变线圈匝数使用不同匝数的线圈进行实验,保持磁铁插入和拔出的速度相同,观察灵敏电流计指针的偏转角度。
发现线圈匝数越多,指针偏转角度越大,即感应电流越大。
7、改变磁场强度使用磁性更强的磁铁进行实验,保持其他条件不变,观察灵敏电流计指针的偏转角度。
发现磁场强度越大,指针偏转角度越大,即感应电流越大。
探究电磁感应实验报告
引言
电磁感应是研究磁场与电流之间相互作用的重要现象。
本次实
验旨在探究电磁感应的基本原理,并通过实验验证电磁感应的存在。
实验装置与原理
实验所使用的装置包括一个线圈、一个磁铁、一个直流电源和
一个电压表。
实验原理基于法拉第电磁感应定律,即当磁感线与一
个闭合电路相交时,该电路中将产生感应电动势。
实验步骤
1. 将线圈的两端连接到一个电压表上;
2. 将磁铁靠近线圈,并以匀速的方式将其推入线圈内部;
3. 观察电压表的示数。
实验结果
实验结果表明,当磁铁靠近线圈并推入时,电压表的示数会有
相应的变化。
当磁铁完全进入线圈时,电压表会达到最大值。
分析与讨论
根据实验结果可知,当磁铁相对线圈运动时,线圈中会感应出电流,从而产生感应电动势。
这一现象符合法拉第电磁感应定律。
在实际应用中,电磁感应的原理被广泛应用于发电机、变压器等设备中。
利用电磁感应的原理,能够将机械能转化为电能,实现能源的转换和储存。
结论
通过本次实验,我们验证了电磁感应现象的存在,并进一步了解了电磁感应的基本原理。
电磁感应在现代技术与科学领域中具有重要的应用价值。
参考文献。
探究电磁感应实验报告
引言
电磁感应是物理学中的一个重要实验现象,通过这个实验可以研究电磁场对导体中的电荷的作用。
本实验旨在探究电磁感应的基本原理,并验证法拉第电磁感应定律。
实验目的
1. 了解电磁感应的基本原理;
2. 验证法拉第电磁感应定律。
实验器材
1. 电磁铁;
2. 导线;
3. 真空电池;
4. 铜盘;
5. 万用表。
实验步骤
1. 将电磁铁的铁芯放在铜盘的中心位置,并连接铜盘两端的导
线到真空电池的正负极上;
2. 将万用表的电流档连接到电路中;
3. 打开电源,观察电磁铁是否吸住铜盘;
4. 测量电磁铁中的电流和铜盘受力情况,记录实验数据;
5. 重复以上步骤,改变电流和铜盘的位置,进行多组实验。
实验结果
根据实验数据统计和分析,我们得到了以下结论:
1. 当电流通过电磁铁时,铜盘会被吸住;
2. 当电流增大时,铜盘受力也增大;
3. 铜盘与电磁铁的距离也会影响受力情况。
结论
本实验验证了法拉第电磁感应定律,即当导线中有电流通过时,周围的磁场会引起导线中的电荷移动,从而产生电动势和电场。
实
验结果还表明,电流大小和磁场强度对电磁感应力有直接影响。
总结
通过这个实验,我们更深入地了解了电磁感应的原理和特性。
掌握了法拉第电磁感应定律的应用,为以后的研究和研究奠定了基础。
参考文献
[1] 相关教材或参考书籍中提供的理论知识和实验方法;
[2] 实验过程中使用的仪器说明书。
电磁感应实验报告实验目的:1. 了解电磁感应的基本原理;2. 掌握利用电磁感应产生电流的方法;3. 观察电磁感应现象对电流大小的影响,并探究相关影响因素。
实验器材:1. 电池;2. 线圈;3. 磁铁;4. 电流表;5. 开关。
实验原理:在磁场中移动导体,或改变导体与磁场的相对位置,都会产生电流。
这一现象被称为电磁感应。
根据法拉第电磁感应定律,当磁感线与导体垂直交叉时,导体两端会产生感应电动势,若导体形成闭合回路,则产生感应电流。
实验步骤:1. 将线圈固定在一块平整的木板上;2. 连接线圈两端与开关、电池和电流表,组成一个闭合电路;3. 将磁铁通过线圈的中央,并保持一定速度通过;4. 记录电流表指针的偏转情况。
实验结果:通过实验观察,当磁铁通过线圈时,电流表指针会产生偏转,并指示出通过线圈的感应电流。
同时,我们还可以发现以下几个规律:1. 磁铁通过线圈的速度越快,电流的峰值越大。
这是因为磁场变化越快,感应电势和感应电流的变化也越大。
2. 线圈的匝数越多,电流的峰值越大。
这是因为线圈匝数增加会增加感应电势的大小。
3. 磁铁与线圈的相对运动越迅速,电流峰值越高。
当磁铁静止不动时,线圈内不会产生感应电流。
实验分析与讨论:通过实验,我们验证了电磁感应的现象,并观察到其与速度、匝数以及相对运动有关。
