2012-2017年度高等考试文科数学真命题汇编-立体几何高等考试题学生版
- 格式:doc
- 大小:1.99 MB
- 文档页数:19
新课标全国卷I 文科数学汇编立体几何-、选择题【2017, 6】如图,在下列四个正方体中, A ,B 为正方体的两个顶点,M , N , Q 为所在棱的中点,则在这四个正方体中,直接 AB 与平面MNQ 不平行的是( ) 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂 直的半径•若该几何体的体积是28n,则它的表面积是( ) 3A • 17 nB • 18 nC • 20 nD • 28 n【2016, 11】平面:过正方体 ABCD - B 1C 1D 1的顶点A , :- II 平面CB 1D 1,:•门平面ABCD 二m ,-■门平面ABBA 二n ,则m,n 所成角的正弦值为( )D • 15【2012, 8】平面〉截球O 的球面所得圆的半径为 1,球心O 到平面〉的距离为,2 ,则此球的体积为() 【2011, 8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ) :■、填空题【2017 , 16】已知三棱锥S - ABC 的所有 顶点都 在球O 的球面上,SC 是球O 的直径.若 平面SCA 丄平面SCB, SA=AC , SB=BC ,三棱锥S — ABC 的体积为9,则球O 的表面积为 ___________【2015, 6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:今有委米依垣内角,下周八尺,高五尺,问”积及为米几何? ”其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一) ,米堆底部的弧长 为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少? ”已知1斛米的体积约为1. 62立方尺,圆周率约为 3,估算出堆放的米有( )A • 14 斛B • 22 斛C • 36 斛D • 66 斛【2015, 11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为 16+20n ,则 r=(A • 1B • 2C . 4D • 8【2015, 11】 【2014, 8】【2012, 7】【2014, 8】如图,网格纸的各小格都是正方形, 粗实线 视图,则这个几何体是( A .三棱锥 B .三棱柱【2013, A •16 n【2012,) C .四棱锥D .四棱11】某几何体的三视图如图所示,则该几何体C . 1616+ 8 n 7】如图, 网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图, 柱的体积为(+ 16 n则此几何体的体积为 12 B . 4、3二 C . 4.6二D . 6.3:)B【2013, 15】已知H是球O的直径AB上一点,AH : HB = 1 : 2, AB丄平面a, H为垂足,a截球0所得截面的面积为n则球0的表面积为___________________ .【2011, 16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面3积是这个球面面积的—,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.16三、解答题【2017, 18】如图,在四棱锥P - ABCD 中,AB // CD,且/BAP WCDP =90 .(1)证明:平面PAB _ 平面PAD ; (2)若PA= PD = AB= DC, . APD=90,且四棱锥8P-ABCD的体积为-,求该四棱锥的侧面积.3【2016,18】如图所示,已知正三棱锥 P — ABC 的侧面是直角三角形, PA = 6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点 E •连结PE 并延长交AB 于点G .(1) 求证:G 是AB 的中点;(2) 在题图中作出点 E 在平面PAC 内的正投影F (说明作法及理由),并求四面体 PDEF 的体积. 【2015, 18】如图四边形 ABCD 为菱形,G 为AC 与BD 交点,BE 丄平面ABCD ,(I )证明:平面 AEC 丄平面BED ;(H )若/ ABC=120 ° AE 丄 EC , 三棱锥 E- ACD 的体积为二6,求该三棱锥的侧面积.3【2014,19】如图,三棱柱ABC-AB i C i中,侧面BBGC为菱形,BQ的中点为O,且AO _平面BB1C1C.(1)证明:BQ_AB;(2)若AC _ AB「. CBB1 =60 ,BC =1,求三棱柱ABC-A^G 的高.【2013, 19】如图,三棱柱ABC—A1B1C1中,CA= CB , AB= AA1,Z BAA1 =60°(1)证明:AB丄A1C; (2)若AB= CB= 2,A1C = ■.. 6,求三棱柱ABC —A1B1C1 的体积.119】如图,三棱柱ABC — A 1B 1C 1中,侧棱垂直底面, £ACB =:90 , AC=BC= AA 1, D 是棱A"2 证明:平面 BDC 1L 平面BDC ; 平面BDC i 分此棱柱为两部分,求这两部分体积的比.【2012, 的中点.(1) (2)【2011,18】如图所示,四棱锥 P - ABCD 中,底面ABCD 为平行四边形,. P PD _ 底面 ABCD .(1) 证明:PA _ BD ;(2) 若PD = AD =1,求棱锥 D - PBC 的高.DAB 卜60\AB! ■ \ 2AD ,■CA lB l DBAB一、选择题【2017, 6】如图,在下列四个正方体中, A , B 为正方体的两个顶点, M , N , Q 为所在棱的中点,则在这四个正方体中,直接 AB 与平面MNQ 不平行的是()【解法】选 A .由B , AB // MQ ,则直线AB //平面MNQ ;由C , AB // MQ ,则直线AB //平面MNQ ;由 D , AB // NQ ,则直线 AB //平面MNQ .故A 不满足,选 A .2016, 7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径•若该几解得R = 2 .该几何体的表面积等于球的表面积的-,加上3个截面的面积,每个截面是圆面的8所以该几何体的表面积为 S =- 4n 223 1 n 22=14 n 3n = 17 n 故选A .84【2016,11】平面:-过正方体 ABCD - A 1B 1C 1D 1的顶点A , :- /平面CB 1D 1,〉门平面ABCD平面ABB 1A 1二n ,则m,n 所成角的正弦值为()B .辽解析:选A .解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面即平面AEF ,即研究—、3AE 与AF 所成角的正弦值,易知• EAF,所以其正弦值为.故选A .32解法二(原理同解法一) :过平面外一点 A 作平面:•,并使://平面CB 1D 1,不妨将点 A 变换成B ,作: 使之满足同等条件,在这样的情况下容易得到 [,即为平面A ,BD ,如图所示,即研究 AB 与BD 所成角的正弦值,易知 NABD =―,所以其正弦值为3【2015, 6】《九章算术》是我国古代内容极为丰富的数学名着,下周八尺,高五尺,问”积及为米几何? ”其意思为: 在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为 8尺,米堆的高为5尺,米堆的体积和堆放的 米各位多少? ”已知1斛米的体积约为1. 62立方尺,圆周率约为 3,估算出 堆放的米有()B何体的体积是型,则它的表面积是(3).A . 17 nB . 18 nC . 20 nD . 28 n解析:选A .由三视图可知,该几何体是一个球截去球的1,设球的半径为R ,则--nR88 3328 n书 中有如下问题: 今有委米依垣内角,A . 14 斛B . 22 斛C . 36 斛D . 66 斛*11 A*1 A Q QQr,依题丄2 3r = r =16,所以米堆的体积为 --3 (工)25=320,43 4 339320故堆放的米约为320勻.9【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体的三视图中的 正视图和俯视图如图所示,若该几何体的表面积为 16+20n ,则r=(A . 1B . 2C . 4D .解:该几何体是半球与半个圆柱的组合体, 、 2 2 2 2为 2 n + n X 2r+ n +2r >2r =5 n +4r = 16+20 解得r= 2,故选B .【2014, 8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是 ( )BA .三棱锥B .三棱柱C .四棱锥D .四棱柱解:几何体是一个横放着的三棱柱.故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为 A . 16 + 8 n B . 8 + 8 nC . 16 + 16 n在Rt 001A 中,球的半径 R = 0A 二 3 ,解:设圆锥底面半径为8圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积解析:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=—nX^24 = 8 n V 长方体 =4疋疋=16 .所以所求体积为 16+ 8兀故选A .27】如图,网格纸上小正方形的边长为 【2012,()A . 1,粗线画出的是某几何体的三视图,则此几何体的体积为 6B . 9由三视图可知,该几何体为 三棱锥 A-BCD , 底面△ BCD 为 底边为6,高为3的等腰三角形, 侧面ABD 丄底面BCD , AO 丄底面BCD , 因此此几何体的体积为1 1 V ( 6 3)3=9,故选择3 212D . 15【2012, 8】8 .平面:•截球O 的球面所得圆的半径为 1,球心0到平面〉的A .6 ■:B . 4.3二C . 4 .6 二D . 6.3 二【解析】 如图所示,由已知 O 1A =1 ,D001 〜2,距离为 2,则此球的体积为(所以此球的体积V =彳二R3=4、3二,故选择B.3【点评】本题主要考察球面的性质及球的体积的计算.