高考数学二轮复习资料 专题04 三角函数(学生版)
- 格式:pdf
- 大小:345.28 KB
- 文档页数:11
专题四三角函数与解三角形4.1三角函数的概念、同角三角函数的基本关系和诱导公式基础篇考点三角函数的概念、同角三角函数的基本关系和诱导公式考向一任意角与弧度制1.(2022豫北名校大联考,6)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为() A.10π3 B.2πC.5π3D.5π6答案A2.(2021广西桂林十八中3月模拟,6)在平面直角坐标系中,动点M在单位圆上按逆时针方向做匀速圆周运动,第12分钟末刚好转动一周,若点M则运动到第3分钟末时,动点M所在位置的坐标为()B.−12C.−D.−−答案C3.(2023届四川蓉城名校联盟入学联考,8)折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1),图2为其结构简化图,设扇面A,B间的圆弧长为l,AB间的弦长为d,圆弧所对的圆心角为θ(θ为弧度角),则l、d和θ所满足的恒等关系为()图1图2A.2sin2=B.sin2=C.cos2=D.2cos2=答案A考向二任意角的三角函数1.(2020课标Ⅱ,2,5分)若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0答案D2.(2021陕西榆林一模,3)如图,角α,β的顶点与原点O重合,始边与x轴的非负半轴重合,终边与单位圆O分别交于A,B两点,则O ·O =()A.cos(α-β)B.cos(α+β)C.sin(α-β)D.sin(α+β)答案A3.(2022河南洛阳统考(二),6)已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点P(cos15°+sin15°,cos15°-sin15°),则tanα=()A.2-3B.2+3D.3答案C4.(2022山西吕梁模拟,4)若点M sin2021π3,α的终边上,则cos2α=()A.2B.-2C.12D.−12答案C5.(2023届黑龙江省实验中学月考,13)已知点P(-2,y)是角θ终边上一点,且sinθ则y=.答案-4考向三同角三角函数的基本关系和诱导公式1.(2023届黑龙江牡丹江绥芬河高级中学月考,4)已知tanα=cos2−sin,则sinα=()B.12 D.14答案B2.(2022山西二模,3)若sin10°=a sin100°,则sin20°=()A.2+1 B.−2+1C.22+1D.−22+1答案C3.(2023届西南“三省三校”联考一,7)已知cos−=απ,则cos+() A.-13 B.13答案A4.(2022安徽芜湖3月模拟,6)已知函数f(n)+(n∈N*),则f(1)+f(2)+f(3)+…+f(2 021)=()A.2021B.2021+2C.2022+2D.20222答案B5.(2020浙江,13,6分)已知tanθ=2,则cos2θ=,tan−=.答案-35;13综合篇考法同角三角函数基本关系式的应用1.(2022陕西安康高新中学三模,7)已知tanθ=12,则sin3rsincos3rsinvos2=() A.6 B.16 C.12 D.2答案C2.(2022安徽安庆二模,5)已知cosθ-sinθ=2sin2θ,θ∈π,则sin−()A.-12B.−C.12D.−1答案A3.(2023届黑龙江齐齐哈尔八校联合体期中,6)已知角α满足2sin−=tanπ12cosα,则sin2α+2cos2α的值为() A.45 B.65 C.75 D.85答案B4.(2022兰州、张掖重点中学联考,8)已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(3-1)x+m=0(m∈R)的两根,则sinθ-cosθ的值为()22C.3D.−3答案B5.(2022宁夏长庆高级中学月考一,17)已知函数y=sinθ+cosθ+2sinθcosθ.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的取值范围;(2)求函数y=f(t)的值域.解析(1)因为t=sinθ+cosθ(θ∈R),sin2θ+cos2θ=1,所以2sinθcosθ=t2-1,故f(t)=t2+t-1,t=sinθ+cosθ=2sin+[-2,2],故t的取值范围为[-2,2].(2)由(1)知y=f(t)=t2+t-1=2−54(t∈[-2,2]),由二次函数的性质可知,y=f(t)的最小值为f−=−54,又f(-2)=1-2,f(2)=1+2,所以y=f(t)的值域为−54,1+2.。
