[真卷]2016-2017学年四川省绵阳市安州区秀水片八年级(下)期中数学试卷含参考答案
- 格式:doc
- 大小:1.04 MB
- 文档页数:17
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
四川省绵阳市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·鄂托克旗期末) 下列图形中,是轴对称图形的是()A .B .C .D .【考点】2. (2分)(2018·徐州) 函数中自变量x的取值范围是()A . x≥-1B . x≤-1C . x≠-1D . x=-1【考点】3. (2分)(2016·嘉兴) 某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A . 平均数B . 中位数C . 众数D . 方差【考点】4. (2分) (2019八下·兴化月考) 下列分式是最简分式的是()A .B .C .D .【考点】5. (2分) (2017八下·遂宁期末) 四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有().A . 3种B . 4种C . 5种D . 6种【考点】6. (2分)下列描述不属于定义的是()A . 两组对边分别平行的四边形是平行四边形B . 正三角形是特殊的三角形C . 在同一平面内三条线段首尾相连得到的图形是三角形D . 含有未知数的等式叫做方程【考点】7. (2分) (2019八下·宜兴期中) 把分式中的x、y的值都扩大到原来的2倍,则分式的值…()A . 不变B . 扩大到原来的2倍C . 扩大到原来的4倍D . 缩小到原来的【考点】8. (2分) (2017八下·海安期中) 若顺次连接四边形ABCD四边的中点,得到一个四边形,则此四边形一定是()A . 平行四边形B . 矩形C . 菱形D . 正方形【考点】9. (2分)(2017·德州) 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A . ﹣ =4B . ﹣ =4C . ﹣ =4D . ﹣ =4【考点】10. (2分)⊙O的直径AB=10cm,弦CD⊥AB,垂足为P.若OP:OB=3:5,则CD的长为()A . 6cmB . 4cmC . 8cmD . cm【考点】二、填空题 (共8题;共9分)11. (1分) (2020八下·泰兴期中) 某学校为了解八年级名学生体质健康情况,从中抽取了名学生进行测试,在这个问题中,样本容量是________.【考点】12. (1分)(2016·贵阳模拟) 若代数式的值等于0,则x=________.【考点】13. (1分) (2019八上·灌云月考) 如图1.在平面内取一定点O,引一条射线Ox,再取定一个长度单位,那么平面上任一点M的位置可由OM的长度m与∠xOM的度数α确定,有序数对(m,α)称为M点的极坐标,这样健的坐标系称为极坐标系,如图2,在极坐标系下,有一个等边三角形AOB,AB=4,则点B的极坐标为________.【考点】14. (1分) (2020九上·宿州月考) 已知,则 ________.【考点】15. (1分)对分式方程去分母时,应在方程两边都乘以________【考点】16. (2分) (2020八上·长清月考) 如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是________.17. (1分) (2018八上·长春期末) 如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是________.(结果保留根号).【考点】18. (1分) (2019八上·朝阳期中) 有一个边长为a的大正方形和四个边长为b的全等的小正方形(其中a>2b),按如图方式摆放,并顺次连接四个小正方形落入大正方形内部的顶点,得到四边形ABCD.下面有四种说法:①阴影部分周长为4a;②阴影部分面积为(a+2b)(a-2b);③四边形ABCD周长为8a-4b;④四边形ABCD的面积为a2-4ab+4b2.所有合理说法的序号是________.【考点】三、解答题 (共10题;共65分)19. (10分)计算(1)(xy﹣x2)•(2)()÷(3).20. (10分) (2018八上·泸西期末) 解方程: + =1【考点】21. (5分) (2017七下·嘉兴期末) 先化简,再求值:(﹣)÷ ,其中m=﹣3,n=5.【考点】22. (2分)(2019·荆州) 如图①,等腰直角三角形的直角顶点为正方形的中心,点,分别在和上,现将绕点逆时针旋转角,连接,(如图②).(1)在图②中, ________;(用含的式子表示)(2)在图②中猜想与的数量关系,并证明你的结论.【考点】23. (10分)(2017·河南模拟) 如图.AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D.(1)证明:FP是⊙O的切线;(2)若四边形OBPD是菱形,证明:FD=ED.24. (12分)(2020·硚口模拟) 为了加强学生课外阅读,开阔视野,某校开展了“书香校园,诵读经典”活动,学校随机抽查了部分学生,对他们每天的课外阅读时间进行调查,并将调查统计的结果分为四类:每天诵读时间分钟的学生记为A类,20分钟分钟记为B类,40分钟分钟记为C类,分钟记为D类,收集的数据绘制如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了________名学生进行调查统计,扇形统计图中类所对应的扇形圆心角大小为________;(2)将条形统计图补充完整;(3)如果该校共有2000名学生,请你估计该校类学生约有多少人?【考点】25. (2分) (2020九上·银川期末) 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共10只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数1001502005008001000摸到白球的次数5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近________;(保留二个有效数字)(2)试估算口袋中黑、白两种颜色的球各有多少只?(3)请画树状图或列表计算:从中一次摸两只球,这两只球颜色不同的概率是多少?【考点】26. (10分)(2019·鄞州模拟) 某厂制作甲、乙两种环保包装盒。
永春一中初二年级期中考试数学科试卷(2017.4)命题:学校指定命题 考试时间:120分钟 试卷总分:150分班级 号数 姓名 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答. 1. 在函数11y x =-中,自变量x 的取值范围是( ) A .x ≤1; B .x ≥1; C .≠x -1; D .≠x 1. 2.点P (-1,2)关于x 轴对称的点的坐标是( )A .(-1,2);B .(2,-1);C .(1,-2);D .(-1,-2). 3.如果把分式2yx y+中的x 和y 都扩大3倍,那么分式的值 ( ) A. 扩大6倍; B. 扩大3倍; C.缩小3倍; D.不变.4.一项工程,甲单独做a 小时完成,乙单独做b 小时完成,甲乙两人一起做2小时完成的工作量可表示为( ) A.2a b +; B. 2ab a b +; C. 22a b+; D.22a b +. 5.具有下列条件的四边形中,是平行四边形的是( )A .一组对角相等B .两条对角线互相垂直C .两组对边分别相等D .两组邻角互补6.已知点A (3,-2),将点A 向左平移4个单位长度得到点B ,则点B 在( )A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限. 7.反比例函数2y x=-(x >0)的图象在 ( ) A.第一象限; B. 第四象限; C.一、三象限; D. 二、四象限. 8.如图,在口ABCD 中,AB=6,BC=10,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A .12;B .14;C .16;D .18.第8题图9.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )10.如图,已知口ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′, 连接DA′.若∠ADC=60°,∠ADA′=45°, 则∠DA′E′的大小为( ) A .170° B .165°C .160°D .155°二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置. 11.某种病毒的直径是0.0000014米,用科学记数法表示为_________________米. 12.将直线32y x =--向上平移4个单位,得到直线 .13.正比例函数的图象经过点(3,2),则该函数的表达式为 . 14.在口ABCD 中,若∠A+∠C=100°,则∠B= .15.已知23x x -=,则224x x+的值为 . 16.如图,已知反比例函数ky x=()0x >与正比例函数y x =()0x ≥的图象,点A (1,5),点A′(5,b )与点B′均在反比例函数的图象上,点B 在直线y x = 上,四边形AA′B′B 是平行四边形,则B 点的坐标 为 。
