2014年秋季新版苏科版八年级数学上学期6.4、用一次函数解决问题教学案1
- 格式:doc
- 大小:316.00 KB
- 文档页数:4
6.4用一次函数解决问题(1)一、学习目标:1.能根据实际问题中变量之间的关系,确定一次函数关系式;2.会利用一次函数的关系式解决简单的实际问题.二、学习重、难点:体会模型思想,感悟从数学的角度发现问题、提出问题、解决问题.三、预习体验:(一)列函数关系式解决实际问题:⑴某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值,那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式为.⑵某市电话的月租费是20元,可打200分钟免费电话,超过200分钟后,超过部分每分钟0.13元.①每月电话费y (元)与通话时间x(分钟)之间的函数关系式为;②月通话50分钟的电话费是;250分钟的电话费;③如果某月的电话费是27.8元,该月通话的时间是.(二)电脑情境展示:预习书P155“玉龙雪山”问题,试一试按下面思路来解决:(1)写出雪线海拔y(m)关于时间x(年)的一次函数关系式(2)问题中的“几年后”是不是(1)中的x?“雪线----消失”就是y= .既问题可转化为:当x= 时,y= 。
试一试完成解答:设计意图:用生活中的事例情境引入,让学生感受到数学在生活中的应用,数学源自于生活,又服务于生活。
四、问题探究:问题探究一(电脑展示):阅读问题1,你能按上面解题思路分析吗?问题1:某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?设计意图:分析实际问题中变量与变量之间的关系,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.方法的归纳与提升:把实际问题抽象成函数模型,即用函数思想来解决实际问题。
你能小结“用函数思想解决实际问题”的一般思路吗?特别要注意哪些?练习:在人才招聘会上,某公司承诺:录用后第1年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元.(1)如果某人在公司连续工作n年,那么他在第n年的月工资是多少?(2)如果某人期望第5年的年收入能超过40000元,那么他是否可以在该公司应聘?设计意图:通过探索分析,让学生进一步明确题中的数量关系,揭示其中内在的规律.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.问题探究二:(电脑展示)2011年世界园艺博览会在西安隆重开园,这次世园会的个人票设置有三种:票的种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍少34张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w (元)与x (张)之间的函数关系式.(3)求当购三种票中夜票最少时的购票总费用。
§6.4 用一次函数解决问题教学目标1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。
能力目标1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
教学重点一次函数图象的应用教学过程一、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
二、讲授新课做一做:小明有100元的零花钱,每月剩余零花钱 y(元)与所用月数x(月)的关系如图所示:(元)(月)(1)观察图象,零花钱可供小明用多少个月?∵x=5时,y=0∴零花钱可用5个月(2)两个月后零花钱为多少? 60元几个月后的零花钱为20元? 4个月(3)图中的点A的坐标是什么?(3,40)是什么含义?3个月时,剩余零花钱40元。
(4)请写出y 与x的函数关系式y=100-20x(0≤x≤5)想一想:O 10203040507080901003456789106021A C B yy=100-20x y=80-10x1、图中的点B 的坐标是什么? 是什么含义 ?(6,20) 6个月时,剩余零花钱20元。
2、图中的点C 的坐标是什么? 是什么含义 ?(2,60)2个月时,两人剩余零花钱都为60元。
练一练:某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示。
o 1001234567891011200300400500600y根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程。
苏科版数学八年级上册教学设计《6-4用一次函数解决问题(1)》一. 教材分析《6-4用一次函数解决问题(1)》是苏科版数学八年级上册的教学内容。
本节课主要让学生掌握一次函数的应用,学会利用一次函数解决实际问题。