专题04 特殊角的三角函数值重难点专练(学生版)第I卷(选择题)一、单选题1.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.112-⎛⎫⎪⎝⎭﹣22=﹣2D.1cos602⎛⎫-⎪⎝⎭=1第II卷(非选择题)二、填空题2.如图,在△ABC中,AD是BC边上的中线,△ADC=60°,BC=3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么CEBE的值为_____.3.如图,有一菱形纸片ABCD,△A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos△EFB的值为____.4.Rt△ABC中,已知△C=90°,△B=50°,点D在边BC上,BD=2CD(如图).把△ABC 绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=______.5.如图,在半径为2的△O 中,弦AB 与弦CD 相交于点M ,如果AB =CD =,△AMC =120°,那么OM 的长为_____.6.如图,已知在△ABC 中,△C =90°,△B =30°,AC =2,点D 是边BC 的中点,点E 是边AB 上一点,将△BDE 沿直线DE 翻折,点B 落在B '处,联结AB ',如果△AB 'D =90°,那么线段AE 的长为_____.7.已知在等腰梯形ABCD 中,AD △BC ,AB AD CD ==,AC AB ⊥,那么cotB =______.8.如图,已知在ABC 中,4AB AC ==,30BAC ∠=︒,将ABC 绕点A 顺时针旋转,使点B 落在点1B 处,点C 落在点1C 处,且1BB AC ⊥.联结1B C 和1C C ,那么11B C C △的面积等于______.9.求值:cos30sin 45tan 60︒︒︒⋅⋅=______.10.Rt△ABC 中,△C=90°,AC :BC=1AB=6,则△B=_____.三、解答题11.已知:如图:在△ABC 中,△B =90°,△A =30°,BC =5cm ,等腰Rt △DEF 中,△FDE =90︒,DE =3cm 。
专题1 三角函数与平面向量三角函数与平面向量是高考的一个重点;三角函数高考题 型大致事分为:三角函数的单调性、三角函数图象、同角变换与诱导 公式、求三角函数的值与化简,与周期性和对性有关的问题;解三角形问题。
向量作为一项工具将广泛应用,特别是与解析几何、函数、三角、立体几何的有机结合,向量与平面几何结合的选择题 、填空题是高考的一个亮点。
第一课时 三角变换学习目标:掌握同角三角函数的基本关系、诱导公式、二倍角公式,会利用概念进行求值与化简。
考题领路:1.已知:tan 3α=,则2cos()3sin()4cos()sin(2)παπααπα--+=-+-____________( )2. 已知cos()sin 6παα-+=则7sin()6πα+的值为:( ) (A)15 (B)15- (C)135 (D) 135-3.(2008某某)若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54典例探索:【例1】已知1tan 2θ=-,则222sin 3sin cos 5cos θθθθ--的值是。
A .1B .125-C .-1或1D .1、解析:2、变式:πα1已知tan(+)=42. (1) 求tan α的值; (2) 求2sin 2cos 1cos 2ααα-+的值。
【例2】已知α为第二象限角,且cos sin222αα+=-,求sincos22αα-和sin 2cos2αα+的值。
1、解析:2、变式:(2008某某)已知3cos()(,)41024x x πππ-=∈. (1) 求sin x 的值; (2) 求sin(2)3x π+的值。
整合提升1、三角函数的求值一般有三种类型:①“给角求值”,②“给值求值”,③“给值求角”,因此在求值过程中,要依据条件与求的式子中角、名、结构形式的差异找到化简、求值的突破口。
高考数学二轮复习专题四 三角函数【重点知识回顾】三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。
第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。
当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。
总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力 方法技巧:1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。
诱导公式用角度制和弧度制表示都成立,记忆方法可概括为“奇变偶不变,符号看象限”,变与不变是相对于对偶关系的函数而言的2.三角函数值的符号在求角的三角函数值和三角恒等变换中,显得十分重要,根据三角函数的,可简记为“一全正,二正弦,三两切,四余弦”,其含义是:在第一象限各三角函数值皆为正;在第二象限正弦值为正;在第三象限正余切值为正;在第四象限余弦值为正3.在利用同角三角函数的基本关系式化简、求值和证明恒等关系时,要注意用是否“同角”来区分和选用公式,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简、求值时,要注意正负号的选取4.求三角函数值域的常用方法:求三角函数值域除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下方法:(1)将所给三角函数转化为二次函数,通过配方法求值域; (2)利用sin ,cos x x 的有界性求值域;(3)换元法,利用换元法求三角函数的值域,要注意前后的等价性,不能只注意换元,不注意等价性5. 