八级下学期期中数学试卷两套合集八附答案解析2017年八年级下学期期中数学试卷两套合集八附答案解析八年级(下)期中数学试卷(解析版)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C. D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的68 108 140 355 560 690 次数m落在“铅笔”区域的0.68 0.72 0.70 0.71 0.70 0.69 频率A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%二.填空题(共有10小题,每小题2分,共20分)7.计算=______.8.分式,的最简公分母是______.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性______(选填“大于”“小于”或“等于”)是白球的可能性.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是______.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是______m.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m______n(填“>”“<”或“=”号).13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品______件.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是______°.15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了______名学生,统计表中d=______;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是______;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD 的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A 点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”区域的68 108 140 355 560 690 次数m落在“铅笔”区域的0.68 0.72 0.70 0.71 0.70 0.69 频率A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y 与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y 与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n(填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB 到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC 的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD 的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A 点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A 作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE ⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.八年级(下)期中数学试卷一、选择题(每小题2分,共12分)1.下列汽车标志中,不是中心对称图形的是()A.B.C.D.2.“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件3.甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多4.我校学生会成员的年龄如下表:则出现频数最多的年龄是()。
2016-2017学年四川省八年级(下)期中数学试卷一、选择题(每小题只有一个正确答案,共30分)1.化简=()A.﹣7 B.7 C.±7 D.492.下列五个等式中一定成立的有()①;②;③;④a0=1;⑤.A.1个B.2个C.3个D.4个3.下列哪个点在直线y=﹣2x+3上()A.(﹣2,﹣7)B.(﹣1,1)C.(2,1)D.(﹣3,9)4.一次函数y=﹣2015x+2015的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.下列说法正确的是()A.对角线相等的四边形是矩形B.对角互补的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.菱形是轴对称图形,它的对角线就是它的对称轴6.已知正比例函数y=(2m+3)x的图象上两点A(x1,y1)和A(x2,y2),当x1<x2时y1>y2,则m的取值范围是()A.B.C.D.m<07.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为()A.B.C.D.8.正比例函数y=2kx和一次函数的大致草图是()A.B.C.D.9.下列图象中每条直线上的点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.10.如图,矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M、N,若AB=m,BC=n,则PM+PN=()A.B.C.D.二、填空题(每小题3分,共24分)11.=.12.三角形三边之比为,则这个三角形的形状是.13.一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为.14.顺次连接四边形各边中点所得的四边形是.15.若平行四边形的一条边长是10,一条对角线长为8,则它的另一条对角线长x的取值范围是.16.矩形ABCD的两条对角线AC、BD相交于点O,∠AOB=60°,OA=3,则这个矩形的面积为.17.菱形的周长为4a,邻角之比为2:1,则较长的一条对角线长为.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三、解答题(96分,请写出必要的解答步骤和推理过程.)19.(10分)(2015春•广安校级期中)计算(1)(2).20.(10分)(2015春•广安校级期中)先化简再求值(),其中x=+1,y=1﹣.21.(10分)(2015春•高新区期末)如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.22.(10分)(2010•肇庆)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23.(10分)(2015春•广安校级期中)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,BD=6,AC=4,,四边形ABCD是菱形吗?请说出你的理由.24.(10分)(2015春•广安校级期中)已知等腰三角形周长为30.(1)写出底边长y关于腰长x的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.25.(10分)(2010•广安)为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例.要求小麦的种植面积占总面积的60%,下表是三种农作物的亩产量及销售单价的对应表:小麦玉米黄豆亩产量(千克)400 600 220销售单价(元/千克)2 1 2.5(1)设玉米的种值面积为x亩,三种农作物的总售价为y元,写出y与x的函数关系式;(2)在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方案?(3)在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?26.(12分)(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=元;每辆车的改装费b=元,正常营运天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?27.(14分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2016-2017学年四川省八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,共30分)1.化简=()A.﹣7 B.7 C.±7 D.49考点:二次根式的性质与化简.分析:依据进行化简即可.解答:解:=|﹣7|=7.故选:B.点评:本题主要考查的是二次根式的性质,掌握二次根式的性质是解题的关键.2.下列五个等式中一定成立的有()①;②;③;④a0=1;⑤.A.1个B.2个C.3个D.4个考点:二次根式的性质与化简;零指数幂.分析:依据二次根式的性质和零指数幂的性质进行判断即可.解答:解:①的条件是a≥0,故①不一定成立;②,一定成立;③一定成立;④a0=1的条件是a不等于0,故④不一定成立;⑤==,故⑤错误.故选:B.点评:本题主要考查的是二次根式的性质、零指数幂的性质,熟记二次根式的性质、零指数幂的性质是解题的关键.3.下列哪个点在直线y=﹣2x+3上()A.(﹣2,﹣7)B.(﹣1,1)C.(2,1)D.(﹣3,9)考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数图象上点的坐标特征对各选项分别进行判断.解答:解:A、当x=﹣2时,y=﹣2x+3=7,所以A选项错误;B、当x=﹣1时,y=﹣2x+3=6,所以B选项错误;C、当x=2时,y=﹣2x+3=﹣1,所以C选项错误;D、当x=﹣3时,y=﹣2x+3=9,所以D选项正确.故选D.点评:本题考查了一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.4.一次函数y=﹣2015x+2015的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数y=﹣2015x+2015中k=﹣2015,b=2015判断出函数图象经过的象限,进而可得出结论.解答:解:∵一次函数y=﹣2015x+2015中k=﹣2015<0,b=2015>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.5.下列说法正确的是()A.对角线相等的四边形是矩形B.对角互补的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.