河北省石家庄市2018届高三下学期4月一模考试数学(文)试题
- 格式:doc
- 大小:1.38 MB
- 文档页数:20
河北省石家庄市2018届高三数学下学期4月一模考试试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.已知i 为虚数单位,(1)2i x yi +=+,其中,x y R ∈,则x yi +=( ) A. B.2 D .43.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .234.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=( ) A .1 B .2 C .3 D .45. x ,y 满足约束条件:11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .-3B .32C .3D .4 6.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥ 7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .83π+B .84π+C .85π+D .86π+ 9.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A .2[1,]3- B .1[1,]3- C .[1,1]- D .1[,1]310.在ABC ∆中,2AB =,6C π=,则AC 的最大值为( )A B . C ..11.过抛物线214y x =焦点F 的直线交抛物线于A ,B 两点,点C 在直线1y =-上,若ABC ∆为正三角形,则其边长为( )A .11B .12C .13D .14 12.设xOy ,''x Oy 为两个平面直角坐标系,它们具有相同的原点,Ox 正方向到'Ox 正方向的角度为θ,那么对于任意的点M ,在xOy 下的坐标为(,)x y ,那么它在''x Oy 坐标系下的坐标(',')x y 可以表示为:'cos sin x x y θθ=+,'cos sin y y x θθ=-.根据以上知识求得椭圆223'''5'10x y y -+-=的离心率为( )AD二、填空题:本大题共4小题,每题5分,共20分.13.命题p :01x ∃≥,200230x x --<的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .16.已知函数31()1x x f x x -+=-,ln ()xg x x =,若函数(())y f g x a =+有三个不同的零点1x ,2x ,3x (其中123x x x <<),则1232()()()g x g x g x ++的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列{}n a 的前n 项和为n S ,且满足122()n n S m m R +=+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足211(21)log ()n n n b n a a +=+⋅,求数列{}n b 的前n 项和n T .18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值; (Ⅱ)若BC SD ⊥,求二面角A SB C --的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在2(1)2(,]1010n n-(1,2,3,4,5)n =时,日平均派送量为502n +单. 若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且离心率为2,M为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:21(12)11m e x x e--≤+-.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.[选修4-5:不等式选讲]已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫- ⎪-⎝⎭三、解答题 17解:(1) 法一:由122()n n S m m R +=+∈得122()n n S m m R -=+∈,当当2n ≥时,12222nn n n a S S -=-=,即12(2)n n a n -=≥,又1122ma S ==+,当2m =-时符合上式,所以通项公式为12n n a -=. 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=. (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+,12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形, 又CD AB 2=,所以M 为AB 的中点. 因为AB AM λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中,因为SA SD =,所以AE DE ==,又由题知45EDA ∠=, 所以AE ED ⊥所以1AE ED SE ===, 以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面SAB 的法向量1(,,)n x y z =,则110n S A n A B ⎧⋅=⎪⎨⋅=⎪⎩,所以020x z y -=⎧⎨=⎩,令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量,12121210cos ,5||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角, 所以二面角A SB C --余弦值为5-.19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y , 乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y , (2)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:所以X 甲的分布列为:所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲,()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44S ⨯-⨯-⨯-⨯-⨯-甲,所以X 乙的分布列为:所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙,()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64S ⨯-⨯-⨯-⨯-乙,②答案一:由以上的计算可知,虽然()()E XE X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩, 解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF 的斜率不存在时,设(1,2A -,则(1,)2B --,直线2AF的方程为1)y x =-代入2212x y +=,可得25270x x --= 275x ∴=,210y =-7(,510D -∴直线BD的斜率为1(10276(1)5k ---==--,直线OA的斜率为2k =121()626k k ∴⋅=⋅-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则220022y x =-,代入上述方程可得2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---, ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+,直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-=⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h ,易得,()1()11h x x e ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =-即()()()1()1111xF x x e x e ⎛⎫=+---+⎪⎝⎭,()1()2x F x x e e '=+-,当2x ≤-时,()11()20x F x x e e e'=+-<-< 当2x >-时,设()1()()2x G x F x x e e'==+-, ()()30x G x x e '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>, 所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则111mex e'=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤, 设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =, 令()()()()()11xT x f x t x x e x =-=+--,()()22x T x x e '=+-,当2x ≤-时,()()2220x T x x e '=+-<-<, 当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>, 所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,0)0()(=≥T x T , 22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥, 又11x x '≤,2121(12)1111me m e x x x x m e e -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22(1)由题意可知直线l 的直角坐标方程为2y =+,曲线C 是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为22((1)4x y -+-=,所以曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6πS MON =∆.当12πθ=时, 32+≤∆MON S ,所以△MON面积的最大值为223. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=, 222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.答案一、选择题 (A 卷答案)1-5AABDC 6-10CCDBD 11-12 BA (B 卷答案)1-5BBADC 6-10CCDAD 11-12 AB 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫-⎪-⎝⎭三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分) 17解:(1)法一:由122()n n S m m R +=+∈得122()n n S m m R -=+∈………………2分当当2n ≥时,12222nn n n a S S -=-=,即12(2)n n a n -=≥………………4分又1122ma S ==+,当2m =-时符合上式,所以通项公式为12n n a -=………………6分 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩ ………………2分从而有2213322,4a S S a S S =-==-= ………………4分 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=………………6分 (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-…………………8分1111()(21)(21)22121n b n n n n ∴==-+--+………………………10分12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++……………12分18(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC // (2)分因为DC AB //,所以四边形BCDM 为平行四边形,又, CD AB 2=,所以M 为AB 的中点。