三角函数的图象与性质(一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况;⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈ 注意加了绝对值后的情况变化.⑷写单调区间注意0ω>.(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式.⑴“五点法”作图的列表方式;⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. (三)正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 【典型例题】例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ;(2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化例2.已知向量2(2cos sin )(sin cos )(3)a ααb ααx a t b =-=+-,2,=,,,y ka b =-+,且0x y ⋅=,(1)求函数()k f t =的表达式;(2)若[13]t ∈-,,求()f t 的最大值与最小值 解:(1)24a =,21b =,0a b ⋅=,又0x y ⋅=,所以22222[(3)]()(3)[(3)]0x y a t b ka b ka t b t k t a b ⋅=+-⋅-+=-+-+--⋅=,所以31344k t t =-,即313()44k f t t t ==-; (2)由(1)可得,令()f t 导数233044t -=,解得1t =±,列表如下:而(1)(1)(3)222f f f -==-=,,,所以max min ()()22f t f t ==-, 说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。
高三数学第二轮三角函数专题复习资料【基础自测】1.已知21cos cos ,31sin sin =--=-βαβα,求)cos(βα-的值. 2.已知1312)4sin(,53)sin(),,43(,=--=+∈πββαππβα,求)4cos(πα+的值. 3.求000098tan 22tan 98tan 22tan 3--⋅ 的值. 4.已知,0cos 2sin =+αα求下列各式的值 (1)αααα22cos 5cos sin 3sin 2-- (2)ααααcos sin cos sin -+5.已知函数R x x x x x y ∈++=,cos 3cos sin 2sin 22 (1) 求函数的单调递增区间(2)该函数的图像可由)(sin R x x y ∈=的图像经过怎样的平移和伸缩变换得到? 考点一:三角函数的概念例1.若角α的终边经过点),2,1(-P 则tan 2α的值为 . 考点二:同角三角函数的关系例2.若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21- (D )2- 例3.α是第四象限角,5tan 12α=-,则sin α=( )A .15B .15-C .513D .513-考点三: 诱导公式 例4.若==+θθπ2cos ,53)2sin(则 .例5.计算00000015sin 8sin 7cos 15cos 8sin 7sin -+例6.计算)10tan 31(50sin 00+ 考点四:三角函数的图象和性质例7.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<例8.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )例9.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 例10.已知⎪⎭⎫⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x .(Ⅰ)求x sin 的值;(Ⅱ)求⎪⎭⎫ ⎝⎛+32sin πx 的值. 例11.已知函数2π()sinsin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.例12.已知函数()tan(2),4f x x π=+,(Ⅰ)求()f x 的定义域与最小正周期;(Ⅱ)设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小. 考点五:三角恒等变换例13.已知函数x x x x f cos sin sin 3)(2+-=(I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 例14.已知向量a =(cos 23x ,sin 23x ),b =(2sin 2cos x x ,-),且x ∈[0,2π].(1)求ba + (2)设函数b a x f +=)(+b a⋅,求函数)(x f 的最值及相应的x 的值。