教材通过丰富的案例和练习题,帮助学生理解和掌握一次函数在解决问题中的作用。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数和一次函数的基本概念,能够理解函数的图像和性质。
但部分学生在解决实际问题时,还不能很好地将函数知识运用其中。
因此,在教学过程中,需要关注学生的认知差异,引导学生将函数知识与实际问题相结合。
三. 教学目标1.知识与技能:使学生掌握一次函数解决问题的方法,能够运用一次函数解决实际问题。
2.过程与方法:通过案例分析和练习题,培养学生运用函数知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学学习的习惯。
四. 教学重难点1.重点:一次函数在解决问题中的应用。
2.难点:如何将实际问题转化为一次函数问题,并求解。
五. 教学方法1.情境教学法:通过案例分析,引导学生将函数知识应用于实际问题。
2.练习法:通过布置练习题,让学生在实践中掌握一次函数解决问题的方法。
3.讨论法:学生进行小组讨论,分享解题心得,提高学生的合作能力。
六. 教学准备1.教材:苏科版数学八年级上册。
2.案例:选取与生活相关的一次函数应用案例。
3.练习题:设计具有层次性的练习题,巩固所学知识。
4.课件:制作课件,辅助教学。
七. 教学过程1.导入(5分钟)利用生活案例,如购物、出行等问题,引导学生思考如何用一次函数解决问题。
激发学生的学习兴趣,导入新课。
2.呈现(10分钟)展示一次函数的图像,让学生观察一次函数在解决问题中的作用。
通过案例分析,引导学生了解一次函数解决问题的基本方法。
3.操练(10分钟)让学生独立完成练习题,巩固一次函数解决问题的方法。
教师巡回指导,解答学生的疑问。
苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1一. 教材分析《苏科版数学八年级上册6.4《用一次函数解决问题》》这一节主要让学生学会运用一次函数解决实际问题。
通过前面的学习,学生已经掌握了函数的概念、一次函数的定义、图像和性质等知识。
本节内容是在这个基础上,进一步让学生学会如何将实际问题转化为函数问题,从而运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本知识,对一次函数的概念、图像和性质有一定的了解。
但学生对如何将实际问题转化为函数问题,以及如何运用一次函数解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将实际问题与函数知识联系起来,培养学生运用函数解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握一次函数解决实际问题的方法,学会如何将实际问题转化为函数问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.一次函数解决实际问题的方法。
2.如何将实际问题转化为函数问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考,激发学生的学习兴趣;通过案例教学,让学生学会将实际问题转化为函数问题;通过小组合作,培养学生的团队合作精神。
六. 教学准备1.准备相关的实际问题案例。
2.准备一次函数的图像和性质的资料。
3.分组安排,准备小组合作的学习环境。
七. 教学过程1.导入(5分钟)通过提出一个问题:“如何在两个城市之间找到最短的路线?”引发学生的思考。
让学生意识到,解决这个问题需要用到数学知识。
2.呈现(10分钟)呈现一个实际问题案例,如“在一个农场中,如何规划一条道路,使得道路的长度最短?”引导学生将实际问题转化为函数问题。
3.操练(10分钟)让学生分组讨论,如何将实际问题转化为函数问题,并运用一次函数解决实际问题。
课题:用一次函数解决问题一:学习目标(1)从实际问题中,抽象出数学问题;将文字语言与数学语言的互相转化. (2)用一次函数刻画和研究实际问题的一般步骤.二:学习过程(一)问题情境问题1.闻名遐迩的玉龙雪山,位于云南丽江城北15km,由12座山峰组成,主峰海拔5596m,从远处眺望一条黑白分明的雪线蜿蜒山头,由于气候变暖等原因,雪山雪线不断上升,据玉龙雪山环境观测站长期监测得知:2002年雪线海拔约为4450m,以后平均每年约上升10m,假如按此速度推算,从2002年起5年后雪线海拔,雪线退至山顶时海拔,大约要经过年。
若设年数为x,则x年后,雪线海拔高度为y= 。
(二)自学问题2.某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元,每件产品的出厂价为1200元。
(1)分析问题信息:若该工厂每天生产10件产品并全部卖出时,原料成本为元,总成本为收入元,盈利还是亏损?若该工厂每天生产50件产品并全部卖出时,原料成本为元,总成本为元,收入元,盈利还是亏损?(2)找出对应变量:该厂每天产量的变化会引起也随之变化.该厂每天产量的变化会引起也随之变化.(3)写出变量关系:若设该厂每天产量为x件,你能写出哪些函数关系式?(4)解决实际问题:请你根据题目提供的信息,提出一个问题,并解答。