【2011, 8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D.:■、填空题【2017, 16】已知三棱锥s_ ABC的所有顶点都在球O的球面上,SC是球O的直径•若平面SCA丄平面SCB, SA = AC , SB=BC,三棱锥S —ABC的体积为9,则球O的表面积为______________ 【解析】取SC的中点O ,连接OA,OB,因为SA二AC,SB二BC ,所以OA_ SC,OB _ SC ,因为平面SAC_ 平面SBC 所以OA_ 平面SBC 设OA r1 1 1 1 3 1 3V A_SBC S SBC OA 2r r r r,所以—r =9= r =3,3 © 3 2 3 3所以球的表面积为4二r2=36二•【2013, 15】已知H是球O的直径AB上一点,AH : HB = 1 : 2, AB丄平面a, H为垂足,a截球O所得截面的面积为n则球O的表面积为__________________ •答案:9n 2解析:如图,2R R设球O 的半径为R,贝y AH = , OH= .又••• n EH2= n 二EH = 1 在Rt△ OEH 中,R2=3 3(+12,••• R2= 9. ••• S球=4K R2=9n.(3 丿8 2【2011, 16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面3积是这个球面面积的—,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为162 3 2 2 3 2【解析】设圆锥底面半径为r,球的半径为R,则由n 4 n R ,知r R .16 4根据球的截面的性质可知两圆锥的高必过球心O,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB _ QB .设PO = x , QO = y,则x y = 2R .又△PO B s^ BO Q,知r2= OB2=xy .即xy = r2 = 3R2.4由及x y可得x = 3R,y = R.2 2则这两个圆锥中,体积较小者的高与体积较大者的高的比为1故答案为丄•3三、解答题【2017, 18]如图,在四棱锥P-ABCD中,AB //(1)证明:平面PAB _平面PAD ; ( 2 )若8P-ABCD的体积为-,求该四棱锥的侧面积.3 CD,且BAP—CDP =90 .PA 二PD 二AB 二DC, APD = 90,且四棱锥【解法】(1) 丫 BAP =/CDP =9° , AB_APCD D P又 T AB// CD . AB _ DP(2)由题意:设PA = PD = AB = DC=a ,因为N APD=90° 所以A PAD 为等腰直角三角形即 AD= “ 2a取AD 中点E ,连接PE ,则PE = —2a,2又因为平面PAB _平面PAD 所以PE _平面ABCD因为 AB _ 平面 PAD , AB // CD 所以 AB _ AD , CD — AD 又 AB 二 DC=a 所以四边形ABCD 为矩形»V P 乂BCD -L A BA D L P E 冷Ja_2a 普a = 1a 3 =8所以 3 3 2 3 3即a 二2【2016,18】如图所示,已知正三棱锥 P - ABC 的侧面是直角三角形,PA = 6,顶点P 在平面ABC 内的正投影为点 D , D 在平面PAB 内的正投影为点 E •连结PE 并延长交 AB 于点G .(1) 求证:G 是AB 的中点;(2) 在题图中作出点 E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解析:(1)由题意可得 △ ABC 为正三角形,故 PA = PB =PC =6 . 因为P 在平面ABC 内的正投影为点 D ,故PD _平面ABC . 又AB 平面ABC ,所以AB _ PD .因为D 在平面PAB 内的正投影为点 E ,故DE _平面PAB . 又AB 平面PAB ,所以AB _ DE •因为 AB_PD , AB_DE , PD ^DE H D , PD, DE 平面 PDG , 所以AB _平面PDG •又PG 平面PDG ,所以AB _ PG .因为PA 二PB ,所以G 是AB 的中点.(2)过E 作EF // BP 交PA 于F ,则F 即为所要寻找的正投影. 理由如下,因为 PB — PA , PB// EF ,故EF — PA .同理EF _ PC , 又 PA" PC = P , PA, PC 平面 PAC ,所以 EF _ 平面 PAC ,又AP 二平面PAD ,DP 平面 PAD ,且 APn DP =PAB _平面PADTAB二平面 所以 平面PAB _平面PAD故F即为点E在平面PAC内的正投影.又 ABC = 120,所以在厶 AEC 中, AEC =90‘;,所以 EG 二丄 AC —、3x ,11所以 V D £EFS A PEFDE PF EF DE36在厶PDG 中,PG, DG 「6, PD =2、、3,故由等面积法知 DE = 2 •由勾股定理知PE 二2・2,由△ PEF 为等腰直角三角形知 PF 二EF =2,故V D 』EF 【2015, 18】如图四边形 ABCD 为菱形,G 为AC 与BD 交点,BE 丄平面ABCD , (I )证明:平面 AEC 丄平面BED ;(H )若/ ABC=120 ° AE 丄 EC , 三棱锥 E- ACD的体积为二6,求该三棱锥的侧面积.3解: ( I ) T BE 丄平面 ABCD , • BE 丄 AC . AG=GC=3x, GB=GD= - •在 Rt A AEC 中,可得2 2EG = —32•••在Rt A EBG 为直角三角形,可得 BE=•- V E 知=~ -AC GD B^ — x 33 224x =2•由 BA=BD=BC 可得 AE= ED=EC= 6 •• A AEC 的面积为3, A EAD 的面积与 A ECD 的面积均为 所以三棱锥E-ACD 的侧面积为3+2 •. 5 •…12分18.解析 (1)因为 又ABCD 为菱形,所以 又因为BDBE = B , 所以AC _平面BED • (2)在菱形 ABCD中, BE —平面 ABCD ,所以 BE — AC AC_ BD • BD , BE 平面 BED , 又AC 平面AEC 取 AB =BC =CD ,所以平面AEC _平面=AD = 2x ,BED•2 所以在Rt△ EBG 中,BE = . EG2- BG2=:..2x ,所以V E^CD12x 2x sin120‘6x^ —3 2 3在 Rt △ EBA , Rt △ EBC , Rt A EBD 中, 可得 AE = EC = ED 6 .11—所以三棱锥的侧面积 5侧=22:: $5 6:: ./6 =3亠2」5 .2 2【2014,19】如图,三棱柱ABC-ABQ !中,侧面BBQQ 为菱形,BQ 的中点为0,且A0 _平 面 BB 1C 1C.(1)证明:BQ_AB ;(2)若 AC _ AB- . CBB 1 =60 ,BC =1,求三棱柱 ABC-ABG 的高.证明:(I )连接BC ,则O 为0C 与BC 的交点, ••• AO 丄平面BB 1C 1C.二 AO 丄 B 1C …2分因为侧面BBQC 为菱形,二BG 丄B 1C,…4分 ••• BC 丄平面 ABC ,: AB?平面 ABC , 故BQ 丄AB. …6分(n )作 OD 丄BC,垂足为D ,连结AD ,T AO 丄BC, • BC 丄平面 AOD, 又BC :平面ABC •平面 ABCL 平面AOD,交线为AD ,作OH 丄AD,垂足为H ,: OH 丄平面ABC厂 厂/—由 V B 1-ABC =V A -BBIC 得 —d =~3 —,解得 d —1 ,8 4 2 7所以三棱柱ABC-AB 1C 1的高高为』。
立体几何-2017年全国各地高考文科数学试题分类汇编[1](总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2017高考立体几何汇编1.【2017课标1,文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.【答案】A【解析】【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.2.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.3.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】B【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4.【2017课标3,文10】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ) A .11A E DC ⊥ B .1A E BD ⊥ C .11A E BC ⊥ D .1A E AC ⊥【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【考点】线线位置关系5.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )10 【答案】D 【解析】试题分析:该几何体是三棱锥,如图:图中红色线围成的几何体为所求几何体,该几何体的体积是115341032V=⨯⨯⨯⨯=,故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线. 6.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】9 2π【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 7.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π 【解析】试题分析:取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球8.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.9.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.10.【2017山东,文13】由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .O O 1 O 2题)⋅⋅ ⋅【答案】π22+【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+.【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.11.【2017课标1,文18】如图,在四棱锥P-ABCD 中,AB 90BAP CDP ∠=∠=90APD ∠=83326+PAD PE AD ⊥E AB ⊥PAD AB PE ⊥PE ⊥ABCD AB x=2AD x=22PE x =P ABCD-31133P ABCDV AB AD PE x -=⋅⋅=31833x =2x =2PA PD ==22AD BC ==22PB PC ==P ABCD-21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)错误!未找到引用源。
