九年级数学下册3.4.1圆周角和圆心角的关系教案1新版北师大版0802231【教案】
- 格式:doc
- 大小:270.51 KB
- 文档页数:7
3.4 圆周角和圆心角的关系第1课时圆周角和圆心角的关系教学内容第1课时圆周角和圆心角的关系课时1核心素养目标1.经历探索圆周角与圆心角及其所对弧的关系的过程.2.理解圆周角的概念、了解并证明圆周升定理及其推论.3.体会分类、归纳等数学思想方法,知识目标1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2.能运用圆周角定理及其推论进行简单的证明计算.教学重点理解圆周角的概念;掌握圆周角与圆心角之间的关系定理.教学难点圆周角和圆心角关系定理的证明.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知三、当堂练习,巩固所学一、创设情境,导入新知问题1 什么叫圆心角?指出图中的圆心角.顶点在圆心,角的两边与圆相交的角叫圆心角,如∠BOC.在射门过程中,球员射中球门的难易与它所处的位置 B 对球门AC 的张角(∠ABC)有关.问题2 图中的三个张角∠ABC、∠ADC 和∠AEC的顶点各在圆的什么位置?它们的两边和圆是什么关系?师生活动:学生各抒己见,谈自己的看法.预设:顶点在∠O上,角的两边分别与∠O 相交.二、小组合作,探究概念和性质知识点一:圆周角的定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.例如:∠ACB.(两个条件必须同时具备,缺一不可)做一做1.下列各图中的∠BAC是否为圆周角?简述理由.设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.设计意图:加强学生对圆周角的理解. 注意顶点在圆上,并且两边都与圆相交的角叫做圆周角,两个条件必须同时具备,缺一不可.设计意图:通过这种具有探索性与挑战性的活动,培养学生独立思考、合作交流的能力,渗透归纳思想,初步认识圆周角和圆心角这三种位置关系.设计意图:如果直接进行圆周角定理的证明,可能有一定困难。
通过圆周角和圆心角关系的探索、讨论、交流,初步认识同弧所对的圆周角是它所对圆心角的一半,为下面圆周角定理证明打好桥铺好路。
2024北师大版数学九年级下册3.4.2《圆周角和圆心角的关系》教案1一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第三单元《圆》的第四节内容。
本节主要通过探究圆周角和圆心角的关系,引导学生发现并证明圆周角定理。
这一内容是学生对圆的基本性质和判定定理的进一步理解和掌握,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、性质和判定定理,具备一定程度的逻辑思维能力和空间想象能力。
但对于圆周角和圆心角的关系的理解和证明,还需通过实例和推理来进一步深化。
因此,在教学过程中,要注重引导学生主动探究,培养他们的观察能力、思考能力和动手能力。
三. 教学目标1.理解圆周角定理,掌握圆周角和圆心角的关系。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.圆周角定理的理解和证明。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆周角和圆心角的关系。
2.利用多媒体演示和实物模型,帮助学生直观理解圆周角定理。
3.通过例题和练习,巩固学生对圆周角定理的掌握。
六. 教学准备1.多媒体教学设备。
2.实物模型和图示。
3.圆规、直尺等绘图工具。
4.相关练习题和作业。
七. 教学过程1.导入(5分钟)通过复习圆的基本性质和判定定理,引导学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用多媒体演示和实物模型,呈现圆周角和圆心角的关系,引导学生观察和思考。
3.操练(10分钟)学生分组讨论,尝试证明圆周角定理。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)讲解圆周角定理的证明过程,引导学生理解和掌握定理。
通过例题和练习,巩固学生对圆周角定理的运用。
5.拓展(10分钟)引导学生运用圆周角定理解决实际问题,如计算圆的周长、面积等。
6.小结(5分钟)总结本节课所学内容,强调圆周角定理的重要性和应用。
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》教案1一. 教材分析《圆周角和圆心角的关系》是北师大版九年级数学下册第3章的内容。
本节课主要通过探究圆周角和圆心角的关系,引导学生发现并证明圆周角定理。
教材通过生活中的实例引入圆周角和圆心角的概念,让学生在实际情境中感受数学与生活的联系。
接着,通过观察和操作活动,引导学生发现圆周角和圆心角之间的数量关系,进而证明圆周角定理。
教材还提供了丰富的练习题,帮助学生巩固所学知识,为后续学习圆的性质和应用打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
然而,对于圆周角和圆心角的关系,他们可能还比较陌生。
因此,在教学过程中,需要通过生动的实例和生活情境,激发学生的学习兴趣,引导学生积极参与观察、操作和思考。
此外,学生可能对圆的相关概念和性质有一定的了解,但需要进一步引导他们运用这些知识来解决实际问题。
三. 教学目标1.理解圆周角和圆心角的概念,掌握圆周角定理及其推论。
2.能够运用圆周角定理解决实际问题,提高运用数学知识解决问题的能力。
3.培养学生的观察能力、操作能力和逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.圆周角和圆心角的概念及它们之间的关系。
2.圆周角定理的证明及其推论。
3.运用圆周角定理解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和实际情境,引导学生感受圆周角和圆心角的关系,激发学生的学习兴趣。
2.观察操作法:让学生通过观察、操作和思考,发现圆周角和圆心角之间的数量关系,培养学生的观察能力和操作能力。
3.问题驱动法:设置一系列问题,引导学生逐步深入探讨圆周角和圆心角的关系,培养学生的问题解决能力。
4.合作学习法:学生进行小组讨论和合作交流,分享彼此的想法和成果,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示圆周角和圆心角的图片、实例和动画效果,帮助学生直观地理解概念和关系。