石家庄市达标名校2018年高考四月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且60A =︒,3b =,AD 为BC 边上的中线,若72AD =,则ABC 的面积为( ) A .253B .153C .154D .3532.函数()()()22214f x xxx =--的图象可能是( )A .B .C .D .3.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i4.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 和2C 的离心率之积为32,则2C 的渐近线方程为( ) A .20x y =B 20x y ±=C .20x y ±=D .20x y ±=5.已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( ) A .(,1)-∞B .(,1]-∞C .(1,)+∞D .[1,)+∞6.已知椭圆22y a +22x b =1(a>b>0)与直线1y a x b -=交于A ,B 两点,焦点F(0,-c),其中c 为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( ) A .5-12B .3-12C .314D .5147.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( ) A .24πB .86πC .33πD .12π8.221a b +=是sin cos 1a b θθ+≤恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直10.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .411.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数f (x )=sin 2x+sin 2(x 3π+),则f (x )的最小值为( )A .12B .14C D 二、填空题:本题共4小题,每小题5分,共20分。
石家庄市2018届高中毕业班模拟考试(二)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)ABCD2.)AD3.)A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.)5.)ABCD6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()AD7.)ABCD8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()ABCD9.纵坐标不变,)ABCD10.则()ABCD11.限内的点,则椭圆的离心率为()ABCD12.数) )AB第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13..14..15..16.棱锥外接球的表面积为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(1(218.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了10010人表示对冰球运动没有兴趣额.(1有兴趣没兴趣合计男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:0.150 0.100 0.050 0.025 0.0102.072 2.7063.841 5.024 6.63519.如图,在,底(1(2体积.20.(1(221.(1(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标,曲线方程为,直参数方程(1(2.23.选修4-5:不等式选讲.(1(2石家庄市2018届高中毕业班模拟考试(二)文科数学答案 一、选择题11、12二、填空题三、解答题17.解:(1)(2)ABCS=22a b =+所以,(b c +18.解:(1)根据已知数据得到如下列联表90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A、B 、C )10种情况,其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m)(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种, 所以至少2人对冰球有兴趣的情况有7种,19.CD ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,ABCD ,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PCD,∴PB⊥平面PCD.∵PAB,∴平面PAB⊥平面PCD. (Ⅱ)取BC的中点O,连接OP、OE.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PBC,∴PO⊥平面ABCD,∵ABCD,∴PO⊥AE.∵∠PEA=90O, ∴PE⊥AE. ∵PO∩PE=P,∴AE⊥平面POE,∴AE⊥OE.∵∠C=∠D=90O, ∴∠OEC=∠EAD,Rt EDA∆2AD =,20.解:(1(HF PH PF+(II11121(x xx-+法2:过点A,BAB 的中点,因为EMABS=21.解:(2.所以.22解:(1.(2,23.解:(1(2。
河北省石家庄市2018届高三模拟考试(二)文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2|log (2)A x y x ==-,{}|33,B x x x R =-<<∈,则A B = ( )A .(2,3)B .[2,3)C .(3,)+∞D .(2,)+∞2.若复数z 满足(1)2z i i -=,其中i 为虚数单位,则共轭复数z =( ) A .1i + B .1i - C .1i --D .1i -+3.已知命题p :13x <<,q :31x>,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数2sin ()1xf x x =+的部分图像可能是( )5.已知双曲线22221x y a b -=(0a >,0b >)与椭圆221124x y +=有共同焦点,且双曲线的一条渐近线方程为y ,则该双曲线的方程为( )A .221412x y -=B .221124x y -=C .22162x y -=D .22126x y -=6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是( )A.2 B.4 C.12- D.14-7.执行如图所示的程序框图,则输出的S值为()A.4849B.5051C.4951D.49508.如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.83B.23C.43D.29.将函数()2sin f x x =图象上各点的横坐标缩短到原来的12,纵坐标不变,然后向左平移6π个单位长度,得到()y g x =图象,若关于x 的方程()g x a =在,44ππ⎡⎤-⎢⎥⎣⎦上有两个不相等的实根,则实数a的取值范围是( ) A .[]2,2-B .[2,2)-C .[1,2)D .[1,2)-10.若函数()f x ,()g x 分别是定义在R 上的偶函数,奇函数,且满足()2()xf xg x e +=,则( )A .(2)(3)(1)f f g -<-<-B .(1)(3)(2)g f f -<-<-C .(2)(1)(3)f g f -<-<-D .(1)(2)(3)g f f -<-<-11.已知1F ,2F 分别为椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ⊥,且1||||PF PQ =,则椭圆的离心率为( )A.2-BC1 D12.定义在(0,)+∞上的函数()f x 满足'()ln ()0xf x x f x +>(其中'()f x 为()f x 的导函数),若10a b >>>,则下列各式成立的是( )A .()()1f a f b ab >> B .()()1f a f b a b <<C .()()1f a f b a b << D .()()1f a f b a b >>第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角是3π,||1a = ,1||2b =,则向量2a b - 与a 的夹角为 . 14.设等差数列{}n a 的前n 项和为n S ,若66a =,1515S =,则公差d = .15.设变量x ,y 满足约束条件4,326,1,x y x y y +≤⎧⎪-≥⎨⎪≥-⎩则22(1)x y -+的取值范围是 .16.三棱锥P ABC -中,PA ,PB ,PC 两两成60︒,且1PA =,2PB PC ==,则该三棱锥外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=. (1)求角A 的大小;(2)若a =ABC ∆的面积为,求b c +的值.18.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”? 有兴趣 没兴趣 合计 男 55 女 合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率. 附表:20()P K k ≥0.150 0.100 0.050 0.025 0.0100k2.072 2.7063.841 5.024 6.63522()()()()()n ad bc K a b c d a c b d -=++++19.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PBC ⊥平面ABCD ,PB PD ⊥.(1)证明:平面PAB ⊥平面PCD ;(2)若PB PC =,E 为棱CD 的中点,90PEA ∠=︒,2BC =,求四面体A PED -的体积.20.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=.(1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MA B ∆的面积为'l 的方程.21.已知函数()x xf x e =.(1)求函数()f x 的单调区间;(2)记函数()y f x =的极值点为0x x =,若12()()f x f x =,且12x x <,求证:0122x x x e +>请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2,x t y =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C .(1)写出曲线2C 的参数方程;(2)设点(P -,直线l 与曲线2C 的两个交点分别为A ,B ,求11||||PA PB +的值.23.选修4-5:不等式选讲已知函数()|31||31|f x x x =++-,M 为不等式()6f x <的解集. (1)求集合M ;(2)若a ,b M ∈,求证:|1|||ab a b +>+.参考答案一、选择题1-5:ACAAD 6-10:CBBCD 11、12:DD 二、填空题13.3π 14.52- 15.9,1713⎡⎤⎢⎥⎣⎦ 16.112π 三、解答题17.解:(1)由已知及正弦定理得:sin cos sin sin sin A B B A C +=,sin sin()sin cos cos sin C A B A B A B =+=+ sin in cos sin Bs A A B ∴=,sin 0sin cos B A A≠∴= (0,)4A A ππ∈∴=(2) 11sin 2242ABC S bc A bc ===∴=-又22222cos 2()(2a b c bc A b c bc =+-∴=+- 所以,2()4, 2.b c b c +=+=.18.解:(1)根据已知数据得到如下列联表根据列联表中的数据,得到所以有90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A 、B 、C )10种情况,其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种, 所以至少2人对冰球有兴趣的情况有7种,因此,所求事件的概率710p =.19.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,CD ⊂平面ABCD , ∴CD ⊥平面PBC ,∴CD ⊥PB.∵PB ⊥PD ,CD ∩PD=D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD. ∵PB ⊂平面PAB ,∴平面PAB ⊥平面PCD. (Ⅱ)取BC 的中点O ,连接OP 、OE. ∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==,∵PB PC =,∴PO BC ⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD,∴PO ⊥AE.