菱形是轴对称图形,它的对角线就是它的对称轴考点:多边形.分析:根据矩形、菱形的判定定理,即可解答.解答:解:A、对角线相等的平行四边形四边形是矩形,正确;B、对角相等的平行四边形是矩形,故错误;C、对角线互相垂直平分的四边形是菱形,故错误;D、菱形是轴对称图形,它的对角线所在的直线就是它的对称轴,故错误;故选:A.点评:本题考查了矩形、菱形的判定定理,解决本题的关键是熟记矩形、菱形的判定定理.6.已知正比例函数y=(2m+3)x的图象上两点A(x1,y1)和A(x2,y2),当x1<x2时y1>y2,则m的取值范围是()A.B.C.D.m<0考点:一次函数图象上点的坐标特征.分析:由题目所给信息“当x1<x2时y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:2m+3<0.解答:解:∵正比例函数y=(2m+3)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时y1>y2时,∴正比例函数y=(2m+3)x的图象是y随x的增大而减小,∴2m+3<0,解得:m故选A点评:本题考查了一次函数图象上点的坐标特征.准确理解一次函数图象的性质,确定y 随x的变化情况是解题的关键.7.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为()A.B.C.D.考点:待定系数法求一次函数解析式.分析:利用待定系数法把点(2,1)和(﹣1,﹣3)代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,然后即可得到一次函数的解析式.解答:解:设一次函数y=kx+b的图象经过两点(2,1)和(﹣1,﹣3),∴,解得:,∴一次函数解析式为:y=x﹣.故选D.点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.8.正比例函数y=2kx和一次函数的大致草图是()A.B.C.D.考点:一次函数的图象;正比例函数的图象.分析:根据正比例函数图象所在的象限判定k的符号,根据k的符号来判定一次函数图象所经过的象限.解答:解:A、∵正比例函数y=2kx图象经过第一、三象限,则k>0.则一次函数的图象应该经过第一、三、四象限.故本选项错误;B、∵正比例函数y=2kx图象经过第一、三象限,则k>0.则一次函数的图象应该经过第一、三、四象限.故本选项正确;C、∵正比例函数图象经过第二、四象限,则k<0.则一次函数y=kx+k的图象应该经过第一、二、四象限.故本选项错误;D、∵正比例函数图象经过第二、四象限,则k<0.则一次函数y=kx+k的图象应该经过第一、二、四象限.故本选项错误;故选:B.点评:本题考查了一次函数、正比例函数的图象.此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.9.下列图象中每条直线上的点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:首先把二元一次方程x﹣2y=2变形为:y=x﹣1,再求出函数与x、y轴的交点即可选出答案.解答:解:二元一次方程x﹣2y=2变形为:y=x﹣1,当x=0时,y=﹣1,当y=0时,x=2,因此函数y=x﹣1过(0,﹣1)(2,0),故选:C点评:此题主要考查了一次函数与二元一次方程,关键是掌握二元一次方程都可以变形为一次函数.10.如图,矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M、N,若AB=m,BC=n,则PM+PN=()A.B.C.D.考点:矩形的性质.分析:连接OP,由矩形的性质得出OA=OD,∠ABC=90°,由勾股定理求出AC,得出OA,由△OAP的面积+△ODP的面积=矩形ABCD的面积,即可得出结果.解答:解:连接OP,如图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OD=BD,AC=BD,∴OA=OD,AC==,∴OA=OD=,∵△OAP的面积+△ODP的面积=△AOD的面积=矩形ABCD的面积,即OA•PM+OD•PN=OA(PM+PN)=AB•BC=mn,∴PM+PN==,故选:C.点评:本题考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.二、填空题(每小题3分,共24分)11.=﹣8.考点:算术平方根.分析:根据算术平方根解答即可.解答:解:=﹣8,故答案为:﹣8点评:此题主要考查了求一个数的算术平方根,解题时应先找出所要求的这个数是哪一个数的平方.由开平方和平方是互逆运算,用平方的方法求这个数的算术平方根.12.三角形三边之比为,则这个三角形的形状是直角三角形.考点:勾股定理的逆定理.分析:一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形.解答:解:设三边分别为x,7x,5x(x>0),∵x2+(7x)2=(5x)2,∴这个三角形是直角三角形.故答案为:直角三角形.点评:本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.已知三边长,只要验证两小边的平方和等于最长边的平方即可.13.一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为y=﹣2x+4.考点:一次函数图象与几何变换.专题:几何变换.分析:根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.解答:解:一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为y=﹣2x ﹣3+7,即y=﹣2x+4.故答案为y=﹣2x+4.点评:本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b﹣m.14.顺次连接四边形各边中点所得的四边形是平行四边形.考点:平行四边形的判定;三角形中位线定理.分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解答:解:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD∴EH=FG,EH∥FG∴四边形EFGH是平行四边形.故答案为:平行四边形.点评:此题主要考查学生对平行四边形的判定的掌握情况,综合利用了中位线定理.15.若平行四边形的一条边长是10,一条对角线长为8,则它的另一条对角线长x的取值范围是12<x<28.考点:平行四边形的性质;三角形三边关系.分析:由平行四边形的性质得出OA=OC=AC=4,OB=OD=BD,在△BOC中,由三角形的三边关系定理得出OB的取值范围,得出BD的取值范围即可.解答:解:如图所示:∵四边形ABCD是平行四边形,∴OA=OC=AC=4,OB=OD=BD,在△BOC中,BC=10,OC=4,∴OB的取值范围是BC﹣OC<OB<BC+OC,即6<OB<14,∴BD的取值范围是12<BD<28.故答案为:12<x<28.点评:本题考查了平行四边形的性质、三角形的三边关系定理;熟练掌握平行四边形的性质和三角形的三边关系,并能进行推理计算是解决问题的关键.16.矩形ABCD的两条对角线AC、BD相交于点O,∠AOB=60°,OA=3,则这个矩形的面积为9.考点:矩形的性质.分析:由矩形的性质和已知条件得出△AOB是等边三角形,得出AB=OA=3,得出AC,由勾股定理求出BC,由矩形的面积公式即可得出结果.解答:解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∠ABC=90°,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3,∴AC=2OA=6,∴BC===3,∴矩形ABCD的面积=AB•BC=3×3=9.故答案为:9.点评:本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.17.菱形的周长为4a,邻角之比为2:1,则较长的一条对角线长为a.考点:菱形的性质.分析:作出图形,根据菱形的邻角互补求出较小的内角为60°,从而判断出△ABC是等边三角形,再根据等边三角形的性质求出OB,然后根据菱形对角线互相平分可得BD=2OB.解答:解:如图,∵菱形的两邻角之比为2:1,∴较小的内角∠ABC=180°×=60°,∴△ABC是等边三角形,∵菱形的周长为4a,∴AB=BC=CD=AD=a,∴OB=sin60°×a=a,∴较长的对角线BD=2OB=2×a=a.故答案为:a.点评:本题考查了菱形的性质,等边三角形的判定与性质,熟记性质并求出△ABC是等边三角形是解题的关键,作出图形更形象直观.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).考点:二次根式的化简求值.专题:计算题;压轴题;规律型.分析:由S n=1++===,求,得出一般规律.解答:解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.点评:本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三、解答题(96分,请写出必要的解答步骤和推理过程.)19.(10分)(2015春•广安校级期中)计算(1)(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法和除法运算.解答:解:(1)原式=3+2﹣2+=+2;(2)原式=2(2﹣5)+2÷2=2×(﹣3)+1=﹣18+1=﹣17.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)(2015春•广安校级期中)先化简再求值(),其中x=+1,y=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入原式进行计算即可.解答:解:原式==,当x=+1,y=1﹣时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(10分)(2015春•高新区期末)如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.