(三) 探究交流问题3.在人才招聘会上,某公司承诺:应聘者被录用后第1年的月工资为2000元,在以后的一段时间内,每年的月工资比上一年的月工资增加 300元.(1)某人在该公司连续工作n 年,写出他第n 年的月工资 y 与n 的函数表达式.(2)他第5年的年收入能否超过40000元?(四) 练习检测1.小华暑假去旅游,导游要大家上山时多带一件衣服,并介绍当地山区海拔每增加100米,气温下降0.6C ,小华在山脚下看了一下随带的温度计,气温为34C ,(1)写出山上温度()y C 与山高x ()m 的函数关系式。
苏科版数学八年级上册《6.4 用一次函数解决问题》教学设计一. 教材分析《6.4 用一次函数解决问题》是苏科版数学八年级上册的一个重要内容。
本节课主要让学生学会如何运用一次函数解决实际问题,培养学生的数学应用能力。
教材通过生动的例题和丰富的练习,引导学生掌握一次函数在实际问题中的应用,感受数学与生活的紧密联系。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对一次函数的概念、性质和图像有一定的了解。
但部分学生对实际问题的建模能力较弱,难以将现实问题转化为一次函数模型。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极参与,提高建模能力。
三. 教学目标1.理解一次函数在实际问题中的应用,提高学生的数学应用意识。
2.培养学生将现实问题转化为一次函数模型的能力。
3.巩固一次函数的性质,提高学生的运算求解能力。
四. 教学重难点1.重点:一次函数在实际问题中的应用。
2.难点:如何将实际问题转化为一次函数模型,并求解。
五. 教学方法1.情境教学法:通过生活实例引入一次函数的应用,激发学生的学习兴趣。
2.引导发现法:教师引导学生发现一次函数在实际问题中的作用,培养学生自主探究的能力。
3.合作交流法:学生在小组内共同解决问题,提高团队协作能力。
六. 教学准备1.课件:制作课件,展示一次函数在实际问题中的应用。
2.练习题:准备一些实际问题,供学生练习。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时优惠券的使用,引入一次函数在实际问题中的应用。
引导学生思考:如何用数学模型表示这个问题?2.呈现(10分钟)展示一次函数模型解决购物优惠问题的过程,让学生理解一次函数在实际问题中的作用。
引导学生发现,实际问题可以转化为一次函数模型,从而求解。
3.操练(10分钟)让学生分组讨论,选取一个实际问题,尝试用一次函数模型解决。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组实际问题,让学生独立解决,巩固一次函数在实际问题中的应用。
6.4 用一次函数解决问题(2)教学目标:1.能根据实际问题中变量之间的关系,确定一次函数的关系式.2.能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题.3.在应用一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.4.通过具体问题的分析,进一步感受“数形结合”的思想方法——从一次函数图像中读信息,发展解决问题的能力,增强应用意识.教学重点:能结合一次函数表达式及其图像解决简单的实际问题.教学难点:能结合一次函数表达式及其图像解决简单的实际问题,体会分类.问题2甲、乙两家公司的月出租汽车收取的月租费分别是y1(元)和y2(元),它们都是用车里程x(千米)的函数,图像如图所示,(1)每月用车里程多少时,甲、乙两公司的租车费相等?(2)每月用车里程多少时,甲公司的租车费比乙公司少?(3)每月用车里程多少时,乙公司的租车费比甲公司少?解决问题的关键:引导学生发现:两条直线上升的速度存在差异,它们有一个交点,设计问题引导学生“读图”.通过这一活动,让学生熟练掌握在解决实际问题中的决策性问题的方法.根据实际情况选择方案,进而理解一次函数与方程及不等式的联系.练习:1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.2.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号).【分析】本题考查了一次函数的应用、坐标系中点的意义,解题的关键是:结合图象与坐标系中点的意义来判断各说法是否成立.本题属于基础题型,只要理解了坐标系中点的意义结合图形即可解决.结合甲、乙的图象位置以及交点(2,4)的意义可以判断①②③结论的成立与否;再由甲图象过(0,2)、(2,4),可知(1,3)在甲的图象上,即买甲家的1件的售价为3元,而不是约为3元,从而得出结论①②③成立.