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。
高三数学第二轮三角函数复习资料 一、三角函数的概念及运算【基础自测】1.设θ为第二象限的角,则必有(A )。
(A )tg2θ>c tg 2θ (B )tg 2θ<c tg 2θ (C )sin 2θ>cos 2θ (D )cos 2θ>sin 2θ2.设角α是第二象限的角,且2cos 2cos α-=α,试问2α是第 三 象限的角3.在半径为2米的圆中,120°的圆心角所对的弧长为34π米. 4.角α的终边上有一点P (a , a ),a ∈R ,且a ≠0, 则sin α的值是(C )。
(A )22 (B )-22 (C )+22或-22(D )1 5.【07江西】.若tan()34πα-=,则cot α等于( A )A .2-B .12-C .12 D .2 6【07江苏】.若1cos()5αβ+=,3cos()5αβ-=,则=βαtan tan __21___7.若sin x =5m 3m +-,cos x =5m m 24+-, 则m 的值是( C )。
(A )0 (B )8 (C )0或8 (D )3<m <98.化简︒-1180sin 12的结果是(B )。
(A )cos100° (B )cos80° (C )sin80° (D )cos20° 9.若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =( A ) A .97-B .31-C .31D .97 10、已知sin α是方程5x 2-7x -6=0的根,则)(ctg )2)(cos 2cos()2(tg )23sin()23sin(2α-πα+πα-πα-πα-ππ-α-的值 是 43±。
【题例分析】例1.化简:(1) sin(-107︒1)·sin ︒99+sin(-︒171)·sin(-︒261)-ctg ︒1089·ctg(-︒630); (2)︒+︒+︒︒⋅⋅︒⋅︒89sin 2sin 1sin 89tg 2tg 1tg 222 ; (3) α-α++α+α-sin 1sin 1sin 1sin 1.解:(1) 原式=sin ︒9sin ︒81-sin ︒9sin ︒81+ctg ︒9ctg ︒270=0;(2) ∵ tg1°tg2°·……·tg89°=1, sin 21°+sin 22°+……+sin 289°=44+21=289, ∴ 原式=892.(3)α-α++α+α-sin 1sin 1sin 1sin 1=|cos |sin 1|cos |sin 1αα++αα-=|cos |2α 例2.已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值; (Ⅱ)求xx xx x x cot tan 2cos 2cos 2sin 22sin 322++-的值.思路分析:将sin x -cos x =51平方,求出sin x cos x 的值,进而求出(sin x -cos x )2,然后由角的范围确定sin x -cos x 的符号.解法:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π故 .57cos sin -=-x x (Ⅱ)x x x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-125108)512()2512()sin cos 2(cos sin -=-⨯-=--=x x x x点评:本小题主要考查三角函数的基本公式、三角恒等变换、三角函数在各象限符号等基本知识,以及推理和运算能力. 例3.已知11tan(),tan ,27αββ+==-且,(0,),αβπ∈求2αβ-的值. 解:4tan 2(),3αβ-=[]tan(2)tan 2() 1.αβαββ-=-+=由1tan 7β=->知5.6πβπ<<由1tan tan[()]3ααββ=-+=<知0.6πα<<32(,).2.24ππαβπαβ∴-∈--∴-=-如果要求解的角是由一些表达式给出的,则一是考虑所求解的角与已知条件中的角的关系,尽量将所求解的角用已知条件中的角表示出来;二是考虑求该角的某个三角函数值,具体哪个三角公式,一般可由条件中的函数去确定,一般已知正切函数值,选正切函数.已知正、余弦函数值时,选正、余弦函数。
高三数学第二轮专题复习资料学生自学讲义(三角函数)课时安排 共2课时 第一课时 课前练习1. 若函数f (x )=)(21sin 2R x x ∈-,则f (x )是( A ) A. 最小正周期为π的偶函数 B. 最小正周期为π的奇函数 C. 最小正周期为2π的偶函数 D. 最小正周期为21π的奇函数 2 已知函数f (x )=sin (3x πϖ+) (ϖ>0 )的最小正周期为π,则该函数的图像( A )A. 关于点(0,3π)对称 B. 关于直线4π=x 对称C. 关于点(0,4π)对称 D. 关于直线3π=x 对称3. 若22)4sin(2cos -=-παα,则cos α+sin α的值为( C ) A. —27 B. —21 C. 21D. 27 4. 