解答:证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.点评:本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.22.(10分)(2010•肇庆)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.考点:矩形的判定;勾股定理;平行四边形的性质.专题:计算题;证明题.分析:(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.解答:(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°﹣120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴BC=(cm).∴四边形ABCD的面积=.点评:此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.23.(10分)(2015春•广安校级期中)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,BD=6,AC=4,,四边形ABCD是菱形吗?请说出你的理由.考点:菱形的判定.分析:由平行四边形的性质得出OB=OD=BD=3,OA=OC=AC=2,由勾股定理的逆定理得出∠BOC=90°,即可得出结论.解答:解:四边形ABCD是菱形;理由如下:∵四边形ABCD是平行四边形,∴OB=OD=BD=3,OA=OC=AC=2,∵OB2+OC2=32+22=13,BC2=()2=13,∴OB2+OC2=BC2,∴∠BOC=90°,∴AC⊥BD,∴平行四边形ABCD是菱形.点评:本题考查了平行四边形的性质、勾股定理的逆定理、菱形的判定方法;熟练掌握平行四边形的性质和勾股定理的逆定理,并能进行推理论证是解决问题的关键.24.(10分)(2015春•广安校级期中)已知等腰三角形周长为30.(1)写出底边长y关于腰长x的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.考点:一次函数的应用.分析:(1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.(2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.(3)利用两点式画出函数图象即可.解答:解:(1)∵等腰三角形的两腰相等,周长为30,∴2x+y=30,∴底边长y与腰长x的函数关系式为:y=﹣2x+30;(2)∵两边之和大于第三边,∴2x>y,∴x>,∵y>0,∴x<15,x的取值范围是:7.5<x<15.(3)画出函数的图象如图所示:点评:本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.25.(10分)(2010•广安)为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例.要求小麦的种植面积占总面积的60%,下表是三种农作物的亩产量及销售单价的对应表:小麦玉米黄豆亩产量(千克)400 600 220销售单价(元/千克)2 1 2.5(1)设玉米的种值面积为x亩,三种农作物的总售价为y元,写出y与x的函数关系式;(2)在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方案?(3)在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?考点:一次函数的应用.专题:方案型;图表型.分析:(1)根据等量关系“总售价=小麦的售价+玉米的售价+黄豆的售价”列出函数关系式;(2)玉米、黄豆同时均按整亩数套种,则x可取0<x<4,得出三种方案;(3)由于函数随x的增大而增大,所以x取3时,总销售价最高.解答:解:(1)∵面积为10亩的一块农田进行“三种三收”套种,设玉米的种植面积为x亩,∵小麦的种植面积占总面积的60%,∴小麦的种植面积为6亩,黄豆的种植面积为(4﹣x)亩;y=400×2×6+600x+220×2.5×(4﹣x)=50x+7000(2)玉米、黄豆同时均按整亩数套种,则x可取0<x<4,得出三种方案:①玉米1亩,黄豆3亩②玉米2亩,黄豆2亩③玉米3亩,黄豆1亩(3)由于函数在0<x<4中随x的增大而增大,所以x取3时,即选第三种方案,总销售价最高;y=50×3+7000=7150(元)点评:本题考查了一次函数与实际结合的问题,通过一次函数解决小麦、玉米、黄豆总售价的最大值以及分配套种情况.26.(12分)(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=90元;每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?考点:一次函数的应用.分析:(1)根据图象得出y0=ax过点(100,9000),得出a的值,再将点(100,9000),代入y1=b+50x,求出b即可,再结合图象得出正常营运100天后从节省的燃料费中收回改装成本;(2)根据题意及图象得出:改装前、后的燃料费燃料费每天分别为90元,50元,进而得出100×(90﹣50)x=400000+100×4000,得出即可.解答:解:(1)∵y0=ax过点(100,9000),得出a=90,将点(100,9000),代入y1=b+50x,b=4000,根据图象得出正常营运100天后从节省的燃料费中收回改装成本.故答案为:a=90;b=4000,100;(2)解法一:依据题意及图象得:改装前、后的燃料费燃料费每天分别为90元,50元,则:100×(90﹣50)x=400000+100×4000,解得:x=200,答:200天后共节省燃料费40万元;解法二:依题意:可得:÷(90﹣50)+100=200(天),答:200天后共节省燃料费40万元.点评:此题主要考查了一次函数的应用,根据已知利用图象上点的坐标得出改装前、后的燃料费燃料费每天分别为90元,50元是解题关键.27.(14分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.解答:解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴AE=BF,故答案为:AE∥BF,AE=BF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.点评:本题考查了平行线的性质和判定,全等三角形的性质和判定,直角三角形的性质的应用,解此题的关键是求出△AEQ≌△BDQ,用了运动观点,难度适中.。
四川省绵阳市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,4),先把△ABC向右平移4个单位得到△A1B1C1 ,再作△A1B1C1关于原点对称图形△A2B2C2 ,则顶点A2的坐标是()A . (2,4)B . ( 2,-4)C . (-2,4)D . (-2,-4)2. (2分)(2017·徐州模拟) 在以下图形中,是中心对称图形的是()A . 等边三角形B . 等腰梯形C . 平行四边形D . 正五边形3. (2分)已知正n边形的一个内角为135°,则边数n的值是()A . 6B . 7C . 8D . 104. (2分) (2019八下·乌兰察布期中) 根据研究弹簧长度与重物重量的实验表格,下列说法错误的是()A . 自变量是重物重量x,因变量是弹簧长度yB . 弹簧原长8cmC . 重物重量每增加1kg,弹簧长度伸长4cmD . 当悬挂重物重量为6kg时,弹簧伸长12cm5. (2分)点P(1,a),Q(-2,b)是一次函数y=kx+1(k<0)图像上两点,则a与b的大小关系是()A . a>bB . a=bC . a<bD . 不能确定6. (2分)下列正比例函数中,y随x的值增大而增大的是()A . y=﹣2014xB . y=(﹣1)xC . y=(﹣π﹣3)xD . y=(1﹣π2)x7. (2分)若正比例函数的图象经过点和点,当时,,则m的取值范围是()A .B .C .D .8. (2分) (2015九上·宁波月考) 已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y 轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P 为顶点的四边形为菱形,则m为()A .B .C .D .9. (2分)(2019·乌鲁木齐模拟) 如图,在矩形中,,点分别在上,则的最小值是()A .B .C .D .10. (2分)下列命题正确的是()A . 一元二次方程一定有两个实数根B . 对于反比例函数,y随x的增大而减小C . 对角线互相平分的四边形是平行四边形D . 矩形的对角线互相垂直平分二、填空题 (共6题;共14分)11. (1分)(2017·徐州模拟) 函数y= 中,自变量x的取值范围是________.12. (5分) (2019七下·宝安期中) 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:(1)甲、乙两地之间的距离为________;(2)两车同时出发后________h相遇;(3)慢车的速度为________千米/小时;快车的速度为________千米/小时;(4)线段CD表示的实际意义是________.13. (2分)一组邻边相等的________是正方形,有一个角是________角的菱形是正方形.14. (4分)有一个角是________的平行四边形是矩形;有________个角是直角的四边形是矩形;对角线________的平行四边形是矩形;对角线________的四边形是矩形.15. (1分) (2016八上·扬州期末) 若正比例函数的图像经过点A(3,y1)和点B(5,y2),且y1>y2 ,则m的取值范围是________.16. (1分) (2017八下·孝义期中) 如图四边形ABCD的对角线互相垂直,且OB=OD,请你添加一个适当的条件________使它成为菱形(只需添加一个)三、解答题 (共14题;共160分)17. (5分)在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.18. (15分) (2017八下·启东期中) 如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.19. (10分) (2017八下·江苏期中) 如图,已知反比例函数的图像与一次函数的图像交于A、B两点,A (1,n),B(,-2).