交流某蔬菜基地要把一批新鲜蔬菜运往外地,有两种运输方式可供选择,主要参考数据如下:运输方式速度/(千米/时)途中综合费用/ (元/时)装卸费用/ 元汽车60 270 200火车100 240 410(1)请分别写出汽车、火车运输总费用y1(元)、y2(元)与运输路程x(千米)之间的函数表达式.(2)你认为用哪种运输方式好?解决问题的关键:用表格提供信息是人们常用的方式.由表格中的数据知道,汽车运输的装卸费用低,但途中损耗、管理等综合费用高,运输速度慢,火车运输的装卸费用高,但途中损耗、管理等综合费用低,运输速度快.是否选择火车运输较好?如何决策?这是一个具有挑战性的问题.通过学生的交流活动,使学生明确解决问题的基本思路和方法,是分别计算两种运输方式所需要的费用,然后再对相同的运输里程比较费用的大小.这就需要分别写出汽车、火车运输总费用y1(元)、y2(元)与运输路程x(千米)之间的函数表达式,然后对同一自变量的两个函数值的大小进行比较.问题3:看图说故事.如图,设计一个问题情境,使情境中出现的一对变量满足图示的函数关系.结合图象,说出这对变量的变化过程的实际意义.解决问题的关键:本题是个开放型问题,对于学生的读图要求比较高,既要看懂图像中三段函数的自变量取值还要理解函数值变化的意义,在读懂图像基本信息的基础上再赋予一个贴合实际情况的实际意义(注意实际背景x、y的单位选取).本题由前面问题中实际背景(函数图像)到函数表达式上升到了“函数图像”到“函数表达式”再到“实际背景”中,对于学生是个挑战,让学生充分讨论交流并表达.练习:1.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)卸货时间是多少?(3)求返程中y与x之间的函数表达式;(4)求这辆汽车从甲地出发4h时与甲地的距离?【分析】此题考查一次函数及其图象的应用,获取相关信息是解题的关键.从图象中可获取下面信息:甲乙两地相距120km;从甲地出发,去时用时2h,卸货用时0.5h,返回用时2.5h.故(1)、(2)两个问题容易解决;问题(3)可用待定系数法解答;问题(4)即求x=4时y的值.2.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键.(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,用其减去15即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.总结通过这节课你学到了什么?有什么收获?还有什么疑问?试对所学知识进行反思、归纳和总结.会对知识进行提炼,体会数学的思想和应用,将感性的认识升华为理性的认识.感受数学在生活中的应用,增强应用数学,进行决策的能力意识.。
苏科版数学八年级上册6.4《用一次函数解决问题》说课稿1一. 教材分析《苏科版数学八年级上册6.4《用一次函数解决问题》》这一节的内容,是在学生已经掌握了函数的概念、性质以及一次函数的图像和性质的基础上进行学习的。
本节课的主要内容是让学生学会如何利用一次函数来解决实际问题,培养学生运用数学知识解决实际问题的能力。
教材通过例题和练习题的形式,让学生学会如何将实际问题转化为一次函数问题,从而求解。
二. 学情分析八年级的学生已经掌握了函数的基本知识,对于一次函数的图像和性质也有了一定的了解。
但是,学生对于如何将实际问题转化为数学问题,以及如何运用一次函数来解决问题还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识联系起来,帮助学生建立起用数学知识解决实际问题的思维方式。
三. 说教学目标1.知识与技能目标:让学生掌握用一次函数解决实际问题的方法,会列式计算,能解释实际问题中的数量关系。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生学会如何将实际问题转化为一次函数问题,掌握一次函数在实际问题中的应用。
2.教学难点:如何引导学生将实际问题转化为数学问题,以及如何运用一次函数来解决问题。
五. 说教学方法与手段在教学过程中,我会采用情境教学法、问题教学法和引导发现法。
通过设置情境,提出问题,引导学生自主探究,发现和总结一次函数在实际问题中的运用。
同时,我还会运用多媒体教学手段,如PPT、视频等,来辅助教学,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过一个实际问题,引入本节课的主题——用一次函数解决问题。
2.探究新知:引导学生分析实际问题,将其转化为一次函数问题,然后运用一次函数的知识进行求解。
3.巩固新知:通过练习题,让学生进一步理解和掌握一次函数在实际问题中的应用。
课题:一次函数的应用(1)
学习目标
1.能根据实际问题中变量之间的关系,确定一次函数关系式;
2.能将简单的实际问题转化为数学问题(建一次函数),从而解决实际问题;
3.在应用—次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.