2017年高考数学—立体几何(解答+答案)1.(17全国1理18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.2.(17全国1文18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值4.17全国2文18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=o 。
(1) 证明:直线//BC 平面PAD ; (2) 若PCD ∆的面积为27,求四棱锥P ABCD -的体积。
如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.6.(17全国3文19.(12分))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.DABCE7.(17北京理(16)(本小题14分))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面,6,4MAC PA PD AB ===(I )求证:M 为PB 的中点; (II )求二面角B PD A --的大小;(III )求直线MC 与平面BDP 所成角的正弦值.8.(17北京文(18)(本小题14分))如图,在三棱锥P ABC -中,,,,2PA AB PA BC AB BC PA AB BC ⊥⊥⊥===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当//PA 平面BDE 时,求三棱锥E BCD -的体积.9.(17山东理17.)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.10.(17山东文(18)(本小题满分12分))由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD, (Ⅰ)证明:1A O ∥平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .11.(17天津理(17)(本小题满分13分))如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.12.(17天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.14.(17江苏15.(本小题满分14分))-中,AB⊥AD,BC⊥BD,平如图,在三棱锥A BCD面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。
新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.DA 11CC 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A .【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=3.故选A .ABCDA 1B 1C 1D 1EF解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为32.故选A .D 1C 1B 1A 1DCBA【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B .【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr 2+2r×2r =5πr 2+4r 2=16+20π, 解得r=2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )BA .三棱锥B .三棱柱C .四棱锥D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 解析:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A .【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形, 侧面ABD ⊥底面BCD ,AO ⊥底面BCD ,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B . 【2012,8】8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A .6πB .43πC .46πD .63π【解析】如图所示,由已知11O A =,12OO =,在1Rt OO A ∆中,球的半径3R OA ==, 所以此球的体积34433V R ππ==,故选择B . 【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由O B D CA等腰三角形及底边上的高构成的平面图形. 故选D . 二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥, 因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC ,设OA r=,3111123323A SBCSBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =.根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=. ① 又PO B BO Q ''△∽△,知22r O B xy '==.即2234xy r R ==. ② 由①②及x y >可得3,22Rx R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【解法】(1)90BAP CDP ∠=∠=︒, ∴,AB AP CD DP ⊥⊥又AB ∥CD ∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且AP DP P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形 即=2AD a取AD 中点E ,连接PE ,则22PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a aa a -====即2a = 11=223+226=6+2322S ⨯⨯⨯⨯⨯侧【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影.E GCD BAP F理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =3PD =2DE =.由勾股定理知22PE =PEF △为等腰直角三角形知2PFEF ==,故43D PEF V -=.【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得, AG=GC=32x ,GB=GD=2x. 在RtΔAEC 中,可得EG =32x . ∴在RtΔEBG 为直角三角形,可得BE=22x . …9分 ∴3116632E ACD V AC GD BE x -=⨯⋅⋅==, 解得x =2. 由BA=BD=BC 可得6.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD 5所以三棱锥E-ACD 的侧面积为3+25 …12分18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以3AG GC x ==,BG GD x ==.在AEC △中,90AEC ∠=,所以132EG AC x ==, 所以在Rt EBG △中,222BE EG BG x =-=,所以3116622sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中, 可得6AE EC ED ===.所以三棱锥的侧面积112256632522S =⨯⨯⨯+⨯⨯=+侧.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高. 证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD 3由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由 OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。
一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】如图,已知三棱柱ABC - A 1B l C 1中,点D 是AB 的中点,平面A 1DC 分此棱柱成两部分,多面体A 1ADC 与多面体A 1B 1C 1DBC 体积的比值为2. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】【在体积为32的四面体ABCD 中,AB ⊥平面BCD ,1AB =,2BC =,3BD =,则CD 长度的所有值为 . 719【解析】由题意得311131sin sin 23322∆=⨯⨯=⨯⨯⨯⨯⨯∠⇒∠=BCD AB S BC BD CBD CBD 因此1cos 2∠=±CBD 由余弦定理得:22223223cos 7=+-⨯⨯⨯∠=CD BCD 或19,因此CD 7=193. 【2016高考冲刺卷(6)【江苏卷】】已知四棱锥P-ABCD 的底面ABCD 是边长为2、锐角为︒60的菱形,侧棱PA ⊥底面ABCD,PA=3.若点M 是BC 的中点,则三棱锥M-PAD 的体积为 【答案】3【解析】因ADM P PAD M V V --=,又360sin 221212=︒⨯==∆ABCD ADM S S 故三棱锥M-PAD 的体积为33331=⨯=V 4. 【2016高考冲刺卷(5)【江苏卷】】已知三棱锥S ABC -的体积为1,E 是SA 的中点,F 是SB 的中点,则三棱锥F BEC -的体积是 ▲ . 【答案】41【解析】h S V V FBC FBC E BEC F ⨯⨯==∆--31,根据几何体知,SBC FBC S S ∆∆⨯=21,而点E 到平面SBC 的距离是点A 到平面SBC 距离的一半,所以1314231=⨯⨯⨯=⨯⨯=∆∆-h s h S V FBC SBC SBC A ,所以4131=⨯⨯∆h s FBC ,所以三棱锥BEC F -的体积是415. 【2016高考冲刺卷(3)【江苏卷】】一个正四棱柱的侧面展开图是一个边长为8cm 的正方形,则它的体积是 cm 2.6. 