最新北师大版初中数学精品资料设计 1圆周角和圆心角的关系 【教学内容】圆周角和圆心角的关系【教学目标】知识与技能 经历探索圆周角和圆心角关系的过程,理解圆周角的概念及其相关性质。
过程与方法 经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。
情感、态度与价值观 通过观察、猜想、验证推理,培养学生探索问题的能力和方法【教学重难点】重点:圆周角和圆心角的关系。
难点:圆周角定理的理解和运用。
【导学过程】【知识回顾】我们学习了在同圆或等圆中,相等的弧所对的圆心角相等。
那么如果在同圆或等圆中,相等的弧所对的圆周角会相等吗?【情景导入】首先我们从圆周角开始研究,画一个圆周角,说出它圆心角的区别。
【新知探究】探究一、顶点在圆上,并且两边和圆相交的角叫圆周角。
判断下列图示中,各图形中的角是不是圆周角?并说明理由。
探究二、活动1:如图2问题1:同弧(弧AB )所对的圆心角AOB ∠与圆周角ACB ∠的大小关系是怎样的?问题2:同弧(弧AB )所对的圆周角ACB ∠与圆周角ADB ∠的大小关系是怎样的?(2)规律:同弧所对的圆周角的度数 ,并且它的度数恰好等于这条弧所对的圆心角的度数的 .活动2:(1)同学们在下面图3的⊙O 中任取AB ⌒所对的圆周角,并思考圆心与圆周角有哪几种位置关系?(2)实际上,圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如图4)(图2)OAB (图3) (1) (2) (3)最新北师大版初中数学精品资料设计 2(3)教师引导学生证明,并归纳圆周角定理: 同弧所对的圆周角等于这条弧所对的圆心角的一半.探究三、让学生说明如何根据圆周角定理,证明同弧或等弧所对的圆周角相等,【知识梳理】本节课我们学习圆周角的定义,圆周角定理的证明及推论。
【随堂练习】1. 如图1,点A 、B 、C 、D 在⊙O 上,若∠C=60°,则∠D=____,∠AOB=_ ___.2. 如图2,等边△ABC 的顶点都在⊙O 上,点D 是⊙O 上一点,则∠BDC=____.3.已知:如图8,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠ACD =30°,AE =2cm .求DB 长.4.如图,OA ,OB ,OC 都是⊙O 的半径,∠ AOB=2∠ BOC ,∠ ACB 与∠ BAC 的大小有什么关系?为什么?第4题图 第5题图5.如图,A ,B ,C ,D 是⊙O 上的四点,且∠BCD=100° ,求∠BOD (BCD 所对的圆心角)和∠BAD 的大小。
2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4.1节的内容。
本节课主要让学生了解圆周角和圆心角的关系,掌握圆周角定理,并能够运用该定理解决一些实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而得出圆周角定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法。
他们具备一定的观察、分析和推理能力。
但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识,需要通过实例和推理来理解和掌握。
三. 教学目标1.让学生了解圆周角和圆心角的概念,理解它们之间的关系。
2.让学生掌握圆周角定理,并能够运用该定理解决一些实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.圆周角和圆心角的关系。
2.圆周角定理的证明和运用。
五. 教学方法1.采用问题驱动法,引导学生发现问题、分析问题和解决问题。
2.利用几何画板和实物模型,直观地展示圆周角和圆心角的关系。
3.采用小组合作学习,让学生在讨论中共同探究和解决问题。
4.通过练习题,巩固所学知识,提高解题能力。
六. 教学准备1.准备几何画板和实物模型,用于展示圆周角和圆心角的关系。
2.准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用几何画板或实物模型,展示一个圆和一些圆周角、圆心角,让学生观察它们之间的关系。
提问:你们觉得圆周角和圆心角有什么关系呢?2.呈现(10分钟)引导学生通过观察和推理,发现圆周角和圆心角的关系。
呈现圆周角定理:圆周角等于它所对圆心角的一半。
让学生理解并记住这个定理。
3.操练(10分钟)让学生分组讨论,每组设计一个实例,验证圆周角定理。
每组选取一个代表进行汇报,其他组进行评价。
通过这个过程,让学生加深对圆周角定理的理解。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。
2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教学设计1一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第三章《圆》的一部分。
本节课主要通过探究圆周角和圆心角的关系,让学生理解并掌握圆周角定理,从而加深对圆的理解。
教材通过生活中的实例引入圆周角定理,激发学生的学习兴趣,接着引导学生通过观察、思考、操作、交流等活动,探索并证明圆周角定理,最后运用圆周角定理解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的轴对称性质等知识,具备了一定的观察、操作、交流的能力。
但九年级学生的思维正处于由形象思维向逻辑思维过渡的阶段,因此,在教学过程中,教师要注重引导,激发学生的思考,帮助学生建立圆周角与圆心角之间的逻辑关系。
三. 教学目标1.理解圆周角定理,掌握圆周角与圆心角的关系。
2.能运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力、交流能力以及逻辑思维能力。
四. 教学重难点1.圆周角定理的掌握。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动参与。
2.启发式教学法:在探索圆周角定理的过程中,引导学生思考、交流,培养学生的逻辑思维能力。
3.实践操作法:让学生通过实际操作,加深对圆周角定理的理解。
六. 教学准备1.课件:制作圆周角定理的相关课件,包括生活中的实例、圆周角与圆心角的图片等。
2.学具:准备一些圆形的道具,让学生在课堂上进行实际操作。