∵∠PEA=90O, ∴PE ⊥AE. ∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE. ∵∠C=∠D=90O, ∴∠OEC=∠EAD,∴Rt OCE Rt EDA ∆∆ ,∴OC CEED AD =. ∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅1121323=⨯⨯=.20.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=-- 1(,)2PF x y =-- ,(,2)PH PF x y +=--,PCB ADO()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=,设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x k x x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=, 22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-=+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±,∴直线l '的方程为102x y +-=或102x y -+=.法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩直线'l 的方程为012y x x =+,过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x - 点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+. 21.解:(1)'21()()x x x xe xe xf x e e --==,令'()0f x =,则1x =, 当(,1)x ∈-∞时,'()0f x >,当(1,)x ∈+∞时,'()0f x <,则函数()f x 的增区间为(,1)-∞,减区间为(1,)+∞.(2)由可得()()10x f x x -'=-=e ,所以()y f x =的极值点为01x =. 于是,0122x x x +>e 等价于122x x +>e ,由()()12f x f x =得1212x x x x --=e e 且1201x x <<<.由1212x x x x --=ee 整理得,1122ln ln x x x x -=-,即1212ln ln x x x x -=-.等价于()()()1212122ln ln x x x x x x +-<-e ,① 令12x t x =,则01t <<.式①整理得()()21ln 1t t t +<-e ,其中01t <<.设()()()21ln 1g t t t t =+--e ,01t <<. 只需证明当01t <<时,()max 0g t <.又()12ln 2g t t t '=++-e ,设()h t =()12ln 2g t t t '=++-e ,则()222121t h t t t t -'=-=当10,2t 骣÷çÎ÷ç÷ç桫时,()0h t '<,()h t 在10,2骣÷ç÷ç÷ç桫上单调递减;当1,12t 骣÷çÎ÷çç÷桫时,()0h t '>,()h t 在1,12骣÷ç÷çç÷桫上单调递增.所以,()min 142ln 202g t g ⎛⎫''==--< ⎪⎝⎭e ;注意到,()222212ln 220g e e e e e ---'=++-=-->e ,()130g '=->e ,所以,存在12110,,,122t t ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120g t g t ⅱ==, 注意到,10g ⎛⎫'= ⎪⎝⎭e ,而110,e 2骣÷çÎ÷çç÷桫,所以11t e =. 于是,由()0g t ¢>可得10e t <<或21t t <<;由()0g t ¢<可得21e t t <<. ()g t 在()210,,,1t ⎛⎫ ⎪⎝⎭e 上单调递增,在21,t ⎛⎫⎪⎝⎭e 上单调递减.于是,()(){}max 1max ,1g t g g ⎛⎫= ⎪⎝⎭e ,注意到,()10g =,1220g ⎛⎫=--< ⎪⎝⎭e e e ,所以,()max 0g t <,也即()()21ln 1t t t +<-e ,其中01t <<. 于是,122x x x +>e .22解:(1)若将曲线1C 上的点的纵坐标变为原来的23,则曲线2C 的直角坐标方程为222()43x y +=, 整理得22149x y +=,∴曲线2C 的参数方程2cos ,3sin x y θθ=⎧⎨=⎩(θ为参数). (2)将直线l的参数方程化为标准形式为''122x t y ⎧=--⎪⎪⎨⎪=⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t ''--+=整理得27()183604t t ''++=.12727PA PB t t ''+=+=,121447PA PB t t ''==, 72111727PA PB PA PB PA PB++===.23.解:(1)()31316f x x x =++-< 当13x <-时,()31316f x x x x =---+=-,由66x -<解得1x >-,113x ∴-<<-; 当1133x -≤≤时,()31312f x x x =+-+=,26<恒成立,1133x ∴-≤≤; 当13x >时,()31316f x x x x =++-=由66x <解得1x <,113x ∴<<综上,()6f x <的解集{}11M x x =-<<(2)()()222222121(2)ab a b a b ab a b ab +-+=++-++22221a b a b =--+22(1)(1)a b =--由,a b M∈得1,1a b<<2210,10a b∴-<-<22(1)(1)0a b∴--> 1ab a b∴+>+.。
全优试卷石家庄市 2018 届高中毕业班模拟考试(一)文科数学(A 卷)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选 项中,只有一项是符合题目要求的.1. 已知集合,,则()A.B.【答案】A【解析】C.D.故选 A. 2. 复数()A. B.C.D.【答案】C【解析】.故选 C.3. 已知四个命题:①如果向量与 共线,则 或;② 是 的必要不充分条件;全优试卷③命题 :,的否定 :,;④“指数函数 是增函数,而是指数函数,所以是增函数”此三段论大前提错误,但推理形式是正确的.以上命题正确的个数为( )A. 0 B. 1 C. 2 D. 3【答案】D【解析】①错,如果向量与 共线,则;② 是 的必要不充分条件;正确,由 可以得到 ,但由 不能得到,如;③命题 :,的否定 :,;正确④“指数函数 是增函数,而是指数函数,所以是增函数”此三段论大前提错误,但推理形式是正确的.,正确. 故选 D.4. 若数列 满足 ,,则 的值为( )A. 2 B. -3 C.D.【答案】B【解析】,,所以全优试卷故数列 是以 4 为周期的周期数列,故故选 B.5. 函数,其值域为 ,在区间 上随机取一个数 ,则 的概率是( )A. B. C. D.【答案】B【解析】函数的值域为,即则在区间 故选 B.上随机取一个数的概率, .6. 程序框图如图所示,该程序运行的结果为 ,则判断框中可填写的关于的条件是( )A.B.C.D.【答案】C【解析】第一次运行,第二次运行,第三次运行,第四次运行,全优试卷第五次运行, 此时,输出 25,故选 C 7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以 小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形 田面积为( ) A. 84 平方里 B. 108 平方里 C. 126 平方里 D. 254 平方里 【答案】A【解析】根据题意,,代入计算可得故选 A.8. 如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表 面积为( )A.B.C.D.【答案】B 【解析】由三视图可知,该几何体为一个半圆柱中间挖去了一个半球,半圆柱的高为 4,底面 半径为 1,半球的半径为 1 ,故其体积为全优试卷故选 B.9. 设 是定义在 ()上的偶函数,且在上为增函数,则的解集为A.B.C.【答案】B【解析】由题, 是定义在D. 上的偶函数,则由函数为增函数,在 上为减函数,故故选 B.10. 抛物线 :的焦点为 ,其准线与 轴交于点 ,点 在抛物线 上,当的面积为( )A. 1 B. 2 C.D. 4【答案】B时,【解析】过作垂足为 ,则∴∴的高等于 ,设则的面积又由,三角形∴的面积 2为等腰直角三角形,故选 B.所以,11. 在中,, ,则A.B.C.D.【答案】D【解析】有正弦定理可得,的最大值为( )全优试卷故当 时, 故选 D.的最大值为 .12. 已知 , 分别为双曲线的左焦点和右焦点,过 的直线与双曲线的右支交于 , 两点, 线的斜率为( )的内切圆半径为 ,A. 1 B.C. 2 D.【答案】D的内切圆半径为 ,若,则直全优试卷故选 D.二、填空题:本大题共 4 小题,每题 5 分,共 20 分.13. 设向量,,若 ,则 __________.【答案】【解析】即答案为 . 14. , 满足约束条件:,则的最大值为__________.【答案】3全优试卷【解析】画出可行域如图所示,由图可知当目标函数经过点取到最大值。
河北省石家庄市2018届高三数学下学期4月一模考试试题 文一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.复数121ii-=+( ) A .i B .i - C .132i -- D .332i- 3.已知四个命题:①如果向量a 与b 共线,则a b = 或a b =-;②3x ≤是3x ≤的必要不充分条件;③命题p :0(0,2)x ∃∈,200230x x --<的否定p ⌝:(0,2)x ∀∈,2230x x --≥;④“指数函数xy a =是增函数,而1()2xy =是指数函数,所以1()2xy =是增函数”此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( )A .0B .1C .2D .3 4.若数列{}n a 满足12a =,111nn na a a ++=-,则2018a 的值为( ) A .2 B .-3 C .12-D .135.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .236. 程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥ 7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .84平方里B .108平方里C .126平方里D .254平方里 8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .23π B .43π C .2π D .83π9.设()f x 是定义在[2,3]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(3)f x f -≥的解集为( )A .[3,3]-B .[2,4]-C .[1,5]-D .[0,6] 10.抛物线C :214y x =的焦点为F ,其准线l 与y 轴交于点A ,点M 在抛物线C 上,当MA MF=AMF ∆的面积为( )A .1B .2 C..4 11.在ABC ∆中,2AB =,6C π=,则AC +的最大值为( )A...12.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为( )A .1 B.2 D.二、填空题:本大题共4小题,每题5分,共20分.13.设向量(1,2)a m = ,(1,1)b m =+,若a b ⊥ ,则m = .14.x ,y 满足约束条件:11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩,则2z x y =+的最大值为 .15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知{}n a 是公差不为零的等差数列,满足37a =,且2a 、4a 、9a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足1n n n b a a +=⋅,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值;(Ⅱ)若BC SD ⊥,求点B 到平面SAD 的距离.