理论上,感应电动势的大小与导线受到的磁力、导线的速度和导线长度的乘积成正比。
在实验中,可以通过改变磁铁速度、线圈匝数和磁铁与线圈的相对运动来影响感应电流的大小。
此外,根据楞次定律,感应电流的方向会使得产生它的磁通量的变化受到抵消。
换句话说,感应电流所形成的磁场会尽可能减小原始磁场的变化。
因此,在实验中,我们可以观察到,当磁铁通过线圈时,线圈会产生一个与磁铁运动方向相反的磁场。
实验应用:电磁感应在日常生活中有广泛的应用,如变压器、感应炉、发电机等。
这些装置都是基于电磁感应的原理,将机械能转化为电能供应给各种电器设备。
电磁感应实验报告实验目的:通过电磁感应实验,研究电磁感应现象,并探究其相关规律。
实验原理:电磁感应是指当导体在磁场中发生运动或与磁场发生变化时,导体内部将产生电场,并且沿导体的某一方向产生感应电流。
根据法拉第电磁感应定律,感应电动势的大小与导体在磁场中运动的速度以及磁场的大小有关。
实验器材:1. U型线圈2. 小灯泡3. 动电源4. 磁铁实验步骤:1. 在实验台上放置一个直流通电的U型线圈,并连接小灯泡作为验电器。
2. 将U型线圈的一段固定在实验台上,另一段留出一定长度,并与电源相连。
3. 将一个磁铁靠近U型线圈的一侧,并快速移动磁铁,观察小灯泡的变化情况。
实验数据记录:在实验过程中观察到以下现象:1. 当磁铁靠近U型线圈时,小灯泡出现亮光。
2. 随着磁铁的运动速度增加,小灯泡的亮度增加。
3. 当磁铁离开U型线圈时,小灯泡逐渐熄灭。
实验结果分析:根据实验结果,可以得出以下结论:1. 导体在磁场中运动或与磁场发生变化时,导体内部会产生感应电流。
2. 感应电流的产生与导体的移动速度以及磁场的大小有关。
3. 感应电流的大小也决定了小灯泡的亮度,即感应电压的大小。
实验总结:通过本次实验,我们深入了解了电磁感应现象及其相关规律。
电磁感应在现实生活中有着广泛的应用,例如发电机、变压器、感应炉等,这些设备的原理都基于电磁感应现象。
掌握了电磁感应的基本原理和实验方法,对于我们学习和应用电磁学知识具有重要意义。
实验的结果表明,理论与实验结果基本吻合,实验过程中未出现异常情况。
通过此实验,我们不仅探究了电磁感应的规律,也积累了实验操作经验和数据处理的能力。
进一步深入研究电磁感应现象,对于我们更好地理解电磁学的其他知识具有重要意义。
为了更好地理解和应用电磁感应的知识,我们还可以拓展实验并进行进一步的研究。
例如,可以改变磁场的大小、方向和形状,观察电磁感应现象的变化规律。
同时,可以研究不同导体材料的感应效应差异,并探究感应电流与电阻、磁场强度之间的关系。
电磁感应定律实验报告电磁感应定律实验报告1. 引言电磁感应定律是电磁学的基础理论之一,它揭示了电流变化对磁场的影响以及磁场变化对电流的影响。
为了更好地理解电磁感应定律,我们进行了一系列的实验来验证该定律,并深入研究电磁感应现象在不同条件下的规律。
2. 实验设备和过程2.1 实验设备:- 一根直流电源- 一支导线圈- 一个铁心- 一个磁铁- 一个毫伏表2.2 实验过程:2.2.1 环形线圈中的感应电流我们将环形线圈连接到直流电源上,然后通过连接导线,并将电流启动。
在此过程中,观察导线两端的电压和电流变化。
实验表明,当电流启动和变化时,导线两端会产生电压。
这表明电磁感应定律成立,即变化的磁场可以产生感应电流。
2.2.2 磁铁在线圈中的感应电流接下来,我们将一个磁铁快速穿过环形线圈,同样观察导线两端的电压和电流变化。
实验结果显示,在磁铁通过线圈时,导线两端将产生瞬时电压和电流变化。
这进一步验证了电磁感应定律,即变化的磁场可以产生感应电流。
3. 实验结果与讨论在进行实验的过程中,我们观察到了以下现象:- 当导线上的电流变化时,即电流启动和关闭时,导线两端会产生电压。
电压的大小与电流变化的速率成正比。
这就是电磁感应定律的具体体现。
- 当磁场的强度和方向发生变化时,即有磁铁进入或退出线圈时,导线两端会产生电压。
电压的大小与磁场变化的速率成正比。
这也是电磁感应定律的具体体现。
根据电磁感应定律,感应电压和感应电流的产生取决于磁场变化的速率。
较快的磁场变化将导致较大的感应电压和感应电流。
线圈的圈数也对感应电流的大小产生影响。
较多的线圈圈数将导致较大的感应电压和感应电流。
4. 结论通过这一系列的实验,我们验证了电磁感应定律,即变化的电流可以产生磁场,变化的磁场也可以产生电流。