七. 教学过程1.导入(5分钟)利用课件展示生活中的实例,如自行车轮子、圆桌等,引导学生观察并思考:这些实例中,圆周角和圆心角有什么关系?2.呈现(10分钟)展示圆周角定理的图片,引导学生观察并思考:圆周角定理是什么?它是如何描述圆周角和圆心角的关系的?3.操练(10分钟)让学生分组进行实践操作,利用准备好的圆形道具,观察并记录圆周角和圆心角的关系。
3.4 圆周角和圆心角的关系第1课时圆周角和圆心角的关系1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点)2.能运用圆周角定理及其推论进行简单的证明计算.(难点)一、情境导入在下图中,当球员在B, D, E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角的大小有什么关系?二、合作探究探究点:圆周角定理及其推论【类型一】利用圆周角定理求角的度数如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°解析:∵OA∥DE,∠D=50°,∴∠AOD=50°.∵∠C=12∠AOD,∴∠C=12×50°=25°.故选A.方法总结:解决问题的关键是熟练掌握圆周角定理.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】利用圆周角定理的推论求角的度数如图,在⊙O中,AB︵=AC︵,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°解析:因为AB︵=AC︵,根据“同弧或等弧所对的圆周角相等”得到∠B=∠C,因为∠A+∠B+∠C=180°,所以∠A+2∠B=180°,又因为∠A=30°,所以30°+2∠B=180°,解得∠B=75°.故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】圆周角定理与垂径定理的综合如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,E在⊙O 上.(1)∠AOD =52°,求∠DEB 的度数; (2)若AC =7,CD =1,求⊙O 的半径.解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵=BD ︵,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵=BD ︵,∴∠DEB =12∠AOD =12×52°=26°;(2)设⊙O 的半径为x ,则OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.方法总结:本题综合考查了圆周角定理及其推论、垂径定理以及勾股定理.注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型四】 圆周角定理的推论与圆心角、弧、弦之间的关系的综合如图,△ABC 内接于⊙O ,AB =AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵的中点,求证:∠B =∠BEC.解析:由点B 是CD ︵的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 圆周角定理的推论与三角形知识的综合如图,A 、P 、B 、C 是⊙O 上四点,且∠APC =∠CPB =60°.连接AB 、BC 、AC.(1)试判断△ABC 的形状,并给予证明; (2)求证:CP =BP +AP .解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,则△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形;(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB≌△ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .方法总结:本题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键.【类型六】 圆周角定理的推论与相似三角形的综合如图,点E 是BC ︵的中点,点A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE ·DE.解析:点E 是BC ︵的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.证明:∵点E 是BC ︵的中点,即BE ︵=CE ︵,∴∠BAE =∠CBE .∵∠E =∠E (公共角),∴△BDE ∽△ABE ,∴BE ∶AE =DE ∶BE ,∴BE 2=AE ·DE .方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念 2.圆周角定理 3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.。
课题:3.4.1圆周角和圆心角的关系教学目标:1.理解圆周角定义,掌握圆周角定理.会熟练运用定理解决问题.2.培养学生观察、分析及理解问题的能力.3.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重难点:重点:圆周角定理及其应用.难点:圆周角定理证明过程中的“分类讨论”思想的渗透.教学过程:一、创设情境,导入新课活动内容:1.圆心角的定义?(顶点在圆心的角叫圆心角)2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB A AB的度数.3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.处理方式:找三名学生直接回答.题1是复习圆心角定义:顶点在圆心的角叫圆心角;题2和题3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.再特别向学生强调定理当中的前提条件“同圆或等圆”,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.设计意图:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.为本节课的学习做准备.