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这100天中甲、乙两种方案的日薪X 平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且离心率为2,M 为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()x f x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若0m ≤,证明:2()f x mx x ≥+.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.选修4-5:不等式选讲已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.答案一、选择题1-5: ACDBB 6-10: CABBB 11、12:DD 二、填空题 13. 13-14. 3 15. 乙16. 三、解答题17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,所以数列{}n a 的通项公式32n a n =-. (2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+, 12111111111......(1)34473231n n S b b b n n =+++=-+-++--+11(1)33131n n n =-=++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中,因为SA SD =,所以AE DE ===,又由题知45EDA ∠=, 所以AE ED ⊥,由已知求得AD =,所以1AE ED SE ===,连接BD ,则111133S ABD V -=⨯⨯=三棱锥,又求得SAD 的面积为2,所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD 19.解:(1)甲方案中派送员日薪y (单位:元)与送货单数n 的函数关系式为:N ,100∈+=n n y ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y ,(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则1=15220+15430+15620+15820+16010100x ⨯⨯⨯⨯⨯甲()=155.4, ()()()()()2222221=[20152155.4+30154155.4+20156155.4+20158155.4+10010160155.4]=6.44S ⨯-⨯-⨯-⨯-⨯-甲,乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则1=14050+15220+17620+20010100x ⨯⨯⨯⨯乙()=155.6, ()()()()222221=[50140155.6+20152155.6+20176155.6+10200155.6]100=404.64S ⨯-⨯-⨯-⨯-乙,②、答案一:由以上的计算可知,虽然x x <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日薪收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,x x <乙甲,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF的斜率不存在时,设(A -,则(1,B -, 直线2AF的方程为(1)4y x =--代入2212x y +=,可得25270x x --=,275x ∴=,210y =-7(,)510D -,∴直线BD的斜率为1(10276(1)5k -==--,直线OA的斜率为22k =-,121(626k k ∴⋅=-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x ,设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=, 又220012x y +=,则220022y x =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---,∴直线BD 的斜率为00000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e⎛⎫-=-+-= ⎪⎝⎭,又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11xf x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+,令()()()11xg x x e x =+--,()()22x g x x e '=+-,当2x ≤-时,()()2220x g x x e '=+-<-<, 当2x >-时,设()()()22x h x g x x e '==+-, ()()30x h x x e '=+>,故函数()g x '在()2,-+∞上单调递增,又(0)0g '=,所以当(),0x ∈-∞时,()0g x '<,当()0,x ∈+∞时,()0g x '>,所以函数()g x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 故()()2()(0)011xg x g x e x mx x ≥=⇒+-≥≥+故2()f x mx x ≥+.法二:(Ⅱ)由(Ⅰ)可知()()()11xf x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+, 令()()()11xg x x e x =+--,()()22x g x x e '=+-,令当时,,单调递减,且; 当时,,单调递增;且,所以在上当单调递减,在上单调递增,且,故()()2()(0)011xg x g x e x mx x ≥=⇒+-≥≥+,故2()f x mx x ≥+. 选作题22(1)由题意可知直线l 的直角坐标方程为2y +,曲线C 是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为22((1)4x y +-=,所以曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>),6πS MON =∆,,当12πθ=时, 32+≤∆MO N S , 所以△MON面积的最大值为223. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=, 222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.答案一、选择题 (A 卷答案)1-5 ACDBB 6-10CABBB 11-12 DD (B 卷答案)1-5 BCDAA 6-10CBAAA 11-12 DD 二、填空题13. 13-14. 3 15. 乙16. 三、解答题(解答题仅提供一种解答,其他解答请参照此评分标准酌情给分)17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,……………2分即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,……………4分 所以数列{}n a 的通项公式32n a n =-,………………………………6分 (2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+,…………………………8分 12111111111......(1)34473231n n S b b b n n =+++=-+-++--+…………………10分11(1)33131n n n =-=++.………………………12分. 18.(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点。
河北省石家庄市2018届高中毕业班第一次模拟考试文科数学试题(时间120分钟,满分150分)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如 需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,共60分)—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的.A.第一象限B.第二象限C.第三象跟D.第四象限2. 若集合}822|{2≤<∈=+x Z x A ,}02|{2>-∈=x x R x B ,则)(B C A R 所含的元素个数为A. OB. 1C. 2D. 33. 某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1、2、…、60,选取的这6名学生的编号可能是A. 1,2,3,4,5,6B. 6,16,26,36,46,56C. 1,2,4,8,16,32D. 3,9,13 ,27,36,544 已知双曲线的一个焦点与抛物线x 2=20y 的焦点重合,且其渐近线的方程为3x ±4y=0,则 该双曲线的标准方程为5.设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:①l//m,m⊂a,则l//a ② l//a,m//a 则 l//m③a丄β,l⊂a,则l丄β④l丄a,m丄a,则l//m其中正确的命题的个数是A. 1B. 2C. 3D. 46. 执行右面的程序框图,输出的S值为A. 1B. 9C. 17D. 207. 已知等比数列{a n},且a4+a8=-2,则a6(a2+2a6+a10)的值为A. 4B. 6C. 8D. -98. 现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4,次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为A. 0.85B. 0.8 C, 0.75 D. 0.7是使得z=ax-y取得最大值的最优解,则实数a的取值范围为11. 已知正三棱锥P-ABC的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为A 4π B, 12π12. [x]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x ∈R),g(x)=log 4(x-1),则函数h(x)=f(x)-g(x)的零点个数是 A. 1 B. 2C. 3D. 4 第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作 答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分a13.已知向量 a =(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v ,则实数x 的值是______15. 已知点P(x,y)在直线x+2y=3上移动,当2x +4y 取得最小值时’过点P 引圆三、解答题:本大题共6小通,共70分.解答应写出文字说明,证明过程或演算步職‘17. (本小题满分12分)(I)求角A 的大小;18. (本小题满分12分)如图,在四棱锥P-ABCD 中,PA 丄平面ABCD ,ABC ∠=ADC ∠=90°BAD ∠=1200,AD=AB=1,AC 交 BD 于 O 点.(I)求证:平面PBD 丄平面PAC;(II )求三棱锥D-ABP 和三棱锥P-PCD 的体积之比.19. (本小题满分12分)为了调查某大学学生在周日上网的时间,随机对1OO 名男生和100名女生进行了不记 名的问卷调查.得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(I)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(II)完成下面的2x2列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?表3 :20. (本小題满分12分)的直线l交椭圆于A,B两点.(I)若ΔABF2为正三角形,求椭圆的离心率;21(本小题满分12分)已知函数f(x)=e x+ax-1(e为自然对数的底数).(I)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(II)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.请考生在22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-l:几何证明选讲如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆 O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆 O于点E、F,点M在EF 上,且BMF BAD ∠=∠:(I)求证:PA ·PB=PM ·PQ (II)求证:BOD BMD ∠=∠23. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系.x0y 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为: θθρcos sin 2=(I)求曲线l 的直角坐标方程;的值24. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (I)当a=1时,解不等式f(x)>3;(II)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围2018年高中毕业班第一次模拟考试(数学文科答案)一、选择题 A 卷答案1-5 DCBCA 6-10 CACAB 11-12 DB B 卷答案1-5 DBCBA 6-10 BABAC 11-12 DC 二、填空题13.12 14.363515. 16 .3724二 解答题17.解:(Ⅰ)法一:由B a A b c cos cos )2(=-及正弦定理得: B A A B C cos sin cos )sin sin 2(=-……………2分 则B A A B A C cos sin cos sin cos sin 2+=sin()B A =+,sin()sin A B C A B C π++=∴+=C A C sin cos sin 2=由于sin 0C ≠,所以,22cos =A ……………… 4分又0A π<<,故4π=A . …………………… 6分或解:(Ⅰ)由B a A b c cos cos )2(=-及余弦定理得:ac b c a abc a c b b c 22)2(222222-+=-+- ……………………… 2分整理得:bc a c b 2222=-+222cos 222=-+=bc a c b A …………………… 4分又0A π<<,故4π=A . ……………………… 6分(Ⅱ) ABC ∆的面积S =1sin 2bc A=1,故bc =22 ① ………………… 8分根据余弦定理 2222cos a b c bc A =+- 和a可得22c b +=6…… ② ………………… 10分 解①②得2b c =⎧⎪⎨=⎪⎩2b c ⎧=⎪⎨=⎪⎩. …………………… 12分18.解:证明:(Ⅰ)90ABC ADC ∠=∠=,,AD AB =AC为公共边,Rt ABC Rt ADC ∴∆≅∆ ,………………… 2分则BO=DO,又在ABD ∆中,AB AD =,所以ABD ∆为等腰三角形.AC BD ∴⊥ ,…………………… 4分而⊥PA 面ABCD ,BD PA ⊥, 又⊥∴=BD A AC PA , 面PAC ,又⊂BD 面PBD ,∴平面⊥PAC 平面PBD .…………………… 6分 (Ⅱ) 在R t ABC ∆中,1AB =,60BAC ∠=,则BC =,01sin1202ABD S AB AD ∆=⋅1112=⨯⨯,……………………8分01sin 602BCD S BC CD ∆=⋅12=,…………………10分PA B DCO113=133ABD D ABP P ABDABD B PCD P BCDBCD BCD S PAV V S V V S S PA ∆--∆--∆∆⋅===⋅ . …………………12分19.解:(Ⅰ)设估计上网时间不少于60分钟的人数x ,依据题意有30750100x =,…………………4分解得:225x = ,所以估计其中上网时间不少于60分钟的人数是225人.………………… 6分 (Ⅱ)根据题目所给数据得到如下列联表:…………… 8分其中22200(60304070)200 2.198 2.7061001001307091K⨯-⨯==≈<⨯⨯⨯………………10分因此,没有90%的把握认为“学生周日上网时间与性别有关”.…………………12分 20. 解:(Ⅰ)由椭圆的定义知12122AF AF BF BF a +=+=,ABC ∴∆周长为4a , 因为2ABF ∆为正三角形,所以22AF BF =,11AF BF =,12F F 为边AB 上的高线,…………………………2分02cos3043ca ∴=,∴椭圆的离心率c e a ==.………………… 4分(Ⅱ)设11(,)A x y ,22(,)B x y因为0e <<,1c =,所以a >…………6分①当直线AB x 与轴垂直时,22211y a b +=,422b y a =,4121221b OA OB x x y y a ⋅=+=-, 42231a a a -+-=22235()24a a --+, 因为2532+>a ,所以0OA OB ⋅<, AOB ∴∠为钝角.………………………8分②当直线AB 不与x 轴垂直时,设直线AB 的方程为:(1)y k x =+,代入22221x y a b +=,整理得:2222222222()20b a k x k a x a k a b +++-=, 22122222a k x x b a k -+=+,222212222a k a b x x b a k -=+ 1212OA OB x x y y ⋅=+212121212(1)(1)x x y y x x k x x +=+++ 2221212(1)()x x k k x x k =++++22222242222222()(1)2()a k ab k a k k b a k b a k -+-++=+ 2222222222()k a b a b a b b a k +--=+24222222(31)k a a a b b a k -+--=+………………10分令42()31m a a a =-+-, 由 ①可知 ()0m a <, AOB ∴∠恒为钝角.………………12分21.解:(Ⅰ)当1a =时,e ()1xf x x =+-,(1)e f =,e ()1x f x '=+,e (1)1f '=+,函数()f x 在点(1,(1))f 处的切线方程为e (e 1)(1)y x -=+- 即(e 1)1y x =+- ……………… 2分 设切线与x 、y 轴的交点分别为A ,B . 令0x =得1y =-,令0y =得1e 1x =+,∴1(,0)e 1A +,(0,1)B -11112e 12(e 1)S =⨯⨯=++△OAB .在点(1,(1))f 处的切线与坐标轴围成的图形的面积为12(e 1)+ …………………4分(Ⅱ)由2()f x x ≥得2e 1xx a x +-≥, 令2e e 11()x xx h x x x x x +-==+-, 222e e (1)(1)(1)1()1x x x x x h x x x x --+-'=--=令e ()1xk x x =+-,…………………… 6分 e ()1x k x '=-,∵(0,1)x ∈,∴e ()10x k x '=-<,()k x 在(0,1)x ∈为减函数∴()(0)0k x k <= ,……………………8分又∵10x -<,20x > ∴2e (1)(1)()0x x x h x x -+-'=>∴()h x 在(0,1)x ∈为增函数,…………………………10分e ()(1)2h x h <=-,因此只需2e a -≥. …………………………………12分22.证明:(Ⅰ)∵∠BAD =∠BMF ,所以A,Q,M,B 四点共圆,……………3分所以PA PB PM PQ ⋅=⋅.………………5分(Ⅱ)∵PA PB PC PD ⋅=⋅ ,∴PC PD PM PQ ⋅=⋅ ,又 CPQ MPD ∠=∠ , 所以~CPQ MPD ∆∆,……………7分 ∴PMD PCQ ∠=∠ ,则DCB FMD ∠=∠,………………8分 ∵BAD BCD ∠=∠,∴2BMD BMF DMF BAD ∠=∠+∠=∠,2BOD BAD ∠=∠,所以BMD BOD ∠=∠.…………………10分23.解:(Ⅰ)依题意22sin cos ρθρθ=………………3分 得:x y =2 ∴曲线1C 直角坐标方程为:x y =2.…………………5分(Ⅱ)把⎪⎪⎩⎪⎪⎨⎧=-=t y t x 22222代入x y =2整理得:0422=-+t t ………………7分0>∆总成立,221-=+t t ,421-=t t23)4(4)2(221=-⨯--=-=t t AB ………………10分另解:(Ⅱ)直线l 的直角坐标方程为x y -=2,把x y -=2代入x y =2得: 0452=+-x x ………………7分0>∆总成立,521=+x x ,421=x x23)445(212212=⨯-=-+=x x k AB …………………10分24. 解:(Ⅰ)⎩⎨⎧>-+-≥32222x x x 解得37>x ⎩⎨⎧>-+-<<322221x x x 解得φ∈x ⎩⎨⎧>-+-≤32221x x x 解得13x <…………………3分 不等式的解集为17(,)(,)33-∞+∞………………5分(Ⅱ)时,2>a ⎪⎩⎪⎨⎧≥--<<-+-≤++-=a x a x ax a x x a x x f ,2232,222,223)(;时,2=a 36,2()36,2x x f x x x -+≤⎧=⎨->⎩;时,2<a ⎪⎩⎪⎨⎧≥--<<+-≤++-=2,2232,22,223)(x a x x a a x a x a x x f ;∴)(x f 的最小值为)()2(a f f 或;………………8分 则⎩⎨⎧≥≥1)2(1)(f a f ,解得1≤a 或3≥a .………………10分。
2018届石家庄市高中毕业班第一次模拟考试试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合M={x|x2﹣2x﹣3≤0},N={y|y=3x2+1},则M∩(∁U N)=()A.{x|﹣1≤x<1}B.{x|﹣1≤x≤1}C.{x|1≤x≤3}D.{x|1<x≤3}2.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.﹣C.D.43.设实数x,y满足不等式组,若z=x+2y,则z的最大值为()A.﹣1 B.4 C.D.4.若tanθ+=4,则sin2θ=()A.B.C.D.5.若m∈R,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知双曲线=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.B.C.D.7.设f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)8.已知四棱锥,它的底面是边长为2的正方形,其俯视图如图所示,侧视图为直角三角形,则该四棱锥的侧面中直角三角形的个数为()A.1 B.2 C.3 D.49.执行如图所示的程序框图,则输出结果S的值为()A.B.0 C.﹣D.﹣110.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A.258 B.306 C.336 D.29611.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值范围为()A.B.[2,4]C.[3,6]D.[4,6]12.设△A n B n C n的三边长分别为a n,b n,c n,n=1,2,3,…,若b1>c1,b1+c1=2a1,=a n,,,则∠A n的最大值为()a n+1A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知命题p :n N ∀∈,22n n <,则p ⌝为 .14.程序框图如图所示,若输入1S =,1k =,则输出的S 为 .15.已知1F 、2F 分别为双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点P 为双曲线右支上一点,M 为12PF F ∆的内心,满足1212MPF MPF MF F S S S λ∆∆∆=+,若该双曲线的离心率为3,则λ= (注:1MPF S ∆、2MPF S ∆、12MF F S ∆分别为1MPF ∆、2MPF ∆、12MF F ∆的面积).16.已知等比数列{}n b 满足1132n n n a a -++=⋅,*n N ∈.设数列{}n a 的前n 项和为n S ,若不等式2n n S ka >-对一切*n N ∈恒成立,则实数k 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin C a bA B a c+=--.(Ⅰ)求角B 的大小;(Ⅱ)点D 满足2BD BC =,且线段3AD =,求2a c +的最大值.18.在四棱锥S ABCD -中,底面ABCD 为平行四边形,60DBA ∠=︒,30SAD ∠=︒,AD SD ==,4BA BS ==.(Ⅰ)证明:BD ⊥平面SAD ; (Ⅱ)求点C 到平面SAB 的距离.19.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:停靠时间 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量12121720151383(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a 小时,求a 的值;(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.20.