(1)求反比例函数和一次函数的解析式;(2)求 AOB的面积.20. (10分) (2017八下·老河口期末) 如图,在▱ABCD中,∠ADB=90°,点E为AB边的中点,点F为CD 边的中点.(1)求证:四边形DEBF是菱形;(2)若∠A=45°,求证:四边形DEBF是正方形.21. (15分)(2018·铁西模拟) 定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN 为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.22. (15分)(2011·南宁) 南宁市五象新区有长24000m的新建道路要铺上沥青.(1)写出铺路所需时间t(天)与铺路速度v(m/天)的函数关系式.(2)负责铺路的工程公司现有的铺路机每天最多能铺路400m,预计最快多少天可以完成铺路任务?(3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机.现有甲、乙两种机器可供选择,其中每种机器的价格和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成任务.问有哪几种方案?请你通过计算说明选择哪种方案所用资金最少.甲乙价格(万元/台)4525每台日铺路能力(m)503023. (12分) (2018八上·茂名期中) 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶距离y(km)与时间x(h)的函数图象.(1)图中的m=________,a=________km(直接写出结果);(2)求当1.5≤x≤7时,甲车行驶的路程y甲(km)与时间x(h)的函数关系式;(3)当乙车行驶多长时间时,两车恰好相距50km?24. (5分)如图,在正方形ABCD中,M是AD上异于D的点,N是CD的中点,且∠AMB=∠NMB,则AM=2,求AB的长.25. (15分)(2017·江汉模拟) 如图①,在平面直角坐标中,边长为2的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,O为坐标原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N.(1)当A点第一次落在直线y=x上时,求点A所经过的路线长;(2)在旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.26. (11分)(2018·珠海模拟) 如图,在平面直角坐标系中,O为坐标原点,经过原点的直线l与反比例函数(x>0)的图象交于点C,B是直线l上的点,过点B作BA⊥x轴,垂足为点A,且C是OB中点,已知OA=4,BD=3.(1)用含k的代数式来表示D点的坐标为________;(2)求反比例函数的解析式;(3)连接CD,求四边形OADC的面积.27. (10分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG 的面积.28. (10分)(2013·杭州) 如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1 .(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.29. (10分) (2017八下·福清期末) 已知一次函数,回答下列问题:(1)若一次函数的图像过原点,求k的值;(2)无论k取何值,该函数的图像总经过一个定点,请你求出这个定点的坐标。
四川省2016-2017学年八年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算a÷•的结果是( )A.a B.a2C.D.2.点P(﹣4,5)关于x轴对称的点的坐标为( )A.(4,5)B.(﹣4,﹣5)C.(5,﹣4)D.(4,﹣5)3.下列四个点中,在反比例函数y=﹣的图象上的点是( )A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)4.已知+=3,则的值为( )A.B.C.D.5.下面各分式:,,,,其中最简分式有( )个.A.4 B.3 C.2 D.16.若把分式的x、y同时缩小12倍,则分式的值( )A.扩大12倍B.缩小12倍C.不变D.缩小6倍7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=( ) A.B.C.D.﹣8.函数y=k(x﹣1)与y=(k≠0)在同一坐标系中的图象的位置可能是( )A.B.C.D.9.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是( )A.B.C.D.10.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1二、填空题(每小题3分,共18分)11.某种感冒病毒的直径是0.00000034米,用科学记数法表示为__________米.12.将()﹣1,(﹣2)0,(﹣3)2这三个数从小到大的顺序为__________.13.计算:﹣a﹣1=__________.14.函数中自变量x的取值范围是__________.15.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=__________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是__________,点B n的坐标是__________.[来源:学|科|网]三、解答题17.计算(1)()﹣1+|﹣2|﹣(π﹣1)0(2)÷(3)﹣﹣(4)解方程:+3=.18.先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.19.若解关于x的分式方程会产生增根,求m的值.20.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到B地,他又骑自行车从B 地返回A地,往返所用的时间相等,求此人步行的速度.21.已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.22.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.[来源:学科网](1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.23.我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是__________;乙种收费方式的函数关系式是__________;(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.24.我县农村已经实行了农民新型合作医疗保险制度,享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表是医疗费用报销的标准:医疗费用范围门诊住院0~5000元5001~20000元20000元以上每年报销比例标准30% 30%40% 50%(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30 000元,则5000元按30%报销、15 000元按40%报销、余下的10 000元按50%报销,题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2009年门诊看病报销医疗费180元,则他在这一年中门诊医疗自付费用__________元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20 000),按标准报销的金额为y元,试求出y与x的函数关系式;(3)若某农民一年内本人自负住院费17 000元(自负医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费用共多少?四川省2016-2017学年八年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算a÷•的结果是( )A.a B.a2C.D.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,计算即可得到结果.解答:解:原式=a••=.故选D.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.2.点P(﹣4,5)关于x轴对称的点的坐标为( )A.(4,5)B.(﹣4,﹣5)C.(5,﹣4)D.(4,﹣5)考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点P(﹣4,5)关于x轴对称的点的坐标为(﹣4,﹣5).故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.[来源:学科网ZXXK]3.下列四个点中,在反比例函数y=﹣的图象上的点是( )A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数的性质对各选项进行逐一判断即可.解答:解:A、∵2×4=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B、∵(﹣2)×(﹣4)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C、∵﹣2×4=﹣8,∴此点在反比例函数的图象上,故本选项正确;D、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.4.