【2016高考冲刺卷(1)【江苏卷】】已知矩形ABCD 的边4=AB ,3=BC 若沿对角线AC 折叠,使得平面DAC ⊥平面BAC ,则三棱锥ABC D -的体积为 . 【答案】245【解析】因为平面DAC ⊥平面BAC ,所以D 到直线BC 距离为三棱锥ABC D -的高,134123412346,,25555ABC S h h ∆⨯⨯=⨯⨯=====11122463355D ABC ABC V S h -∆=⋅=⨯⨯=. 7. 【2016高考押题卷(2)【江苏卷】】如图,已知平面⋂α平面l =β,βα⊥,B A ,是直线l 上的两点,D C ,是平面β内的两点,且l CB l DA ⊥⊥,,DA=4,AB=6,CB=8,P 是平面α上的一动点,且有BPC APD ∠=∠,则四棱锥ABCD P -体积的最大值是8. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】设棱长为a 的正方体的体积和表面积分别为1V ,1S ,底面半径和高均为r 的圆锥的体积和侧面积分别为2V ,2S ,若123=V V p ,则12S S 的值为 ▲ .32【解析】试题分析:因为3322211221,6,,233r V a S a V r r S rl r ===⋅===p p p p ,所以31323=13V a ar V r=⇒=p p , 因此2122322S S r ==p p9. 【南京市、盐城市2016届高三年级第二次模拟考试】如图,正三棱柱ABC —A 1B 1C 1中,AB=4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是▲________.10. 【2016高考冲刺卷(2)【江苏卷】】 如图,长方体1111ABCD A B C D -中,O 为1BD 的中点,三棱锥O ABD -的体积为1V ,四棱锥11O ADD A -的体积为2V ,则12V V 的值为 ▲ .【答案】12【解析】试题分析:设长方体长宽高分别为,,a b c ,1122111111,,322123262Vabc abc V ab c V bc a V =⨯⨯==⨯⨯==11. 【2016高考押题卷(3)【江苏卷】】若半径为2的球O 内切于一个正三棱柱111C B A ABC -OCDBC 1AB 1A D 1(第7题图)ABCA 1B 1FC 1E中,则该三棱柱的体积为 . 【答案】483.【解析】由题设可知:三棱柱的高为4,底面内切圆的半径为2,则其底面三角形的边长为43,其底面积为23(43)1234S =⨯=,故该三棱柱的体积为1234483V =⨯=. 12. 【2016高考押题卷(1)【江苏卷】】已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积为_______. 【答案】3π 【解析】由题意得222,1,213r r h ππ===-=,圆锥的体积为21133333r h πππ==. 13. 【2016年第一次全国大联考【江苏卷】】已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3, 斜高长为4,则此正五棱锥体积为_______.14. 【2016年第四次全国大联考【江苏卷】】已知正三棱柱的各条棱长均为1,圆锥侧面展开图为半径为2的半圆,那么这个正三棱柱与圆锥的体积比是_______. 【答案】3:4π【解析】由题意得圆锥母线为2,设圆锥底面半径为r 、高为h ,则22ππ21,21 3.r r h =⨯⇒==-=因此圆锥体积为213ππ.33r h =而正三棱柱体积为3,因此正三棱柱与圆锥的体积比是33=3:4π.15. 【2016年第三次全国大联考【江苏卷】】已知正六棱锥P-ABCDEF 的侧棱SA=32,则它的体积最大值是 . 【答案】38【解析】设底面边长为a ,则高212a h -=,从而体积221223331a a V -⨯=461223a a +-=,记4612)(a a a f +-=,则由)22)(22(6486)('335-+-=+-=a a a a a a f 得当220<<a 时,0)('>a f ,当22>a 时,0)('<a f , 从而当22=a 时,256)(max =a f ,故体积的最大值是38max =V . 法二(理科):)12(2333124a a V -⨯=, 因)12(224)12(22224a a a a a -⨯⨯=-256)31222(43222=-++⨯≤a a a ,以下同法一. 16. 【 2016年第二次全国大联考(江苏卷)】已知正六棱锥的底面边长为2,侧棱长为5,则该正六棱锥的表面积为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)如图,平行四边形⊥ABCD 平面CDE , DE AD ⊥.(Ⅰ)求证: ⊥DE 平面ABCD ;(Ⅱ)若M 为线段BE 中点,N 为线段CE 的一个三等分点,求证:MN 不可能与平面ABCD 平行.【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】A BCDEHA BCDE即MN 不可能与平面ABCD 平行.……14分2. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)如图所示,在直四棱柱1111-ABCD A B C D 中,=DB BC , ⊥DB AC ,点M 是棱1BB 上的一点.(1)求证:11//B D 面1A BD ;MABCD A 1B 1C 1D 1(2)求证:⊥MD AC ;(3)试确定点M 的位置,使得平面1DMC ⊥平面11CC D D .【答案】(Ⅰ)详见解析(Ⅱ)详见解析. (3) 点M 为棱1BB 的中点【解析】又因为⊥AC BD ,且1⋂=BD BB B ,所以⊥1面BB D AC 而⊂1面BB D MD ,所以⊥MD ACMABCD A 1B1C 1D 1 NN 1O3. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE上一点,G为EO中点.(Ⅰ)若DE//平面ACF,求证:F为BE的中点;(Ⅱ)若AB=2CE,求证:CG⊥平面BDE.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】(Ⅰ)连接OF,由四边形ABCD是正方形可知,点O为BD的中点,因为DE//平面ACF,平面ACF∩平面BDE=OF,DE平面DEB,所以OF//DE.……………… 4分因为O为BD的中点,所以 F 为BE 的中点. ……………… 6分因为CG ⊥EO ,CG 平面ACE ,所以CG ⊥平面BDE. … 14分4. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)在四棱锥P ABCD -中,平面四边形ABCD 中AD //BC ,BAD ∠为二面角B PA D --一个平面角.(1)若四边形ABCD 是菱形,求证:BD ⊥平面PAC ;(2)若四边形ABCD 是梯形,且平面PAB I 平面PCD l =,问:直线l 能否与平面ABCD 平行?请说明理由.【答案】(Ⅰ)详见解析(Ⅱ)不平行【解析】证:(1)因为BAD ∠为二面角B PA D --一个平面角,所以,.PA AB PA AD ⊥⊥……2分 由于,AB AD ABCD ⊂平面,且AB AD A =I ,所以PA ABCD ⊥平面,……4分由于BD ABCD ⊂平面,所以.PA BD ⊥PBC所以AC BD ⊥……6分由于,PA AC PAC ⊂平面,且PA AC A =I ,所以BD ⊥平面PAC ,……8分解:(2)不平行. ……10分假设直线l 平行平面ABCD ,由于l ⊂平面PCD ,且平面PCD I 平面ABCD CD =,所以//l CD ……12分同理可得//l AB ,所以//AB CD这与AB 和CD 是梯形ABCD 的两腰相矛盾,故假设错误,所以直线l 与平面ABCD 不平行. ……14分5. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点.(1)求证://BF 平面1A EC ;(2)求证:平面1A EC ⊥平面11ACC A .又OE ⊂平面1A EC ,所以平面1A EC ⊥平面11ACC A . …………14分6. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)在三棱锥ABC P -中,若E D AC BD ,,2=分别为PC AC ,的中点,且⊥DE 平面PBC .(1)求证://PA 平面BDE ;(2)求证:⊥BC 平面PAB . EDCBPA7. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分)如图,在四棱锥ABCD P -中,四边形ABCD 为矩形,N M BP AB ,,⊥分别为PD AC ,的中点.(1)求证://MN 平面ABP ;(2)求证:平面ABP ⊥平面APC 的充要条件是BP PC ⊥.NMP DCB A8. 【2016高考冲刺卷(2)【江苏卷】】(本小题满分14分)如图,在三棱锥P ABC -中,90PAC BAC ∠=∠=︒,PA PB =,点D ,F 分别为BC ,AB 的中点.(1)求证:直线//DF 平面PAC ;(2)求证:PF ⊥AD . DF PADF PA9. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)如图,在三棱锥P —ABC 中,平面PAB ⊥平面ABC ,PA ⊥PB ,M ,N 分别为AB ,PA 的中点.(1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:PA ⊥平面MNC .A NBPM C10. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】 (本小题满分14分) 在直三棱柱111ABC A B C -中,CA CB =,12AA AB , D 是AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)若点P 在线段1BB 上,且114BP BB =,求证:AP ⊥平面1ACD . (第16题图)CD ⊂平面ABC ,∴CD ⊥平面11AA B B ﹒ …………8分 ∵AP ⊂平面11A B BA ,∴CD AP ⊥. …………9分 ∵12BB BA =,11BB AA = ,114BP BB =, (第16题) C B 1A 1P DCBA∴1BP AD BA AA , ∴Rt △ABP ∽Rt △1A AD , 从而∠1AA D =∠BAP ,所以∠1AA D +∠1A AP =∠BAP +∠1A AP =90︒, ∴1AP A D ⊥. …………12分 又∵1CD A D D =I ,CD ⊂平面1ACD ,1A D ⊂平面1ACD ∴AP ⊥平面1ACD . …………14分11. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中, E ,F 分别是AB ,BC 的中点,A 1C 1 与B 1D 1交于点O .(1)求证:A 1,C 1,F ,E 四点共面;(2)若底面ABCD 是菱形,且OD ⊥A 1E ,求证:OD ⊥平面A 1C 1FE .【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】1 EA B1 E AB A故1A ,1C ,F ,E 四点共面.……………7分(2)连接BD ,因为直棱柱中1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D , 所以1DD ⊥11A C . ………………………9分因为底面1111A B C D 是菱形,所以11A C 11B D ⊥.又1DD I 111=B D D ,所以11AC ⊥平面11BB D D . ………………11分 因为OD ⊂平面11BB D D ,所以OD ⊥11A C .又OD ⊥1A E ,11A C I 11A E A =,11AC ⊂平面11AC FE ,1A E ⊂平面11AC FE , 所以OD ⊥平面11AC FE . ……………………14分12. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)如图,在四棱锥ABCD P -中,ABCD 为菱形,⊥PD 平面ABCD ,8,6==BD AC ,E 是棱PB 上的动点,AEC ∆面积的最小值是3.(1)求证:DE AC ⊥;(2)求四棱锥ABCD P -的体积.当AEC ∆面积的最小值是3时,EF 有最小值1 …………9分∵当PB EF ⊥时,EF 取最小值,∴1522=-=EF BF BE ,由 BD BE PD EF =,得158=PD ,又24862121=⨯⨯=⋅=BD AC S ABCD 故151564158243131=⨯⨯=⋅=-PD S V ABCD ABCD P …………14分 13. 【盐城市2016届高三年级第三次模拟考试】(本小题满分14分)如图,四棱锥P ABCD -中,底面ABCD 是矩形,2AB AD =,PD ⊥底面ABCD ,,E F 分别为棱,AB PC 的中点.(1)求证://EF 平面PAD ;(2)求证:平面PDE ⊥平面PEC .又E 是AB 的中点,所以//AE DC ,且12AE DC , PB CDE第16题图 F14. 【2016高考冲刺卷(6)【江苏卷】】如图,在四棱柱1111ABCD A B C D -中,1BB ⊥底面ABCD ,//AD BC ,90BAD ∠=o ,AC BD ⊥.D 1 D AC 1A 1B 1 B C(Ⅰ)求证:1//B C 平面11ADD A ;(Ⅱ)求证:1AC B D ⊥;(Ⅲ)若12AD AA =,判断直线1B D 与平面1ACD 是否垂直?并说明理由.【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)不垂直(Ⅲ)结论:直线1B D 与平面1ACD 不垂直. 证明:假设1B D ⊥平面1ACD , 由1AD ⊂平面1ACD ,得11B D AD ⊥. 由棱柱1111ABCD A B C D -中,1BB ⊥底面ABCD ,90BAD ∠=o可得111A B AA ⊥,1111A B A D ⊥,又因为1111AA A D A =I , 所以11A B ⊥平面11AA D D , 所以111A B AD ⊥. 又因为1111A B B D B =I , 所以1AD ⊥平面11A B D ,所以11AD A D ⊥. 这与四边形11AA D D 为矩形,且1=2AD AA 矛盾, 故直线1B D 与平面1ACD 不垂直.15. 【2016高考冲刺卷(7)【江苏卷】】如图,在四棱锥A EFCB -中,AEF ∆为等边三角D 1A 1D B 1 B C AC 1形,平面AEF ⊥平面EFCB ,2EF =,四边形EFCB 是高为3的等腰梯形,//EF BC ,O 为EF 的中点.(1)求证:AO CF ⊥;(2)求O 到平面ABC 的距离.过O 作OH AG ⊥,垂足为H ,则BC OH ⊥,因为AG BC G =I ,所以OH ⊥平面ABC 因为3,3OG AO =62OH =,即O 到平面ABC 6(另外用等体积法谈亦可)16. 【2016高考冲刺卷(9)【江苏卷】】(本小题满分14分)在四棱锥A BCDE -中,底面BCDE 为菱形,侧面ABE 为等边三角形,且侧面ABE ⊥底面BCDE,,O F分别为,BE DE的中点.(Ⅰ)求证:AO CD⊥;(Ⅱ)求证:平面AOF⊥平面ACE;(Ⅲ)侧棱AC上是否存在点P,使得//BP平面AOF?若存在,求出APPC的值;若不存在,请说明理由.FOB C DAE。
立体几何(一)1.(安徽12)某几何体的三视图如图所示,该几何体的表面积是 9212(25)4(2544922S =⨯⨯+⨯++++⨯=2.(广东6) 某几何体的三视图如图1所示,它的体积为( C )()A 12π ()B 45π ()C π57 ()D π81221353573V πππ=⨯⨯+⨯=3.(湖北4)已知某几何体的三视图如图所示,则该几何体的体积为( B )A .8π3 B .3π C .10π3D .6π 4.(福建)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点。
(Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由。
(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长。
解:Ⅰ)长方体1111D C B A ABCD -中,11==AD AA 得:1111111111,,AD A D AD A B A D A B A A D ⊥⊥=⇔⊥ 面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ侧(左)视图 正(主)视图 45 俯视图42 俯视图侧视图正视图4在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A D AD O = ,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x A D ==11112222222228B OE x xS x ∆=--⨯-⨯=122x =⇔= 得:2AB =5.(湖南3)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( D )6.(辽宁13)一个几何体的三视图如图所示,则该几何体的表面积为 387.(辽宁16)已知正三棱锥-P ABC ,点,,,P A B C 的球面上,若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为38.(江苏7)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 6 cm 3。
一、 ? 说明文 1、如何给概念下定义?(常见问题:根据文章内容给“xx”下定义。
) 答:下定义必须由四部分组成:被定义概念及其上一级概念、定义词(如“叫”、“是”等)、对象的本质特点。
缺一不可,且不能使用生动语言。
2、如何阐述说明方法的作用?(常见问题:划线句运用了哪些说明方法?有何作用?) 答:(1)首先讲清说明方法本身的作用:如打比方“生动形象地说明了……”,举例子“具体说明了……”,作比较“突出说明了……”,列数字“准确说明了……”,分类别“有条理地说明了……”等; (2)说明方法的运用是为了说明某个结论(对象及其特点),此结论可以有现成的,也可以从具体句子中去提炼。
3、如何阐述词语的表达作用?(常见问题:某词语有何表达作用?某词语能否删除?某词语能否换作xx词?) (1)首先阐述词语本身的含义或作用; (2)其次结合语境阐述词语在句子中的作用;(主要结合说明对象和该词所修饰的中心词); (3)加个套语:这体现了说明文用词的准确性或生动性。
4、说明顺序有哪几种?其中常见的逻辑顺序有哪些? 答:说明顺序主要有时间顺序、空间顺序和逻辑顺序。
其中常见的逻辑顺序有:由概括到具体、由一般到个别、由整体到局部、由表及里(由现象到本质)、由主到次、由此及彼、由因到果等。
5、如何从文中提炼信息答题? 答:(1)顺着文章总段和各段中心句确定答题所依据的原文范围;(2)根据该题分值推测要点数(一般1分对应一个要点)。
6、如何分析说明文的语言特点? 答:(1)语言的准确性,主要抓住词语(如“大约、之一、至少、到目前为止”等)展开; (2)语言的生动性,主要抓住修辞方法、描写、抒情和叙述展开。
? 二、 ? 议论文 1、如何把握中心论点? 答:(1)它必须围绕论题展开; (2)必须是陈述句; (3)位于标题或总段中,除了开头引析材料或先驳敌论再立论会位于文章中间以外,一般则位于文章标题和首尾; (4)没有现成的中心论点可结合论题、分论点或围绕的问题进行归纳,也可由论据进行反推。
新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E — ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11。