已知椭圆C :2212x y +=的左顶点为A ,右焦点为F ,O 为原点,M ,N 是y 轴上的两个动点,且MF NF ⊥,直线AM 和AN 分别与椭圆C 交于E ,D 两点.(Ⅰ)求MFN ∆的面积的最小值; (Ⅱ)证明:E ,O ,D 三点共线. 21.已知函数21()ln 2f x x x a x =-+,a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围; (Ⅱ)当209a <<时,函数()f x 的两个极值点为1x ,2x ,且12x x <.证明:12()51ln 3123f x x >--. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系,将曲线1C 上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线2C ,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,1C 的极坐标方程为2ρ=.(Ⅰ)求曲线2C 的参数方程;(Ⅱ)过原点O 且关于y 轴对称的两条直线1l 与2l 分别交曲线2C 于A 、C 和B 、D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线1l 的普通方程. 23.选修4-5:不等式选讲已知函数()|24|||f x x x a =++-.(Ⅰ)当2a <-时,()f x 的最小值为1,求实数a 的值; (Ⅱ)当()|4|f x x a =++时,求x 的取值范围.2018届石家庄市高中毕业班第一次模拟考试试卷数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合M={x|x2﹣2x﹣3≤0},N={y|y=3x2+1},则M∩(∁U N)=()A.{x|﹣1≤x<1}B.{x|﹣1≤x≤1}C.{x|1≤x≤3}D.{x|1<x≤3}【考点】交、并、补集的混合运算.【分析】解一元二次不等式求得M,求函数的值域得到N,根据补集的定义求得∁U N,再根据两个集合的交集的定义求得M∩(∁U N).【解答】解:∵集合M={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},N={y|y=3x2+1}={y|y ≥1},∴∁U N={y|y<1},∴M∩(∁U N)={x|﹣1≤x<1},故选:A.2.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.﹣C.D.4【考点】复数求模;复数的基本概念.【分析】根据复数的有关概念进行运算即可.【解答】解:由(3﹣4i)z=|4+3i|,得(3﹣4i)z=5,即z===+i,故z的虚部为,故选:C3.设实数x,y满足不等式组,若z=x+2y,则z的最大值为()A.﹣1 B.4 C.D.【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(,),此时z的最大值为z=+2×=,故选:C4.若tanθ+=4,则sin2θ=()A.B.C.D.【考点】二倍角的正弦;同角三角函数间的基本关系.【分析】先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.【解答】解:sin2θ=2sinθcosθ=====故选D.5.若m∈R,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线平行的等价条件求出m,利用充分条件和必要条件的定义进行判断即可.【解答】解:由log6m=﹣1得m=,若l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行,则直线斜率相等或斜率不存在,解得m=0或m=,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的充分不必要条件,故选:A6.已知双曲线=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】根据题意,点(3,4)到原点的距离等于半焦距,可得a2+b2=25.由点(3,4)在双曲线的渐近线上,得到=,两式联解得出a=3且b=4,即可得到所求双曲线的方程.【解答】解:∵点(3,4)在以|F1F2|为直径的圆上,∴c=5,可得a2+b2=25…①又∵点(3,4)在双曲线的渐近线y=x上,∴=…②,①②联解,得a=3且b=4,可得双曲线的方程﹣=1.故选:C.7.设f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)【考点】奇函数;对数函数的单调性与特殊点.【分析】首先由奇函数定义,得到f(x)的解析式的关系式(本题可利用特殊值f(0)=0),求出a,然后由对数函数的单调性解之.【解答】解:由f(﹣x)=﹣f(x),,,即=,1﹣x2=(2+a)2﹣a2x2此式恒成立,可得a2=1且(a+2)2=1,所以a=﹣1则即解得﹣1<x<0故选A8.已知四棱锥,它的底面是边长为2的正方形,其俯视图如图所示,侧视图为直角三角形,则该四棱锥的侧面中直角三角形的个数为()A.1 B.2 C.3 D.4【考点】简单空间图形的三视图.【分析】由俯视图判断出PO⊥平面ABCD,由线面垂直的定义、判定定理判断出侧面中直角三角形的个数.【解答】解:由俯视图可得,PO⊥平面ABCD,∴PO⊥AB,∵AB⊥BC,且PO∩BC=O,∴AB⊥PB,同理可证,CD⊥PC,则△PAB、△PDC是直角三角形,∵侧视图为直角三角形,∴△PBC是直角三角形,且PC⊥PB,∴四棱锥的侧面中直角三角形的个数是3,如图所示.故选:C.9.执行如图所示的程序框图,则输出结果S的值为()A.B.0 C.﹣D.﹣1【考点】程序框图.【分析】算法的功能是求S=的值,根据条件确定跳出循环的n值,利用余弦函数的周期性求输出S的值.【解答】解:由程序框图知:算法的功能是求S=的值,∵跳出循环的n值为2014,∴=故选C.10.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A.258 B.306 C.336 D.296【考点】排列、组合及简单计数问题.【分析】由题意知本题需要分类解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分类解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故选C.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值范围为()A.B.[2,4]C.[3,6]D.[4,6]【考点】平面向量数量积的运算.【分析】通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出范围.【解答】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值范围为[4,6]故选:D12.设△A n B n C n的三边长分别为a n,b n,c n,n=1,2,3,…,若b1>c1,b1+c1=2a1,a n+1=a n,,,则∠A n的最大值为()A.B.C.D.【考点】数列递推式.【分析】根据数列的递推关系得到b n+c n=2a1为常数,然后利用余弦定理以及基本不等式即可得到结论.【解答】解:∵a n+1=a n,∴a n=a1,∵,,∴b n+1+c n+1=a n+=a1+,∴b n+1+c n+1﹣2a1=(b n+c n﹣2a1),又b1+c1=2a1,∴当n=1时,b2+c2﹣2a1=(b1+c1+﹣2a1)=0,当n=2时,b3+c3﹣2a1=(b2+c2+﹣2a1)=0,…∴b n+c n﹣2a1=0,即b n+c n=2a1为常数,∵b n﹣c n=(﹣)n﹣1(b1﹣c1),∴当n→+∞时,b n﹣c n→0,即b n→c n,则由基本不等式可得b n+c n=2a1≥2,∴b n c n ≤(a1)2,由余弦定理可得=﹣2b n c n cosA n =(b n +c n )2﹣2b n c n ﹣2b n c n cosA n , 即(a 1)2=(2a 1)2﹣2b n c n (1+cosA n ),即2b n c n (1+cosA n )=3(a 1)2≤2(a 1)2(1+cosA n ),即3≤2(1+cosA n ),解得cosA n ≥,∴0<A n ≤,即∠A n 的最大值是, 故答案为:.二、填空题 13.0n N ∃∈,0202n n ≥ 14.57 15.13 16.(,2]-∞ 三、解答题17.解:(Ⅰ)∵sin sin sin C a b A B a c +=--,由正弦定理得c a b a b a c+=--, ∴()()()c a c a b a b -=+-,即222a c b ac +-=,又∵2222cos a c b ac B +-=, ∴1cos 2B =, ∵(0,)B π∈,∴3B π=.(Ⅱ)在ABC ∆中由余弦定理知:222(2)22cos603c a a c +-⋅⋅⋅︒=,∴2(2)932a c ac +-=⋅, ∵ 222()2a c ac +≤, ∴223(2)9(2)4a c a c +-≤+,即2(2)36a c +≤,当且仅当2a c =,即32a =,3c =时取等号,所以2a c +的最大值为6.18.(Ⅰ)证明:在ABD ∆中,sin sin AB AD ADB DBA=∠∠,由已知60DBA ∠=︒,AD =4BA =,解得sin 1ADB ∠=,所以90ADB ∠=︒,即AD BD ⊥,可求得2BD =.在SBD ∆中,∵SD =4BS =,2BD =,∴222DB SD BS +=,∴SD BD ⊥,∵BD ⊄平面SAD ,SD AD D =,∴BD ⊥平面SAD .(Ⅱ)由题意可知,//CD 平面SAB ,则C 到面SAB 的距离等于D 到面SAB 的距离, 在SAD ∆中,易求6SA =,1sin1202SAD S ∆=⨯︒=且162SAB S ∆=⨯=BD ⊥面SAD ,则B SAD D SAB V V --=,即11233h ⨯=⨯,则h =,即点C 到平面ABF 的距离为7h =.19.解:(Ⅰ) 2.512312 3.517420 4.515513 5.58634100a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==. (Ⅱ)设甲船到达的时间为x ,乙船到达的时间为y ,则024,024,x y <<⎧⎨<<⎩若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则||4y x -<,所以必须等待的概率为22201112436P =-=. 答:这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为1136.20.解:(Ⅰ)设(0,)M m ,(0,)N n ,∵MF NF ⊥,可得1mn =-,11||||||22AMFN S AF MN MN ==, ∵222||||||2||||MN MF NF MF NF =+≥⋅,当且仅当||||MF NF =时等号成立. ∴min ||2MN =, ∴min 1()||12MFN S MN ==, ∴四边形AMFN 的面积的最小值为1.(Ⅱ)∵(A ,(0,)M m ,∴直线AM的方程为y x m =+,由22,22,y x m x y ⎧=+⎪⎨⎪+=⎩得2222(1)2(1)0m x x m +++-=,由222(1)1E m x m -=+,得221)1E m x m -=+,①同理可得221)1D n x n -=+, ∵1m n ⋅=-,∵221()11()1D m x m⎤-⎥⎣⎦=+22),1m m -=+②故由①②可知:E D x x =-,代入椭圆方程可得22E D y y =∵MF NF ⊥,故M ,N 分别在x 轴两侧,E D y y =-, ∴E D E Dy y x x =,∴E ,O ,D 三点共线.21.解:(Ⅰ)函数()f x 的定义域为(0,)+∞. 由题意'()1a f x x x =-+2x x a x-+=,0x >,14a ∆=-. ①若140a ∆=-≤,即14a ≥,则20x x a -+≥恒成立,则()f x 在(0,)+∞上为单调减函数;②若140a ∆=->,即14a <,方程20x x a -+=的两个根为112x =,2x =,当21(,)2x x ∈时,'()0f x <,所以函数()f x 单调递减,当2(,)x x ∈+∞时,'()0f x >,所以函数()f x 单调递增,不符合题意.综上,若函数()f x 为定义域上的单调函数,则实数a 的取值范围为14a ≥. (Ⅱ)因为函数()f x 有两个极值点,所以'()0f x =在0x >上有两个不等的实根,即20x x a -+=有两个不等的实根1x ,2x , 可得14a <,且12121,x x x x a+=⎧⎨⋅=⎩,因为2(0,)9a ∈,则1120(1)9x x <-<,可得11(0,)3x ∈. 