已知+=3,则的值为( )A.B.C.D.考点:分式的化简求值.分析:先将+=3化为a+b=3ab,再将原式化为,然后整体代入求值即可.解答:解:∵+=3,∴=3,∴a+b=3ab,[来源:Z#xx#]∴原式====.故选D.点评:本题考查了分式的化简求值,熟悉因式分解是解题的关键.5.下面各分式:,,,,其中最简分式有( )个.A.4 B.3 C.2 D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:==,不是最简分式;==,不是最简分式;==﹣1,不是最简分式;是最简分式,最简分式有1个;故选D.点评:此题考查了最简分式,判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.6.若把分式的x、y同时缩小12倍,则分式的值( )A.扩大12倍B.缩小12倍C.不变D.缩小6倍考点:分式的基本性质.分析:要把x,y同时缩小12倍,即将x,y用代换,就可以解出此题.解答:解:∵=,∴分式的值不变.故选:C.点评:此题考查的是对分式的性质的理解和运用,扩大或缩小n倍,就将原来的数乘以n或除以n.7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=( ) A.B.C.D.﹣考点:解分式方程.专题:新定义.分析:根据新定义得到﹣=1,然后把方程两边都乘以2(2x﹣1)得到2﹣(2x﹣1)=2(2x﹣1),解得x=,然后进行检验即可.解答:解:∵2⊕(2x﹣1)=1,∴﹣=1,去分母得2﹣(2x﹣1)=2(2x﹣1),解得x=,检验:当x=时,2(2x﹣1)≠0,故分式方程的解为x=.故选:A.点评:本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.也考查了阅读理解能力.8.函数y=k(x﹣1)与y=(k≠0)在同一坐标系中的图象的位置可能是( )A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出k取值,再根据反比例函数的性质判断出k的取值,二者一致的即为正确答案.解答:解:A、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而减小,则k>0.相矛盾,故本选项错误;B、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而增大,则k >0.相一致,故本选项正确;C、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而减小,则k >0.相矛盾,故本选项错误;D、y=k(x﹣1)=kx﹣k,由于一次函数图象是y随x的增大而减小,则k<0,所以﹣k>0,故一次函数图象与y轴交于正半轴,与函数图象不符.故本选项错误;故选:B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是( )A.B.C. D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=.解答:解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣=.故选:B.点评:未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1考点:反比例函数图象上点的坐标特征.分析:判断出各个点所在的象限,根据反比例函数的增减性可得其中两组点的大小关系,进而比较同一象限点的大小关系即可.解答:解:由题意,得点(x1,y1)、(x2,y2)在第二象限,(x3,y3)在第四象限,∴y3最小,∴x1<x2,∴y1<y2,∴y3<y1<y2.故选B.点评:考查反比例函数图象上点的坐标的特点;用到的知识点为:第二象限点的纵坐标总大于第四象限点的纵坐标;在同一象限内,比例系数小于0,y随x的增大而增大.二、填空题(每小题3分,共18分)11.某种感冒病毒的直径是0.00000034米,用科学记数法表示为3.4×10﹣7米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000034=3.4×10﹣7;故答案为3.4×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.将()﹣1,(﹣2)0,(﹣3)2这三个数从小到大的顺序为(﹣2)0<()﹣1<(﹣3)2.考点:实数大小比较;有理数的乘方;零指数幂;负整数指数幂.分析:首先分别求出这三个数的大小,然后根据实数比较大小的方法,把这三个数从小到大的顺序排列起来即可.解答:解:()﹣1=6,(﹣2)0,=1,(﹣3)2=9,因为1<6<9,所以(﹣2)0<()﹣1<(﹣3)2.故答案为:(﹣2)0<()﹣1<(﹣3)2.点评:此题主要考查了实数比较大小的方法,要熟练掌握,解答此题的关键是分别求出这三个数的大小.13.计算:﹣a﹣1=.考点:分式的加减法.专题:计算题.分析:将原式化为﹣(a+1),通分后相加即可.解答:解:原式=﹣==.故答案为.[来源:学科网ZXXK]点评:本题考查了分式的加减法,学会通分是解题的关键.14.函数中自变量x的取值范围是x≥1.考点:函数自变量的取值范围.分析:根据二次根式有意义的条件,被开方数是非负数就可以求得.解答:解:根据二次根式的意义可得:x﹣1≥0,解得:x≥1.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB 即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.[来源:Z§xx§]16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是(7,4),点B n的坐标是(2n﹣1,2n﹣1).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:首先求得直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.解答:解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴B n的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1).点评:此题主要考查了待定系数法求函数解析式和坐标的变化规律,正确得到点的坐标的规律是解题的关键.三、解答题17.计算(1)()﹣1+|﹣2|﹣(π﹣1)0(2)÷(3)﹣﹣(4)解方程:+3=.考点:分式的混合运算;零指数幂;负整数指数幂;解分式方程.专题:计算题.分析:(1)原式利用负指数幂、零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式通分并利用同分母分式的减法法则计算,即可得到结果;(4)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=2+2﹣1=3;(2)原式=•=;(3)原式=﹣﹣=;(4)去分母得:1+3x﹣6=x﹣1,[来源:学,科,网]解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.考点:分式的化简求值.分析:首先将原式能分解因式的分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后根据分式的性质,选出有意义的x的值,即可得到原式的值.解答:解:÷+1=÷+1=×+1=+1=,当x=0或2时,分式无意义,故x只能等于1,原式=.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.19.若解关于x的分式方程会产生增根,求m的值.考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解答:解:方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.点评:增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到B地,他又骑自行车从B 地返回A地,往返所用的时间相等,求此人步行的速度.考点:分式方程的应用.分析:设步行的速度是x千米/小时,骑自行车的速度是(x+8)千米/小时,汽车的速度是(x+8+16)千米/小时,根据往返所用的时间相等,可列方程求解.解答:解:设步行的速度是x千米/小时,+=,x=6,经检验x=6符合题意,答:此人步行的速度6千米/小时.点评:本题考查理解题意的能力,关键是以往返所用的时间相等做为等量关系列方程求解.21.已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.考点:待定系数法求一次函数解析式.专题:计算题;待定系数法.分析:根据一次函数解析式的特点,可得出方程组,得到解析式;再根据解析式求出一次函数的图象与x轴、y轴的交点坐标;然后求出一次函数的图象与两坐标轴所围成的三角形面积.解答:解:(1)根据一次函数解析式的特点,可得出方程组,解得,则得到y=x﹣.(2)根据一次函数的解析式y=x﹣,得到当y=0,x=;当x=0时,y=﹣.所以与x轴的交点坐标(,0),与y轴的交点坐标(0,﹣).(3)在y=x﹣中,令x=0,解得:y=,则函数与y轴的交点是(0,﹣).在y=x﹣中,令y=0,解得:x=.因而此一次函数的图象与两坐标轴所围成的三角形面积是:×=.点评:本题综合考查用待定系数法求解析式以及点的坐标的特点和三角形的面积公式.22.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题;数形结合.分析:(1)先把A(﹣4,2)代入y=求出m=﹣8,从而确定反比例函数的解析式为y=﹣;再把B(n,﹣4)代入y=﹣求出n=2,确定B点坐标为(2,﹣4),然后利用待定系数法确定一次函数的解析式;(2)观察图象得到当﹣4<x<0或x>2 时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.