已知47cos()sin 3,()656ππααα-+=+则sin 的值是 ( C )A. 23B. 23C. 45-D. 455、在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2—b 2)tan B 3ac ,则角B 的值为( D )A. 6π B.3πC.6π或56πD.3π或23π例题举例例1. 已知2π<β<α<4π3,cos (α—β)=1312,sin (α+β)=—53,求sin 2α的值.解法一:∵2π<β<α<4π3,∴0<α—β<4π.π<α+β<4π3,∴sin (α—β)=.54)βα(sin 1)βαcos(,135)βα(cos 122-=+--=+=--∴sin 2α=sin [(α—β)+(α+β)]=sin (α—β)cos (α+β)+cos (α—β)sin (α+β).6556)53(1312)54(135-=-⨯+-⨯= 解法二:∵sin (α—β)=135,cos (α+β)=—54,∴sin 2α+sin 2β=2sin (α+β)cos (α—β)=—6572sin 2α—sin 2β=2cos (α+β)sin (α—β)=—6540 ∴sin 2α=6556)65406572(21-=--例2. 已知tan (α—β)=21,tan β=—71, 且α,β ∈()π,0,求2α—β的值。
高考数学二轮复习资料专题四 三角函数(学生版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin2x+cos2x=1,.3.能画出y=sinx, y=cosx, y=tanx的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2]上的性质(如单调性,最大值和最小值以及与x轴的交点等),理解正切函数在区间(-,)内的单调性.4.了解函数的物理意义;能画出的图象,了解对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.(6)构造辅助角(以特殊角为主):.3.函数的问题:(1)“五点法”画图:分别令、、、、,求出五个特殊点;(2)给出的部分图象,求函数表达式时,比较难求的是,一般从“五点法”中取靠近轴较近的已知点代入突破;(3)求对称轴方程:令,求对称中心: 令;(4)求单调区间:分别令;,同时注意A、符号.4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式;(2)判断三角形形状时,注意边角之间的互化.【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值的问题.⑶考查已知三角恒等式的值求角的三角函数值的基本转化方法,考查三角恒等变形及求角的基本知识.例1.已知函数f(x)= .(Ⅰ)求f(x)的定义域;(Ⅱ)若角a在第一象限且练习1: (2011年高考福建卷文科9)若∈(0,),且,则的值等于( ) A. B. C. D.考点2 考查的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题.例2.(2011年高考天津卷文科7)已知函数其中若的最小正周期为,且当时, 取得最大值,则( )A. 在区间上是增函数B. 在区间上是增函数C. 在区间上是减函数D. 在区间上是减函数练习2.(2011年高考江苏卷9)函数是常数,的部分图象如图所示,则考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件.例3.(2009年高考江苏卷第15题)设向量(1)若与垂直,求的值;(2)求的最大值;(3)若,求证:∥.练习3.(天津市十二区县重点中学2011年高三联考二理)(本小题满分13分)已知向量, .(I)若,求值;(II)在中,角的对边分别是,且满足,求函数的取值范围.考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.例4. (2011年高考安徽卷文科16)在ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.练习4.(2011年高考山东卷文科17)在ABC中,内角A,B,C的对边分别为a,b,c.已知.(I)求的值;(II)若cosB=,【易错专区】1. (2011年高考山东卷理科3)若点(a,9)在函数的图象上,则tan=的值为( )(A)0 (B) (C) 1 (D)2. (2011年高考山东卷理科6)若函数 (ω>0)在区间上单调递增,在区间上单调递减,则ω=( )(A)3 (B)2 (C) (D)3.(2011年高考安徽卷理科9)已知函数,其中为实数,若对恒成立,且,则的单调递增区间是( )(A) (B)(C) (D)4.(2011年高考辽宁卷理科4)△ABC的三个内角A、B、C所对的边分别为a,b,c,asin AsinB+bcos2A=则()(A) (B) (C) (D)5.(2011年高考辽宁卷理科7)设sin,则()(A) (B) (C) (D)6.