2211111121122211ln ln ()22x x a x x x x x x f x x x x -+-+==21111112ln 1x x x x x -=+-, 11(0,)3x ∈. 令212()ln 1x x g x x x x -=+-,212()1x x h x x-=-,()ln m x x x =, ∵211'()02(1)2h x x =--<-, 又'()1ln m x x =+,1(0,)x e ∈时,'()0m x <, 而113e <,故'()0m x <在1(0,)3x ∈上恒成立, 所以'()()()0g x h x m x =+<在1(0,)3x ∈上恒成立, 即212()ln 1x x g x x x x-=+-在1(0,)3x ∈上单调递减, 所以151()()ln 33123g x g >=--,得证. 22.解:(Ⅰ)2214x y +=,2cos sin x y θθ=⎧⎨=⎩(θ为参数). (Ⅱ)设四边形ABCD 的周长为l ,设点(2cos ,sin )A q q ,8cos 4sin l θθ=+))θθθϕ=+=+,且cos ϕ=,sin ϕ= 所以,当22k πθϕπ+=+(k Z ∈)时,l 取最大值, 此时22k πθπϕ=+-,所以,2cos 2sin θϕ==,sin cos θϕ==此时,A ,1l 的普通方程为14y x =. 23.解:(Ⅰ)当2a <-时,函数34,,()|24|||4,2,34, 2.x a x a f x x x a x a a x x a x -+-<⎧⎪=++-=---≤≤-⎨⎪-+>-⎩可知,当2x =-时,()f x 的最小值为(2)21f a -=--=,解得3a =-. (Ⅱ)因为()|24||||(24)()||4|f x x x a x x a x a =++-≥+--=++, 当且仅当(24)()0x x a +-≤时,()|4|f x x a =++成立,所以,当2a <-时,x 的取值范围是{}|2x a x ≤≤-;当2a =-时,x 的取值范围是{}2-;当2a >-时,x 的取值范围是{}|2x x a -≤≤.。
Word资料Word资料Word资料Word资料Word资料Word资料Word 资料2018年初中毕业班教学质量检测数学试题参考答案及评分参考说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.)19.(23,23-),(1009,0), 17.12-18. 6π三、解答题(本大题有7个小题,共68分)20.解:(1)原式=ab b a ab -+++1=1++b a …………………………………………………………(2分)∵4=+b a ,∴原式=4+1=5.……………………………………………………(4分) (2)∵b a b ab a 22222+++-=)(2)(2b a b a ++-, ………………………(6分) 由题意得,42)(2⨯+-b a =17,∴2)(b a -=9,∴b a -=±3.……………………………………………………………………(8分)Word 资料21.(1)40;………………………………………………………………………(1分)补全图形如图1所示:………………………………………………………(3分)(2)90,90;……………………………………………………………………(5分) (3)列表法:……………………………………………………………………(7分)∵第二象限的点有(−2,2)和(−1,2)奖项祖冲之奖刘徽奖赵爽奖 杨辉奖图1Word 资料∴P (点在第二象限)=92……………………………………………………(9分)22.解:(1)如图2F ⊥BD ,垂足为F . ……………………………………(1分)∵AC ⊥BD , ∴∠ACB=∠FB=90°;在RtFB 中,∠1+∠3=90°;B ⊥AB ,∴∠1+∠2=90°,∴∠2=∠3; ……………………………………………………………………(2分) 在△ACB 和△∴△ACB ≌△(AAS );∴F=BC ,……………………………………………………………………(4分)∵AC ∥DE 且CD ⊥AC ,AE ⊥DE ,∴CD=AE=1.8;…………………………………………………………………(5分) ∴BC=BD -CD=3-1.8=1.2, ∴F=1.2到BD 的距离是1.2m .………………………………………(6分)HD 图2Word 资料(2)由(1)知:△ACB ≌△∴BF=AC=2m ,………………………………………………………………(7分)H ⊥DE ,垂足为H . ∵F ∥DE,……………………………………………………(8分)∴H=BD -BF=3-2=1,即到地面的距离是1m .……………………(9分)23.解:(1)此时点A 在直线l 上; …………………………………………………(1分)∵BC =AB =2,点O 为BC 中点,∴点B (−1,0),A (−1,2),……………………………………………………(3分) 把点A 的横坐标x=−1代入解析式42+=x y ,得4)1(2+-⨯=y =2,等于点A 的纵坐标2,∴此时点A 在直线l 上. …………………………………………………………(5分) (2)由题意可得,点D (1,2),及点M (−2,0), 当直线l 经过点D 时,设l 的解析式为t kx y +=(k ≠0),∴⎩⎨⎧=+=+-202t k t k ,解得⎪⎪⎩⎪⎪⎨⎧==3432t k ,…………………………………………………(7分)Word 资料∴当直线l 与AD 边有公共点时,t 的取值围是34≤t ≤4. ………………(9分) 24.解:(1)5 ………………………………(1分)(2)设AE =x ,∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴ FE =AE =x ,FD =AD =BC =3,∴ BF =BD ﹣FD =5﹣3=2, 在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x =32, ∴AE 的长为32. ……………………………………………(4分) (3)存在, ……………………………………………(5分)如图3,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求(画出点P 即可). ………………………………(6分)此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC , A E BC D F G P H 图3Word 资料 ∴FH BF BH DC BD BC ==,即2453FH BH ==, ∴8655FH BH ==,, ………………………………………………………(8分) ∴GH =BG +BH 6213,55=+= 在Rt △GFH 中,根据勾股定理,得∴GF === 即PF +PC 的最小值为…………………………………………………(10分) 25.解:(1)设b kx q +=(k ,b 为常数且k ≠0),当x =2时,q =12,当x =4时,q =10,代入解析式得,⎩⎨⎧=+=+104122b k b k ,解得:⎩⎨⎧=-=141b k , …………………………………………………(2分) ∴14+-=x q . ……………………………………………………………………(3分)(2)当产量小于或等于市场需求量时,有p ≤q , ∴821+x ≤14+-x ,解得x ≤4, ………………………………………………(5分) 又2≤x ≤10,∴2≤x ≤4.…………………………………………………………(6分)Word 资料(3)①当产量大于市场需求量时,可得4<x ≤10,由题意得,厂家获得的利润是:p qx y 2-= ………………………………………………………………………(7分)=16132-+-x x =4105)213(2+--x .……………………………………………………………(9分) ②∵当x ≤213时,y 随x 的增加而增加, 又∵产量大于市场需求量时,有4<x ≤10,∴当4<x ≤213时,厂家获得的利润y 随销售价格x 的上涨而增加.……(11分)26.解:【发现】(1)3π.………………………………………………………………………(1分) (2)设⊙P 半径为r ,则有r =4-3=1, 当t =2时,如图4,点N 与点A∴ PA =r =1,设MP 与AB 相交于点Q ,在Rt △∵∠OAB =30°,∠MPN =60°,Word 资料 ∵∠PQA =90°.∴11,22PQ PA ==∴cos30AQ PA =︒=g∴111222PQA S PQ AQ ==⨯=V g 即重叠部分的面积为83.………………………………………………(4分) 【探究】: ① 如图5,当⊙P 与直线AB 相切于点C连接PC ,则有PC ⊥AB ,PC =r =1,∵∠OAB =30°,∴AP =2,∴OP =OA -AP =3-2=1;∴点P 的坐标为(1,0);…………(6② 如图6,当⊙P 与直线OB 相切于点D 连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD =PD OP,OP =33230cos 1=ο图6∴点P的坐标为(332,0);………(8分)③如图7,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP=332;∴点P的坐标为(-332,0)……………………………………………(10分)【拓展】t的取值围是2 <t≤3,4≤t<5 ………………………………………(12分)(提示:当点N运动到与点A重合时,¼MN与Rt△ABO的边有一个公共点,此时t=2 ;当t>2 直到⊙P运动到与AB相切时(t=3 ),¼MN与Rt △ABO的边有两个公共点,∴2 <t≦3 . 当⊙P运动到PM与OB重合时,¼MN与Rt△ABO的边有两个公共点,此时t=4 ;直到⊙P运动到点N与点O重合时,¼MN与Rt△ABO的边有一个公共点,此时t=5;∴4 ≦t<5. )xWord资料。
2018年4月石家庄市一模数学试卷及答案(word版可编辑修改)2018年4月石家庄市一模数学试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年4月石家庄市一模数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年4月石家庄市一模数学试卷及答案(word版可编辑修改)的全部内容。
2018年初中毕业班教学质量检测数学试题参考答案及评分参考说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.) 19.(23,23-),(1009,0),17.12-18. 6π三、解答题(本大题有7个小题,共68分)20.解:(1)原式=ab b a ab -+++1=1++b a …………………………………………………………(2分)∵4=+b a ,∴原式=4+1=5.……………………………………………………(4分) (2)∵b a b ab a 22222+++-=)(2)(2b a b a ++-, ………………………(6分)由题意得,42)(2⨯+-b a =17,∴2)(b a -=9,∴b a -=±3.……………………………………………………………………(8分) 21.(1)40;………………………………………………………………………(1分)补全图形如图1所示:………………………………………………………(3分)(2)90,90;……………………………………………………………………(5分) (3)列表法:……………………………………………………………………(7分)∵第二象限的点有(−2,2)和(−1,2)奖项祖冲之奖刘徽奖赵爽奖 杨辉奖图1∴P (点在第二象限)=92……………………………………………………(9分)22.解:(1)如图2,作F ⊥BD ,垂足为F . ……………………………………(1分)∵AC ⊥BD , ∴∠ACB=FB=90°;在Rt △FB 中,∠1+∠3=90°;⊥AB ,∴∠1+∠2=90°,∴∠2=∠3; ……………………………………………………………………(2分) 在△ACB 和△BF中,∴△ACB ≌△BF(AAS );,……………………………………………………………………(4分)∵AC ∥DE 且CD ⊥AC ,AE ⊥DE ,∴CD=AE=1。