二、合作学习,探究尝试活动内容1:问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?1A AO.B C 顶点在圆心A...O OOOB C B C BC点A在圆内点A在圆上点A在圆外圆心角圆周角处理方式:学生根据上图的几种情况,类比圆心角定义,得出圆周角定义:顶点在圆上, 并且两边分别与圆还有一个交点的角叫做圆周角.设计意图:本环节的设置,采用分类讨论和类比的思想方法得出圆周角的定义.问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.活动内容2:练习巩固如图,指出图中的圆心角和圆周角.解:圆心角有∠AOB、∠AOC、∠BOC圆周角有∠BAC 、∠ABC、∠ACB处理方式:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO 没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.设计意图:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容3:问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角:在同圆或等圆中,相2等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.设计意图:利用球员射门学生熟悉的问题引出一条弧所对的圆周角和圆心角之间有一定的关系.做一做:如图,∠AOB=80°,(1)请你画出几个A AB所对的圆周角,这几个圆周角的大小有什么关系?教师提示:(1)思考圆周角和圆心角有几种不同的位置关系?(2)这些圆周角与圆心角∠AOB的大小有什么关系?(3)议一议:改变圆心角∠A0B的度数,上述结论还成立吗?(4)你是如何证明圆周角定理?处理方式:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.问题(1)有三种情况:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.问题(2)学生在①操作的基础上猜测得出∠AOB=2∠AC B,猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心1角的一半.接着教师引导学生结合图形用符号语言表示.符号语言:ACB AOB.问题2(4 )引导学生写出已知求证已知:如图,∠ACB是A AB所对的圆周角,∠AOB是A AB所对的圆心角,1求证:ACB AOB.2分析:①.首先考虑一种特殊情况:当圆心(O)在圆周角(∠ACB)的一边(BC)上时,圆周角∠ACB与圆心角∠AOB的大小关系.让学生到黑板板演.3∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠A ∵OA=OC ∴∠A =∠C 1∴∠AOB =2∠C ,即.ACBAOB2当圆心(O )在圆周角(∠ACB )的内部或外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会 怎样?能否转化为①的情况?学生先独立思考,在此基础上再指导学生进行合作交流.时机成熟 后找两名同学上黑板板演,师生共同纠错.②.当圆心(O )在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎 样?过点 C 作直径 CD .由①可得:1 1ACD AOD ,BCDBOD22。
课题:3.4.1圆周角和圆心角的关系教学目标:1.理解圆周角定义,掌握圆周角定理.会熟练运用定理解决问题.2.培养学生观察、分析及理解问题的能力.3.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重难点:重点:圆周角定理及其应用.难点:圆周角定理证明过程中的“分类讨论”思想的渗透.教学过程:一、创设情境,导入新课活动内容:1.圆心角的定义?(顶点在圆心的角叫圆心角)2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB AB的度数.3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.处理方式:找三名学生直接回答.题 1是复习圆心角定义:顶点在圆心的角叫圆心角;题2和题3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.再特别向学生强调定理当中的前提条件“同圆或等圆”,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.设计意图:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.为本节课的学习做准备.二、合作学习,探究尝试活动内容1:问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?点A 在圆内点A 在圆外点A 在圆上.BO C A .B O C A O B C 顶点在圆心.C .A O B圆心角 圆周角 处理方式:学生根据上图的几种情况,类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.设计意图:本环节的设置,采用分类讨论和类比的思想方法得出圆周角的定义.问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.活动内容2: 练习巩固如图,指出图中的圆心角和圆周角.解:圆心角有∠AOB 、∠AOC 、∠BOC圆周角有∠BAC 、∠ABC 、∠ACB处理方式:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO 没有延长,所以∠OAB 严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO 延长与圆相交后,就会形成圆周角了,所以这里要特别注意.设计意图:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容3:问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角:在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.设计意图:利用球员射门学生熟悉的问题引出一条弧所对的圆周角和圆心角之间有一定的关系.