我们还发现,感应电压和感应电流的产生与磁场变化的速率以及线圈的圈数密切相关。
电磁感应定律是电磁学的重要理论之一,它在众多应用中发挥着重要作用,如变压器、发电机和感应加热设备等。
实习报告:电磁感应实习一、实习目的电磁感应现象是电磁学中的基本现象之一,通过本次实习,我希望能够深入理解电磁感应的原理,掌握法拉第电磁感应定律,并能够运用所学知识分析和解决实际问题。
此外,通过实践操作,提高自己的动手能力和实验技能,为将来的学习和工作打下坚实的基础。
二、实习内容本次实习主要进行了电磁感应现象的实验观察和数据分析。
实验中,我们使用了蹄形磁铁、线圈和电流表等器材,通过改变磁铁的运动速度、线圈的匝数和距离等因素,观察到了电磁感应现象。
我们记录了不同条件下的感应电流大小,并进行了数据处理和分析。
三、实习过程在实习过程中,我首先了解了电磁感应现象的基本原理。
根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,回路中会产生感应电动势,从而产生感应电流。
这个原理是发电机、变压器等电气设备工作的基础。
然后,我参与了实验操作。
我使用了蹄形磁铁和线圈,通过改变磁铁的运动速度,观察到了感应电流的变化。
当我加快磁铁的运动速度时,感应电流的大小也随之增加。
这符合法拉第电磁感应定律的预测,即感应电动势与磁通量的变化率成正比。
接下来,我进行了数据分析。
我记录了不同条件下的感应电流大小,并进行了数据处理和分析。
我使用了图表和数学方法,对数据进行了拟合和趋势分析。
通过分析,我发现感应电流的大小与磁通量的变化率成正比,与线圈的匝数无关。
这与法拉第电磁感应定律的预测一致。
四、实习收获通过本次实习,我深入理解了电磁感应现象的原理,掌握了法拉第电磁感应定律。
我通过实践操作,提高了自己的动手能力和实验技能。
我学会了如何进行实验观察、数据记录和数据分析。
通过实习,我对电磁感应现象有了更直观的认识,对电气设备的工作原理有了更深入的理解。
五、实习反思在实习过程中,我发现自己在理论知识和实践操作之间还存在一定的差距。
在实验中,我遇到了一些问题,比如磁铁的运动速度不易控制,数据记录和处理不够准确等。
我意识到,理论知识虽然重要,但实践操作同样重要。
电磁感应现象实验报告电磁感应现象实验教案电磁感应现象一、实验目的:1、观察电磁感应现象,掌握产生感应电流的条件。
2、锻炼学生动手能力,提高学生实验技能。
二、实验器材:电流表、原副线圈、蹄形磁铁、条形磁铁、滑动变阻器、导线若干、电池(电源)三、实验步骤实验1:直导线在磁场中:导体不动;导体向上或向下运动;导体向左或向右运动。
导体向上、向下运动;电表_____________,导体向左、向右运动;电表_____________。
结论:_____________电路中就有电流产生。
分析:导体的移动引起闭合电路面积的变化,从而引起磁通量的变化。
实验2:条形磁铁插入(拨出)螺线管。
线圈不动,磁铁动,电表__________________________。
结论:说明无论是导体运动还是磁场运动,只要_____________;闭合回路中就有电流产生。
分析:条形磁铁的插入(拨出)引起螺线管处磁感应强度发生变化,从而引起磁通量的变化。
实验3:导体和磁场不发生相对运动,线圈电路接通、断开,滑动变阻器滑动片左、右滑动。
线圈电路接通、断开;电表指针_________________;滑动变阻器滑动片左、右滑动;电表指针______________结论:说明,除了闭合回路的部分导线切割磁感线外,线圈中的________________________发生变化时,也能产生感应电流。
所以无论是导体做切割磁感线的运动,还是磁场发生变化,实质上都是引起穿过闭合电路的_____________发生变化。
分析:滑动变阻器阻值的改变引起内线圈电路电流的改变,电流在外线圈处产生磁感应强度发生变化,从而引起外线圈中磁通量的变化。
四、实验结论上述三个实验均表明:不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。
这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流。