立体几何第一节 空间几何体及其表面积和体积1.如图所示,在圆柱12O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .1.解析 设球O 的半径为r ,由题意212V r r =π⋅,3243V r =π,所以1232V V =.故填32.2.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .2.解析 设正方体的边长为a ,则226183a a =⇒=.外接球直径为正方体的体对角线,所以23==R ,344279πππ3382==⨯=V R . 3.如图所示,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,DBC △,ECA △,FAB △分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.3.解析 由题意,联结OD ,交BC 于点G ,如图所示,则OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,三棱锥的高h =2132ABC S x =⋅⋅=△,则13ABC V S h =⋅=△令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,当()0f x '<,得522x <<,所以()f x在()0,2上单调递增,在52,2⎛⎫ ⎪⎝⎭上单调递减.故()()280f x f =≤,则V =,所以体积的最大值为3.4.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ). A .πB .3π4C .π2D .π44.解析 如图所示,由题可知球心在圆柱体的中心处,圆柱体上、下底面圆的半径r ==23ππ4V r h ==.故选B.第二节 空间几何体的直观图与三视图5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( ). A.π12+ B. π32+ C. 3π12+ D. 3π32+5.解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A .6.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ).A.10B.12C.14D.166. 解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.7.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ).A .90πB .63πC .42πD .36π7.解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示. 2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ).A.B.C.D.28. 解析 几何体四棱锥如图所示,最长棱为正方体的体对角线,即l ==故选B.9.由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .9. 解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.第三节 空间点、直线、平面之间的位置关系10.如图所示,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm (容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分 的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分 的长度.AC A 11容器ⅠE G 1H 1容器Ⅱ10.解析 (1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处,如图所示为截面11A ACC 的平面图形.因为AC =40AM =,所以30MC ==,从而3sin 4MAC ∠=.记AM 与水面的交点为1P , 过点1P 作11PQ AC ⊥,1Q 为垂足,则11PQ ⊥平面A B C D ,故1112PQ =,从而11116sin PQ AP MAC==∠.答:玻璃棒l 没入水中部分的长度为16cm .问(1)AC 1A 1CMP 1Q 1(2)如图所示为截面11E EGG 的平面图形,O ,1O 是正棱台两底面的中心.由正棱台的定义,1OO ⊥平面EFGH , 所以平面11E EGG ⊥平面EFGH ,1O O EG ⊥. 同理,平面11E EGG ⊥平面1111E F G H ,111O O E G ⊥. 记玻璃棒的另一端落在1GG 上点N 处.过G 作11GK E G ⊥,K 为垂足,则132GK OO ==.因为 14EG =,1162E G =,所以16214242KG -==,从而1GG =40==.设1EGG α∠=,ENG β∠=,则114sin sin cos 25KGG KGG απ⎛⎫=+==⎪⎝⎭∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=, 于是()()sin sin sin =NEG αβαβ=π--=+∠sin cos cos sin αβαβ+4243735255255⎛⎫=⨯+-⨯= ⎪⎝⎭. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则22P Q ⊥平面EFGH , 故2212P Q =,从而22220sin PQ EP NEG==∠.答:玻璃棒l 没入水中部分的长度为20cm .问(2)G O E Q 2P 2NG 1KE 1O 1评注 此题本质上考查解三角形的知识,但在这样的大背景下构造的应用题让学生有畏惧之感,且该应用题的实际应用性也不强.也有学生第(1)问采用相似法解决,解法如下:AC =40AM =,所以30CM ==,1112PQ =,所以由11AP A Q CM △△∽,111PQ AP CM AM =,即1123040AP =,解得116AP =. 答:玻璃棒l 没入水中部分的长度为16cm .第四节 直线、平面平行的判定与性质11.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB .11.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .H QPN F DBCEA12.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.A BCDPEABDCEF12.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.13.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;EM DCBAP13.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .M第五节 直线、平面垂直的判定与性质14.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.ABDCEF14.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB . 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.15.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;DCBAP15. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .16.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;16.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO第六节 空间向量与立体几何17.已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ).ABCD17.解析 设M ,N ,P 分别为AB ,1BB ,11B C 的中点,则1AB 和1BC 的夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,).可知112MN AB ==,112NP BC ==,取BC 的中点Q ,联结,,PQ MQ PM ,则可知PQM △为直角三角形.1=PQ ,12MQ AC =. 在ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,即=AC,则MQ =MQP △中,MP =. 在PMN △中,222cos 2MN NP PM PNM MN NP +-∠=⋅⋅222+-==. 又异面直线所成角为π02⎛⎤ ⎥⎝⎦,.故选C.18.如图所示,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (2)当3AB =,2AD =,求二面角E AG C --的大小.18.解析 (1)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,ABAP A =,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE BP ⊥.又120EBC ∠=︒,所以30CBP ∠=︒. (2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A ,(2,0,0)E,G,(C -,则(2,0,3)AE =-,AG =,(2,0,3)CG =.设111(,,)x y z =m 是平面AEG 的一个法向量,由00AE AG ⎧⋅=⎪⎨⋅=⎪⎩m m,可得11112300x z x -=⎧⎪⎨+=⎪⎩,取12z =,可得平面AEG的一个法向量(3,2)m =. 设222(,,)x y z =n 是平面ACG 的一个法向量,由00AG CG ⎧⋅=⎪⎨⋅=⎪⎩n n,可得22220230x x z ⎧+=⎪⎨+=⎪⎩,取22z =-,可得平面ACG的一个法向量(3,2)=-n . 从而1cos ,2⋅==⋅m n m n m n ,易知二面角E AG C --为锐角.因此所求的角为60︒.19.如图所示,在平行六面体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且2AB AD ==,1AA =120BAD ∠=︒.(1)求异面直线1A B 与1AC 所成角的余弦值; (2)求二面角1B A D A --的正弦值.A 1B 1C 1D 1ABCD19.解析 在平面ABCD 内,过点A 作AE AD ⊥,交BC 于点E . 因为1AA ⊥平面ABCD ,所以1AA AE ⊥,1AA AD ⊥.如图所示,以{}1,,AE AD AA 为正交基底,建立空间直角坐标系A xyz -.BB y因为2AB AD ==,1AA =120BAD ∠=︒. 则()0,0,0A,)1,0B -,()0,2,0D,)E,(1A,1C .(1)(13,1,A B =-,(13,1,AC =,则111111cos ,A BAC A B AC A B AC⋅=1,177-⋅==-.因此异面直线1A B 与1AC 所成角的余弦值为17. (2)平面1A DA 的一个法向量为()3,0,0AE =.设(),,x y z =m 为平面1BA D 的一个法向量,又(13,1,AB =-,()BD =,则100A B BD ⎧⋅=⎪⎨⋅=⎪⎩m m,即030y y -=+=⎪⎩. 不妨取3x =,则y =,2z =,所以()=m 为平面1BA D 的一个法向量. 从而cos ,AE AE AE ⋅=m mm34⋅==,设二面角1B A D A --的大小为θ,则3cos 4θ=. 因为[]0,θ∈π,所以sin θ==. 因此二面角1B A D A --的正弦值为4. 20.