(2011年高考浙江卷理科6)若,,,,则()(A) (B) (C) (D)7. (2011年高考全国新课标卷理科5)已知角的顶点与原点重合,始边与横轴的正半轴重合,终边在直线上,则,()A B C D8. (2011年高考全国新课标卷理科11)设函数的最小正周期为,且,则()(A)在单调递减 (B)在单调递减(C)在单调递增 (D)在单调递增9. (2011年高考天津卷理科6)如图,在△中,是边上的点,且,则的值为()A. B. C. D.10.(2011年高考湖北卷理科3)已知函数,若,则的取值范围为( )A. B.C. D.11.(2011年高考陕西卷理科6)函数在内( )(A)没有零点 (B)有且仅有一个零点(C)有且仅有两一个零点(D)有无穷个零点12.(2011年高考重庆卷理科6)若的内角所对的边满足,且,则的值为( )(A) (B)(C)1 (D)13. (2011年高考四川卷理科6)在ABC中..则A的取值范围是( )(A)(0,] (B)[,) (c)(0,] (D) [,)14.(2011年高考辽宁卷理科16)已知函数f(x)=Atan(x+)(>0,),y=f(x)的部分图像如下图,则f()=____________.15.(2011年高考安徽卷理科14)已知 的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为_______________16.(2011年高考全国新课标卷理科16)在中,,则的最大值为 。
17.(2011年高考浙江卷理科18)(本题满分14分)在中,角所对的边分别为a,b,c已知且.(Ⅰ)当时,求的值;(Ⅱ)若角为锐角,求p的取值范围;18. (2011年高考天津卷理科15)(本小题满分13分)已知函数,(Ⅰ)求的定义域与最小正周期;(Ⅱ)设,若求的大小.19. (2011年高考江西卷理科17)(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1-sin (1)求sinC的值(2)若 a2+b2=4(a+b)-8,求边c的值20. (2011年高考湖南卷理科17) (本小题满分12分)在中,角所对的边分别为,且满足.求角的大小;求的最大值,并求取得最大值时角的大小.【高考冲策演练】一、选择题:1.(2010年高考全国卷I理科2)记,那么( )A.B. - C.D. -2.(2010年高考湖北卷理科3)在△ABC中,a=15,b=10, ∠A=,则( )A. B. C. D.3.(2010年高考福建卷理科1)的值等于()A. B. C. D.4.(2010年高考安徽卷理科9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是( )A、 B、 C、 D、和(D)7. (2010年全国高考宁夏卷9)若,是第三象限的角,则( )(A) (B) (C) 2 (D) -28.(2010年高考陕西卷理科3)对于函数,下列选项中正确的是()(A)f(x)在(,)上是递增的(B)的图像关于原点对称(C)的最小正周期为2 (D)的最大值为29.(2010年高考全国2卷理数7)为了得到函数的图像,只需把函数的图像( )(A)向左平移个长度单位(B)向右平移个长度单位(C)向左平移个长度单位(D)向右平移个长度单位10.(2010年高考上海市理科15)“”是“”成立的( )(A)充分不必要条件. (B)必要不充分条件.(C)充分条件. (D)既不充分也不必要条件.11. (2010年高考重庆市理科6)已知函数的部分图象如题(6)图所示,则( )(A) (B)(C) (D)12.(2009年高考广东卷A文科第9题)函数是( )A.最小正周期为的奇函数 B. 最小正周期为的偶函数C. 最小正周期为的奇函数D. 最小正周期为的偶函数二.填空题:13.(2011年高考安徽卷江苏7)已知则的值为__________14.(2011年高考北京卷理科9)在中。
若b=5,,tanA=2,则sinA=____________;a=_______________。
15.(2011年高考福建卷理科14)如图,△ABC中,AB=AC=2,BC=,点D在BC边上,∠ADC=45°,则AD的长度等于______。
16.(2011年高考上海卷理科6)在相距2千米的.两点处测量目标,若,则、两点之间的距离是千米。
三.解答题:17.(2011年高考重庆卷理科16)设满足,求函数 在上的最大值和最小值18.(2011年高考北京卷理科15)已知函数。
(Ⅰ)求的最小正周期:(Ⅱ)求在区间上的最大值和最小值。
19.(2011年高考福建卷理科16)已知等比数列{a n}的公比q=3,前3项和S3=。
(I)求数列{a n}的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。
20.(2010年高考山东卷理科17)已知函数,其图象过点(,).(Ⅰ)求的值;(Ⅱ)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.21.(2010年高考福建卷理科19)。
,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。
假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。