五、布置作业完成并分析实验报告电磁感应现象实验报告实验1:直导线在磁场中,导体不动;导体向上、向下运动;导体向左或向右运动。
结论:实验2:条形磁铁插入(拨出)螺线管。
结论:实验3:导体和磁场不发生相对运动,线圈电路接通、断开,滑动变阻器滑动片左、右滑动。
结论:篇二:电磁感应现象演示实验电磁感应现象演示实验一、实验目的:演示几种最基本的电磁感应现象。
二、实验原理:当变磁通穿过由线圈包围的面积时,线圈将感生电动势(感应电动势emf)。
感应电动势在闭合回路里产生感应电流。
e??画图 d? dt三实验仪器1(1号线圈均匀绕在内径55?,长95?的骨架上。
2号线围绕在长85?,内径20?的骨架上。
2(条形磁铁为铝铁炭材料长170?,宽20?,厚10?,磁场强度800,1000GS。
3(软铁棒是?13?×130?低炭钢材料。
4(30V直流电源,最大电流为1.5A。
三、实验步骤:1(将1号线圈接入示教电表的“M”接线端子上,将条形磁铁插入线圈后,示教电表即可向一个方向发生偏转,如将条形磁铁反方向插入,则表头向相反方向偏转。
2(将通电后的2号线圈替代条形磁铁插入1号线圈也可使表头发生偏转(偏转小)。
3(将通电后的2号线圈插上软件铁棒,再插入1号线圈则表头发生偏转(偏转比无铁芯时大)。
4(将供给2号线圈的直流电源换向,重复2或3的过程,则表头偏转方向相反。
5(将2号线圈子插软铁棒,放入1号线圈内,打开电源,表头指针发生偏转后回到零位,关闭电源时,表头指针反向偏转后回到零位。
四、注意事项:1(线圈为有机玻璃骨架,切勿掉地,否则摔坏。
2(2号线圈直流电压不能过高,否则将烧坏线圈。
(不得超过30V,连续通电不得超过30分钟)。
篇三:电磁感应现象电磁感应现象----通信四班许诚强 1006020417摘要:我们生活的地球本身就是一个大磁体,每时每刻我们都被它影响着,生活一些微不足道的现象很可能就是因为它而产生,那么它究竟是什么,又是怎么诞生并参与了我们的生活,我们人类又是怎样去运用它呢,关键字:电磁感应电动势能量转换一简要介绍电磁感应是指因为磁通量变化产生感应电动势的现象。
电磁感应现象的发现,乃是电磁学领域中最伟大的成就之一。
它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。
电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。
事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。
二电磁感应的发现(一) 电生磁电和磁之间有没有联系,这是前人经常思索的问题。
“顿牟缀芥,磁石引针”说明了电现象和磁现象的相似性,但是相似并不等于本质上有联系。
实际上,库伦等人“已经证明”,电和磁之间没有直接联系。
18世纪末到19世纪初,人们陆续发现了一些自然现象间的联系与转化,如康德关于基本力向其他种类力转化的哲学思想,黑格尔、谢林等人关于自然力的统一的思想,均对物理学界产生了很大的影响。
作为他们思想的追随者,丹麦的物理学家奥斯特(Hans Christian Oersted,1777~1851)相信电和磁之间一定有某种联系,尤其是富兰克林关于莱顿瓶放电能使钢针磁化的发现,更坚定了他的观点。
1803年他曾写道:“我们的物理学将不再是关于运动、热、光、点、磁以及我们所知道的任何其他现象的零散的汇总,我们将把整个宇宙容纳到一个体系中。
”伟大的发现往往都曾被世俗陈见所遮蔽,奥斯特寻找电和磁之间联系的实验也是屡屡失败。
因为在此之前,服从牛顿定律和库仑定律的引力、电场力、磁和磁间的作用力都是沿着连接相互吸引或相互排斥物体的一条直线产生的。
奥斯特和当时的人们一样,也认为力的作用只能想有心力那样是“纵向”的,他未曾料到电与磁之间的联系表现为“横向力”,因而总是把磁针放错位置~旧的观念阻碍了成功,奥斯特不是先知,他当然也不能超越时代。
但奥斯特深信电和磁间有某种联系,就像点和发热发光的现象间有联系一样。
1812年他就在论文中写过:“我们应该检验的是,究竟电是否以其最隐蔽的方式对磁体有类似的作用。
”他在通电的导线前面放一根磁针,企图用通电的导线吸引磁针,然而尽管导线灼热了,甚至烧红发光了,磁针也毫无动静。