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值.DCBAP20. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥ 平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)取AD 的中点O ,BC 的中点E ,联结PO ,OE ,因为AB CD ∥,所以四边形ABCD为平行四边形,所以OE AB ∥.由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD .又PO ,AD ⊂平面PAD ,所以OE PO ⊥,OE AD ⊥.又因为PA PD =,所以PO AD ⊥,从而PO ,OE ,AD 两两垂直.以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,所以()00D ,,)20B ,,(00P ,()20C ,,所以(0PD =,,(22PB =,,,()00BC =-,.设()x y z =n ,,为平面PBC 的一个法向量,由00PB BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,得20y +=-=⎪⎩.令1y =,则z =,0x =,可得平面PBC 的一个法向量(01=n ,. 因为90APD ∠=︒,所以PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD , 所以PD AB ⊥,又PA AB A =,所以PD ⊥平面PAB .即PD 是平面PAB 的一个法向量,(0PD =,,,从而cosPD PD PD ⋅===⋅n n n,由图知二面角A PB C --为钝角,所以它的余弦值为.21.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP21.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .(2)以AD 的中点O 为坐标原点,建立如图所示的空间直角坐标系.设1AB BC ==,则()000O ,,,()010A -,,,()110B -,,,()100C ,,,()010D ,,,(00P .点M 在底面ABCD 上的投影为M ',所以MM BM ''⊥,联结BM '.因为45MBM '∠=,所以MBM '△为等腰直角三角形.因为POC △为直角三角形,OC =,所以60PCO ∠=. 设MM a '=,CM '=,1OM '=-.所以100M ⎛⎫'- ⎪ ⎪⎝⎭,,.BM a a '==⇒=11OM '==.所以100M ⎛⎫' ⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭,11AM ⎛= ⎝⎭,(100)AB =,,. 设平面ABM 的法向量11(0)y z =,,m,则110AM y ⋅=+=m,所以(02)=,m , 易知平面ABD 的一个法向量为(001)=,,n ,从而cos ,⋅==⋅m n m n m n 故二面角M AB D --.M22.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.22.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO⑵由题意可知V V D ACE B ACE --=,即B ,D 到平面ACE 的距离相等,即点E 为BD 的中点.以O 为坐标原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭,易得24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭. 设平面AED 的法向量为()1111=,,x y z n ,平面AEC 的法向量为()2222=,,x y z n , 则1100AE AD ⎧⋅=⎪⎨⋅=⎪⎩n n,取1=n ;220AE OA ⎧⋅=⎪⎨⋅=⎪⎩n n,取(20,1,=n .设二面角D AE C --为θ,易知θ为锐角,则1212cos θ⋅==⋅n n n n.23.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC,PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值.23.解析 (1)设,AC BD 的交点为E ,联结ME .因为PD ∥平面MAC ,平面MAC平面PBD ME =,所以PD ME ∥.因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.MP EDCBA(2)取AD 的中点O ,联结OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图所示,建立空间直角坐标系O xyz -,则P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-,(2,0,PD =.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩n n,即44020x y x -=⎧⎪⎨-=⎪⎩. 令1x =,则1y =,z ==n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(3)由(1)知1,2,2M ⎛⎫- ⎪ ⎪⎝⎭,(2,4,0)C,(3,2,2MC =-.设直线MC 与平面BDP 所成角为α,则2sin cos ,9MC MC MCα⋅===<>n n n . 所以直线MC 与平面BDP 所成角的正弦值为9. 24.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长. NM ED CBAP24.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE .(2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --. (3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12. 25.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.25.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .A BCDPEH QPN MF DBCEA(2)分别取BC ,AD 的中点为M ,N .联结PN 交EF 于点Q ,联结MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 的中点,在平行四边形BCEF 中,//MQ CE .由PAD △为等腰直角三角形,得PN AD ⊥. 由DC AD ⊥,N 是AD 的中点,所以12ND AD BC ==,且BC DN ∥,所以四边形BCDN 是平行四边形,所以CD BN ∥,所以BN AD ⊥.又BN PN N =,所以AD ⊥平面PBN ,由//BC AD ,得BC ⊥平面PBN ,又BC ⊂平面PBC ,所以平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,联结MH .MH 是MQ 在平面PBC 上的射影,所以QMH ∠是直线CE 与平面PBC 所成的角.设1CD =.在PCD △中,由2PC =,1CD =,PD =CE =,又BC ⊥平面PBN ,PB ⊂平面PBN ,所以BC PB ⊥.在PBN △中,由1PN BN ==,PB ==QH PB ⊥,Q 为PN 的中点,得14QH =. 在Rt MQH △中,14QH =,MQ =,所以sin 8QMH ∠=, 所以直线CE 与平面PBC26.如图所示,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA ==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面角为α,β,γ,则( ). A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<26.解析 如图所示,设点D 在底面ABC 内的射影为O ,判断O 到PR ,PQ ,QR 的距离,O 到哪条线段的距离越小,对应的二面角就越大.显然有,αβ,γ均为锐角.1P 为三等分点,O 到1PQR △三边的距离相等.动态研究问题:1P P ®,所以O 到QR 的距离不变,O 到PQ 的距离减少,O 到PR 的距离变大.所以αγβ<<.127.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在的直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所成角的最小值为45; ④直线AB 与a 所成角的最小值为60;其中正确的是________.(填写所有正确结论的编号).27.解析 由题意知,a ,b ,AC 三条直线两两相互垂直,作出图像如图所示.不妨设图中 所示的正方体的边长为1,故1AC =,AB =AB 以直线AC 为旋转轴旋转,则点A 保持不变,点B 的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴 正方向,CB 为y 轴正方向,CA 为z 轴正方向,建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0) ,直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=-,2AB '= 设AB '与直线a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos 2AB θθαθ⎡-⋅==∈⎢'⎣⎦a , 所以ππ,42α⎡⎤∈⎢⎥⎣⎦,故③正确,④错误.设AB '与直线b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b bb . 当AB '与直线a 夹角为60︒时,即π3α=, sin3πθα===. 因为22cos sin 1θθ+=,所以cos θ=.从而1cos 2βθ==. 因为π0,2β⎡⎤∈⎢⎥⎣⎦,所以π=3β,此时AB '与b 的夹角为60︒.所以②正确,①错误.故填② ③.28.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长.NM ED CBAP28.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE . (2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量, 则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --.(3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12.。