做一做:如图,∠AOB =80°,(1)请你画出几个AB 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:(1)思考圆周角和圆心角有几种不同的位置关系?(2)这些圆周角与圆心角∠AOB 的大小有什么关系?(3)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?(4)你是如何证明圆周角定理?处理方式:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理. 问题(1)有三种情况:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.问题(2) 学生在①操作的基础上猜测得出∠AOB =2∠AC B ,猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.接着教师引导学生结合图形用符号语言表示.符号语言:12ACB AOB ∠=∠ .问题(4 )引导学生写出已知求证 已知:如图,∠ACB 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角,求证:12ACB AOB ∠=∠. 分析:①.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系. 让学生到黑板板演.∵∠AOB 是△ACO 的外角∴∠AOB =∠C +∠A∵OA=OC∴∠A =∠C∴∠AOB =2∠C ,12ACB AOB ∠=∠即. 当圆心(O )在圆周角(∠ACB )的内部或外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样? 能否转化为①的情况? 学生先独立思考,在此基础上再指导学生进行合作交流.时机成熟后找两名同学上黑板板演,师生共同纠错.②.当圆心(O )在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?过点C 作直径CD .由①可得:11,22ACD AOD BCD BOD ∠=∠∠=∠。
∴()12ACD BCD AOD BOD ∠+∠=∠+∠, 12ACB AOB ∠=∠即。
③当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?过点C 作直径CD .由①可得:11,22ACD AOD BCD BOD ∠=∠∠=∠, ()12ACD BCD AOD BOD ∠-∠=∠-∠12ACB AOB ∠=∠即。
设计意图:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用。
本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想, “特殊到一般”思想, 让学生进一步体会“猜想,试验,证明”的探究问题一般步骤.活动内容4:问题回顾:当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC ,这三个角的大小有什么关系?处理方式:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.理由:连接AO 、CO ,111,,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ ∴ABC ADC AEC ∠=∠=∠.由此得出定理:同弧或等弧所对的圆周角相等.设计意图:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.三、学以致用,巩固提高(投影出示练习题)1.如图,哪个角与∠BAC 相等,你还能找到那些相等的角?2.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB=2∠BOC.∠ACB 与∠BAC 的大小有什么关系?为什么?3.为什么电影院的作为排列呈弧形,说一说这设计的合理性。
4.船在航行过程中,船长通过测定角数来确定是否遇到暗礁,如图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,优弧AB 上任一点C 都是有触礁危险的临界点,∠ACB 就是“危险角”,当船位于安全区域时,∠α与“危险角”有怎样的大小关系?D第1题第4题处理方式:先让学生独立完成,教师做巡视,了解学情,然后师生共同校对答案、纠错.通过一组习题来加深学生对圆周角及其定理的理解,提高运用所学知识解决问题的能力.设计意图:进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.四、系统小结,深化目标活动内容:教师提出问题:通过本节课的学习学到了哪些知识;掌握了哪些数学方法;体会到了哪些数学思想;还有哪些发现与猜想?谈一谈本节课的学习收获吧.处理方式:学生畅谈自己的收获,教师鼓励学生回顾本节课知识方面以及与之相联系的知识有哪些收获,解题技能方面有哪些提高并作适当评价.只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言. 这节课主要学习了两个知识点:1.圆周角定义.2.圆周角定理及其定理应用.方法:主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.设计意图:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.五、当堂达标检测(投影出示达标检测题)1.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( )A 、20°B 、40°C 、50°D 、80°2.如图,在⊙O 中,∠AOB =50º,则∠ACB = º.3.如图,A ,B ,C 是⊙O 上的三点,∠CAO =25°,∠BCO =35°,则∠AOB = 度.4.如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 与∠BAD 的大小 处理方式:学生独立完成后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:通过当堂达标检测,巩固学生所学知识,使学生将刚刚理解的知识加以应用,并在应用过程中加深理解;使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,又起到查漏补缺的目的.六、布置作业必做题:课本习题3.4 第2题。
选做题:课本习题3.4 第4题.板书设计:。