1820年4月,奥斯特在作有关电和磁的演讲时,尝试将磁针放在导线的侧面,在接通电源时,发现磁针轻微的晃动了一下,他意识到这正是他多年盼望的实验现象。
经过反复试验,奥斯特终于查明电流的磁效应是烟盒围绕导线的螺旋方向产生的。
1820年7月21日,他向科学界宣告电流磁效应的发现。
(二) 磁生电1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。
1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。
电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明。
1831年8月,M.法拉第在软铁环两侧分别绕两个线圈,其一为闭合回路,在导线下端附近平行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。
实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。
法拉第立即意识到,这是一种非恒定的暂态效应。
紧接着他做了几十个实验,把产生感应电流的情形概括为 5 类 :变化的电流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。
进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。
三计算公式若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε 为产生的感应电动势,单位为V。
(一) 感应电动势的大小计算公式1(E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2(E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。
{L:有效长度(m)} 3(Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4(E=BLLω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}(二) 磁通量磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}(三) 感应电动势感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}(四) 自感电动势自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 四相关知识(一)电磁感应现象的规律。
电磁感应研究的是其他形式能转化成电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。
楞次定律表述为:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。
法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。
(二)电路及力学知识主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。
在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。
(三)右手定律右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。
把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。
电磁学中,右手定则判断的主要是与力无关的方向。
感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}五在日常生活中的运用(一) 动圈式话筒的原理在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。
话筒是把声音转变为电信号的装置。
图2是动圈式话筒构造原理图,它是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。