学习难点
利用一次函数的知识解决简单的实际问题.
学习过程
一、课前准备
自主预习:
1.熟记正比例函数与一次函数图象的相关性质。
2.某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值。
那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式为。
3.某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
①写出每月电话费y (元)与通话次数x之间的函数关系式;
②分别求出月通话50次、100次的电话费;
③如果某月的电话费是27.8元,求该月通话的次数。
二、合作研讨
1.知识回顾
已知一次函数y=90x+5,则当x=2时,y= ,当y=365时,x= .
2.情景引入,讲授新知。
请举出一个包含一次函数关系实际问题。
例1、暑假里,参加英语夏令营的同学乘车去上海,从宝应车站出发,经宝应大道上京沪高速,直达上海。
已知从宝应车站至京沪高速这段宝应大道长为5千米,在行车途中小华看了一下汽车的里程表显示已走了225千米;到上海车站的时候小华看了一下时间,车子约在高速上行驶了4小时。
(1)整个过程中,若车子在高速上是匀速行驶的,车速为110千米/时,用x表示在高速上行驶的时间,用y表示行驶的总路程,则y关于x的函数关系式是:;(2)当小华在途中看里程表时,汽车大约已在高速上行驶了多长时间?
(3)你能根据小华所提供的信息得出宝应到上海大约有多少千米吗?
例2、参加英语夏令营的同学参观了一些景点,拍摄了很多照片,用了三卷胶卷。
结束后,冲洗三卷胶卷并根据同学们的需要加印照片。
已知冲洗胶卷的价格是3元/卷,加印100张以内,0.5元/张;加印超过100张可进行优惠,前100张按0.5元/张收费,超过部分按0.4元/张收费。
(1)试写出冲印合计的费用y(元)与加印张数x之间的函数关系式;
(2)如果去的6名同学每人加印10张,则冲印共需多少钱?如果共加印150张,则冲印共需多少钱?(3)英语夏令营活动结束后老师结余99元,那么冲洗胶卷后还可以加印照片多少张?你能画出本题包含的函数图象吗?
例3、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。
已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N 型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。
若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。
(1)求y与x的函数关系式,并求出自变量的取值范围;
(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?
三、当堂反馈
1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点。
用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是 ( )
A B C D
2.一根弹簧的原长为12 cm ,它能挂的重量不能超过15 kg ,并且每挂重1kg 就伸长12
cm 写出挂重后的弹簧长度y (cm )与挂重x (kg )之间的函数关系式是( )
A .y = 12 x + 12(0<x ≤15)
B .y = 12
x + 12(0≤x <15) C .y = 12 x + 12(0≤x ≤15) D .y = 12
x + 12(0<x <15) 3.某市出租车计费标准如下:行程不超过3千米,收费8元;超过3千米部分,按每千米1.60元计算。
求车费y 元和行驶路程x 千米之间的函数关系式,并分别求出当路程为2.5千米和7千米时应付的车费.
4.按照我国税法规定:个人月收入不超过800元,免缴个人所得税.超过800元不超过1 300元部分需缴纳5%的个人所得税.试写出月收入在800元到1 300元之间的人应缴纳的税金y (元)和月收入x (元)之间的函数关系式.
5.扬州火车货运站现有甲、乙两种货物,安排用一列货车将这批货物往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5吨万元,用一节B型货厢的运费是0.8万元。
设运输这批货物的总运费为y(万元),用A型货的节数为x (节),试写出y与x之间的函数关系式.
【选做题】
6.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格(元)的一次函数.(1)根据下表提供的数据,求y与x的函数关系式.当水价为每吨10元时,10吨水生产出的饮料所获的利润是多少?
生产的饮料所获利润(元)
(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t吨,当日所获利润为W 元,求W与t的函数关系式。