学科教师辅导教案学员姓名年级高三辅导科目数学授课老师课时数2h 第次课授课日期及时段2018年月日:—:1.(2014辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若//,//,m nαα则//m n B.若mα⊥,nα⊂,则m n⊥C.若mα⊥,m n⊥,则//nαD.若//mα,m n⊥,则nα⊥2.(2014新标1文)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱3.(2014浙江文) 设m、n是两条不同的直线,α、β是两个不同的平面,则()A.若nm⊥,α//n,则α⊥m B.若β//m,αβ⊥,则α⊥mC.若β⊥m,β⊥n,α⊥n,则α⊥m D.若nm⊥,β⊥n,αβ⊥,则α⊥m4.(2013浙江文) 设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β历年高考试题集锦(文)——立体几何5.(2015年广东文)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交6.(2015年新课标2文)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.57.(2015年福建文)某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .1511128.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.213+B.183+C.21D.189.(2012福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A.球B.三棱锥C.正方体D.圆柱10.(2014福建理)某空间几何体的正视图是三角形,则该几何体不可能是().A圆柱.B圆锥.C四面体.D三棱柱11.(2012广东理)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π12(2012广东文)某几何体的三视图如图1所示,它的体积为( )72π()B()A48π()Cπ30()Dπ2413.(2013广东文)某三棱锥的三视图如图所示,则该三棱锥的体积是()图 21俯视图侧视图正视图21A .16 B .13 C .23D .1 14.(2013江西文)一几何体的三视图如右所示,则该几何体的体积为( )A.200+9πB. 200+18πC. 140+9πD. 140+18π15.(2012新标) 如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .1816.(2013新标1) 某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+17.(2017·全国Ⅰ文)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )18、(2016年天津)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )19、(2016年全国I 卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π20、(2016年全国I 卷)如平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )32(B )22(C )33(D )1321、(2016年全国II 卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π22、(2016年全国III 卷)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )8123、(2016年浙江)已知互相垂直的平面αβ, 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n24、(2017·全国Ⅱ文)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A .90πB .63πC .42πD .36π25.(2014湖北文)已知某几何体的三视图如图所示,则该几何体的体积为________.26. (2017·全国Ⅲ文)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π427. (2014新标2文) 正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )(A )3 (B )32 (C )1 (D )3228.(2017·北京文)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .1029.(2017·全国Ⅰ文)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.30、(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.31.(2012新标文) 如图,三棱柱111ABC A B C 中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点。
(I) 证明:平面BDC ⊥平面1BDC 。
(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.32.(2013新标2文) 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ; (2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.33、(2017·全国Ⅰ文)如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.34.(2014山东文)如图,四棱锥P ABCD -中,1,,,,2AP PCD AD BC AB BC AD E F ⊥==平面∥分别为线段,AD PC 的中点.(I)求证:AP BEF ∥平面;(II )求证:BE PAC ⊥平面.35.(2014四川文) 在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。
(Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(Ⅱ)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论。
D EB 1C 1ACBA 136.(2013北京文)如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD (2)//BE 平面PAD (3)平面BEF ⊥平面PCD37.(2012江苏)如图,在直三棱柱ABC ﹣A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证: (1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .38.(2013江苏)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥, AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.39.(2014江苏)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC .40.(2014北京文)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,BC=1,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥E ABC -的体积.C 1B 1A 1FE C BA41.(2015北京文)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C 2A =B =,O ,M 分别为AB ,V A 的中点.(Ⅰ)求证:V //B 平面C MO ;(Ⅱ)求证:平面C MO ⊥平面V AB ;(Ⅲ)求三棱锥V C -AB 的体积.42.(2015年新课标1卷)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面, (I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.43.(2017·全国Ⅱ文)如图,四棱锥PABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥PABCD 的体积.44、(2016年江苏省高考)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .45、(2016年全国I 卷)如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G . (I )证明:G 是AB 的中点;(II )在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE46、(2016年全国II 卷高考) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置.(Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.-中,PA⊥平面ABCD,AD BC,47、(2016年全国III卷高考)如图,四棱锥P ABC==,M为线段AD上一点,2PA BCAB AD AC3===,4=,N为PC的中点.AM MD-的体积.(I)证明MN平面PAB;(II)求四面体N BCM48.(2017·北京文)如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.49.(2017·江苏,15)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .50、(2013年全国I 卷)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=。