解答:解:(1)把A(﹣4,2)代入y=得m=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣;把B(n,﹣4)代入y=﹣得﹣4n=﹣8,解得n=2,∴B点坐标为(2,﹣4),把A(﹣4,2)、B(2,﹣4)分别代入y=kx+b得,解方程组得,∴一次函数的解析式为y=﹣x﹣2;(2)﹣4<x<0或x>2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考查了待定系数法以及观察函数图象的能力.23.我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是y1=0.1x+6(x≥0);乙种收费方式的函数关系式是y2=0.12x(x≥0);(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.考点:一次函数的应用.分析:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x的取值范围就可以得出选择方式.解答:解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);故答案为:y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得[来源:学+科+网]当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;[来源:Z+xx+]∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.24.我县农村已经实行了农民新型合作医疗保险制度,享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表是医疗费用报销的标准:医疗费用范围门诊住院0~5000元5001~20000元20000元以上每年报销比例标准30% 30%40% 50%(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30 000元,则5000元按30%报销、15 000元按40%报销、余下的10 000元按50%报销,题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2009年门诊看病报销医疗费180元,则他在这一年中门诊医疗自付费用元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20 000),按标准报销的金额为y 元,试求出y与x的函数关系式;(3)若某农民一年内本人自负住院费17 000元(自负医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费用共多少?考点:一元一次不等式的应用;一次函数的应用.专题:图表型.分析:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.解答:解:(1)因为门诊报销标准为30%,当门诊看病报销医疗费180元时,则这一年中门诊医疗自付费用180÷30%=600元;这一年中门诊医疗自付费用为600×70%=420元.(2)设某农民一年中住院的实际医疗费用为x元.由于5001≤x≤20 000,所以5000元按标准30%报销,余下的部分按标准40%报销;因此y=5000×30%+(x﹣5000)×40%=0.4x﹣500(5001≤x≤20 000).(3)假设该农民当年实际医疗费用不超过20 000元,则根据函数y=0.4x﹣500解得按标准报销的金额为7500,又因为自付医疗费=实际医疗费﹣按标准报销的金额=20 000﹣7500=12 500<17 000,所以该农民当年实际医疗费用超过20 000元.设该农民当年实际医疗费用为z元.则17 000=z﹣[5000×30%+15 000×40%+(z﹣20 000)×50%][来源:学科网ZXXK]解得:z=29 000.答:该农民当年实际医疗费用共29 000元.点评:本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.。
绵阳市2016年秋八年级数学期中考试题(时间120分钟总分140分)一、选择题。
(每小题3分,共36分)1.用12根等长的火柴棒拼三角形(全部用上,不可折断、重叠),不可以拼成的是()A.等腰三角形 B.等边三角形 C.直角三角形 D.以上都有可能2.如图,∠1=55°,∠3=108°,则∠2的度数为()A.52°B.53°C.54°D.55°3.如图,已知△ABC中,∠B=50°,若沿图中虚线剪去∠B,则∠1+∠2等于()A.130°B.230°C.270°D.310°4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.两个直角三角形中,如果有一条直角边对应相等.则:①若斜边上的高对应相等.那么这两个直角三角形全等;②若直角的平分线相等,那么这两个直角三角形全等;③若斜边上的中线对应相等,那么这两个直角三角形全等;④两个直角三角形都有一个锐角是30°,那么这两个直角三角形全等.其中正确命题的个数有()A.1个B.2个C.3个D.4个6.如果点O到△ABC三条边的距离都相等,那么点O是()A.三角形三边的中线的交点B.三角形三条角平分线的交点C.三角形三边的高的交点D.三角形三边的垂直平分线的交点7.下列平面图形,是常见的交通标记,其中是轴对称图形的个数有()A.1个B.2个C.3个D.4个8.点P关于x轴的对称点的坐标为(﹣2,3),则点P关于y轴的对称点的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(2,3)D.(3,﹣2)9.如图,△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°10.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°11.如图四边形纸片ABCD,其中∠B=120°,∠D=40°.现将其右下角向内折出△PC′R,恰使C′P∥AB,RC′∥AD,如图所示,则∠C的度数是()A .105°B .100°C .95°D .90°12.如图,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC ,BF ⊥AD ,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD ,③AC +CD=AB ,④BE=CF ,⑤BF=2BE ,其中正确的结论的个数是( )A .4B .3C .2D .1二、填空题。
四川省绵阳市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)方程的根是()A . ,B .C .D . 没有实数根2. (2分)(2018·齐齐哈尔) 我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A . 众数B . 平均数C . 中位数D . 方差3. (2分)下列命题中,正确命题是()A . 两个角是直角的四边形是直角梯形B . 一组对边相等,另一组对边平行的四边形是平行四边形C . 四个角都相等的四边形是正方形D . 对角互补的梯形是等腰梯形4. (2分)(2016·文昌模拟) 分式方程 =2的解是()A . 1B . ﹣1C . 3D . 无解5. (2分)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A . 1B . 3C . 3(m-1)D . (m-2)6. (2分)(2011·无锡) 菱形具有而矩形不一定具有的性质是()A . 对角线互相垂直B . 对角线相等C . 对角线互相平分D . 对角互补7. (2分)甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得:=1,S =1.2,S =5.8,则下列结论中不正确的是()A . 甲、乙的总环数相等B . 甲的成绩稳定C . 甲、乙的众数相同D . 乙的发展潜力更大8. (2分)(2017·乐陵模拟) 若函数,则当函数值y=8时,自变量x的值是()A . ±B . 4C . ± 或4D . 4或﹣9. (2分) (2016八上·扬州期末) 当时,函数的图像大致是()A .B .C .D .10. (2分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A . 5B . 7C . 5或7D . 1011. (2分)(2017·福田模拟) 一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A . x<﹣5B . x>﹣5C . x≥﹣5D . x≤﹣512. (2分) (2017八下·宁城期末) 如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A . 12B . 18C . 24D . 30二、填空题 (共4题;共4分)13. (1分)将直线y=﹣x向上平移3个单位得到的函数解析式是________.14. (1分) (2017八下·黑龙江期末) 若方程x2﹣4x+1=0的两根是x1 , x2 ,则x1(1+x2)+x2的值为________.15. (1分)(2017·南宁) 如图,菱形ABCD的对角线相交于点O,AC=2,BD=2 ,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为________.16. (1分)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .三、解答题 (共6题;共60分)17. (10分) (2017九上·黄岛期末) 解答题。