石家庄市2018届高中毕业班模拟考试(一) 文科数学(A 卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( )A .{1,2}B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}2.复数121ii -=+( )A .iB .i -C .132i --D .332i -3.已知四个命题:①如果向量a r 与b r 共线,则a b =r r 或a b =-r r;②3x ≤是3x ≤的必要不充分条件;③命题p :0(0,2)x ∃∈,200230x x --<的否定p ⌝:(0,2)x ∀∈,2230x x --≥;④“指数函数xy a =是增函数,而1()2x y =是指数函数,所以1()2xy =是增函数” 此三段论大前提错误,但推理形式是正确的.以上命题正确的个数为( )A .0B .1C .2D .34.若数列{}n a 满足12a =,111nn n a a a ++=-,则2018a 的值为( )A .2B .-3C .12-D .135.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( )A .12B .13C .14D .236. 程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A.4?i≤B.4?i≥C.5?i≤D.5?i≥7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:2222221[()]42c a bS c a+-=-,a b c>>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A.84平方里B.108平方里C.126平方里D.254平方里8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.23πB.43πC.2πD.83π9.设()f x是定义在[2,3]b b-+上的偶函数,且在[2,0]b-上为增函数,则(1)(3)f x f-≥的解集为()A.[3,3]-B.[2,4]-C.[1,5]-D.[0,6]10.抛物线C:214y x=的焦点为F,其准线l与y轴交于点A,点M在抛物线C上,当2MAMF=时,AMF∆的面积为()A .1B .2 C. D .411.在ABC ∆中,2AB =,6C π=,则AC 的最大值为( )AB. C. D.12.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b -=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为( )A .1 BC .2 D. 二、填空题:本大题共4小题,每题5分,共20分.13.设向量(1,2)a m =r ,(1,1)b m =+r ,若a b ⊥r r,则m = .14.x ,y 满足约束条件:11y xx y y ≤⎧⎪-≤⎨⎪≥-⎩,则2z x y =+的最大值为 .15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 .16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分 17.已知{}n a 是公差不为零的等差数列,满足37a =,且2a 、4a 、9a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足1n n n b a a +=⋅,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S.18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=u u u u r u u u r,求实数λ的值;(Ⅱ)若BC SD ⊥,求点B 到平面SAD 的距离.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格: 日均派送单数 52 54 56 58 60 频数(天)2030202010回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这100天中甲、乙两种方案的日薪X 平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且离心率为22,M为椭圆上任意一点,当1290F MF ∠=o时,12F MF ∆的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若0m ≤,证明:2()f x mx x ≥+. (二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.选修4-5:不等式选讲已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.石家庄市2017-2018学年高中毕业班第一次模拟考试试题 文科数学答案 一、选择题1-5: ACDBB 6-10: CABBB 11、12:DD 二、填空题13.13-14. 3 15. 乙16. 三、解答题17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,所以数列{}n a 的通项公式32n a n =-.(2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+,12111111111......(1)34473231n n S b b b n n =+++=-+-++--+L11(1)33131n n n =-=++.18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM I 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD I 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD ,在Rt SEA V和Rt SED V 中, 因为SA SD =,所以2222AE SA SE SD SE DE =--=,又由题知45EDA ∠=o, 所以AE ED ⊥, 由已知求得2AD =1AE ED SE ===,连接BD ,则111133S ABD V -=⨯⨯=三棱锥, 又求得SAD V的面积为32, 所以由B ASDS ABDV V --=三棱锥三棱锥点B 到平面SAD 的距离为233.19.解:(1)甲方案中派送员日薪y (单位:元)与送货单数n 的函数关系式为:N ,100∈+=n n y ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y ,k.KS5U(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则1=15220+15430+15620+15820+16010100x ⨯⨯⨯⨯⨯甲()=155.4, ()()()()()2222221=[20152155.4+30154155.4+20156155.4+20158155.4+10010160155.4]=6.44S ⨯-⨯-⨯-⨯-⨯-甲,乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则1=14050+15220+17620+20010100x ⨯⨯⨯⨯乙()=155.6, ()()()()222221=[50140155.6+20152155.6+20176155.6+10200155.6]100=404.64S ⨯-⨯-⨯-⨯-乙,②、答案一:由以上的计算可知,虽然x x <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,x x <乙甲,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题12222121224112c e a r r a r r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x yC x y ,当直线1AF的斜率不存在时,设(A -,则(1,B -,直线2AF的方程为1)4y x =--代入2212x y +=,可得25270x x --=,275x ∴=,210y =-,则7(,)510D -,∴直线BD的斜率为1(10276(1)5k ---==--,直线OA的斜率为22k =-,121(626k k ∴⋅=-=-,当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-.当直线1AF 、2AF 的斜率存在时,10±≠x ,设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则22022y x =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---,∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+,Q 直线OA 的斜率为20y k x =,∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-= ⎪⎝⎭,又()()1xf x x b e a '=++-,所以1(1)1b f a e e '-=-=-+, 若1a e =,则20b e =-<,与0b >矛盾,故1a =,1b =.(Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+,令()()()11x g x x e x=+--,()()22x g x x e '=+-,当2x ≤-时,()()2220x g x x e '=+-<-<,当2x >-时, 设()()()22x h x g x x e '==+-,()()30x h x x e '=+>,故函数()g x '在()2,-+∞上单调递增,又(0)0g '=, 所以当(),0x ∈-∞时,()0g x '<,当()0,x ∈+∞时,()0g x '>,所以函数()g x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,故()()2()(0)011x g x g x e x mx x≥=⇒+-≥≥+故2()f x mx x ≥+. 法二:(Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+,令()()()11x g x x e x=+--,()()22x g x x e '=+-,令当时,,单调递减,且; 当时,,单调递增;且,所以在上当单调递减,在上单调递增,且,故()()2()(0)011x g x g x e x mx x≥=⇒+-≥≥+,故2()f x mx x ≥+. 选作题22(1)由题意可知直线l 的直角坐标方程为32y x =+,曲线C 是圆心为(3,1),半径为r 的圆,直线l 与曲线C 相切,可得:33122r ⋅-+==;可知曲线C 的方程为22(3)(1)4x y +-=,所以曲线C 的极坐标方程为223cos 2sin 0ρρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>), 6sin 21πON OM S MON =∆,,当12πθ=时, 32+≤∆MON S ,所以△MON 面积的最大值为23. 23. 【解析】 (1)由题意可知32x x m--≥恒成立,令3()2x g x x-=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;(2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++22222222222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥=,当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立,所以222111123a b c +++++的最小值为35.石家庄市2017-2018学年高中毕业班第一次模拟考试试题 文科数学答案选择题(A 卷答案)1-5 ACDBB 6-10CABBB 11-12 DD (B 卷答案)1-5 BCDAA 6-10CBAAA 11-12 DD 二、填空题13.13-14. 3 15. 乙 16. 23三、解答题(解答题仅提供一种解答,其他解答请参照此评分标准酌情给分)17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,……………2分即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,……………4分所以数列{}n a 的通项公式32n a n =-,………………………………6分(2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+,…………………………8分12111111111......(1)34473231n n S b b b n n =+++=-+-++--+L…………………10分11(1)33131n n n =-=++ (12)分. 18.(1)因为//BC 平面SDM,BC ⊂平面ABCD,平面SDM I 平面ABCD=DM, 所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点。