2016-2017学年四川省绵阳市安州区秀水片八年级(下)期中数学试卷一、选择题(本题共36分,12个小题.在每题所列四个选项中,只有一个符合题意).1.(3分)若有意义,则x的取值范围()A.x>2 B.x≤C.x≠D.x≤22.(3分)下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形3.(3分)下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,154.(3分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC5.(3分)已知二次根式中最简二次根式共有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm7.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是()A.10 B.16 C.20 D.228.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1949.(3分)如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10 B.x≥10 C.x<10 D.x>1010.(3分)如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12 B.18 C.24 D.3011.(3分)矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对12.(3分)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定二、填空题(本题共18分,6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.(3分)在▱ABCD中,∠B=70°,则∠A=,∠D=.14.(3分)三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是.15.(3分)若a=++2,则a=,b=.16.(3分)小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为cm.17.(3分)如图,将一个边长分别为4cm、8cm的矩形纸片ABCD折叠,使C 点与A点重合,则EB的长是.18.(3分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.(6分)先化简,再求值:(﹣)÷,其中x=+1.20.(6分)如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC 为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?21.(6分)如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.22.(6分)已知a、b、c满足(a﹣3)2++|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.23.(6分)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.24.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.25.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.2016-2017学年四川省绵阳市安州区秀水片八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共36分,12个小题.在每题所列四个选项中,只有一个符合题意).1.(3分)若有意义,则x的取值范围()A.x>2 B.x≤C.x≠D.x≤2【解答】解:根据二次根式有意义得:1﹣2x≥0,解得:x≤.故选:B.2.(3分)下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形【解答】解:根据菱形的判定,知对角线互相垂直平分的四边形是菱形,A、B、C错误,D正确.故选:D.3.(3分)下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选:A.4.(3分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.5.(3分)已知二次根式中最简二次根式共有()A.1个 B.2个 C.3个 D.4个【解答】解:==2,可化简;==,可化简;==a,可化简;所以,本题的最简二次根式有两个:,;故选B.6.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.7.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是()A.10 B.16 C.20 D.22【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为16,∴OD+OC=16﹣6=10,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=20,故选:C.8.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选:C.9.(3分)如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10 B.x≥10 C.x<10 D.x>10【解答】解:∵最简根式与是同类二次根式∴3a﹣8=17﹣2a∴a=5使有意义∴4a﹣2x≥0∴20﹣2x≥0∴x≤10故选:A.10.(3分)如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12 B.18 C.24 D.30【解答】解:∵四边形ABCD是菱形,∴O是AC的中点,E为AB中点,∴BC=2EO=6,∴菱形ABCD的周长是6×4=24,故选:C.11.(3分)矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对【解答】解:∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选:B.12.(3分)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.二、填空题(本题共18分,6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.(3分)在▱ABCD中,∠B=70°,则∠A=110°,∠D=70°.【解答】解:由平行四边形的性质得:∠A=180°﹣∠B=110°,∠D=∠B=70°;故答案为:110°,70°.14.(3分)三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是4或.【解答】解:当第三边是直角边时,根据勾股定理,第三边的长==4,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,5,亦能构成三角形;综合以上两种情况,第三边的长应为4或.15.(3分)若a=++2,则a=2,b=1.【解答】解:由题意得,1﹣b≥0,b﹣1≥0,解得,b=1,则a=2,故答案为:2;1.16.(3分)小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为 4.8cm.【解答】解:∵AB2+AC2=62+82=100,BC2=102=100,∴三角形是直角三角形.根据面积法求解:S△ABC=AB•AC=BC•AD(AD为斜边BC上的高),即AD===4.8(cm).故答案为:4.8.17.(3分)如图,将一个边长分别为4cm、8cm的矩形纸片ABCD折叠,使C 点与A点重合,则EB的长是3cm.【解答】解:设BE=x,则CE=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2,解得x=3cm.故答案为:3cm.18.(3分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.【解答】解:12※4===.故答案为:.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.(6分)先化简,再求值:(﹣)÷,其中x=+1.【解答】解:原式=(+)×,=,=x+2,把x=代入原式=.20.(6分)如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC 为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?【解答】解:∵AC=8米,BC=6米,∴AB===10(米),∵12>10,∴这架梯子能到达墙的A处.21.(6分)如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=AB•BC+AC•CD=×3×4+×5×12=36.四边形ABCD22.(6分)已知a、b、c满足(a﹣3)2++|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【解答】解:(1)∵,又∵(a﹣3)2≥0,,|c﹣5|≥0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5;(2)∵32+42=52,∴此△是直角三角形,∴能构成三角形,且它的周长l=3+4+5=12.23.(6分)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.24.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.【解答】解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5=4OC=4×2.5=10,∴C菱形OCED在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.=.∴S菱形OCED25.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.。